
Integer Factorisation on the AP1000∗

Craig Eldershaw
Mathematics Department
University of Queensland

St Lucia, Queensland 4072
cs324391@student.uq.edu.au

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Canberra, ACT 0200
rpb@cslab.anu.edu.au

Abstract

We compare implementations of two integer factorisation algorithms, the elliptic
curve method (ECM) and a variant of the Pollard “rho” method, on three machines
(the Fujitsu AP1000, VP2200 and VPP500) with parallel and/or vector architectures.
ECM is scalable and well suited for both vector and parallel architectures.

1 Introduction

The factorisation of large integers is a significant mathematical problem with practi-
cal applications to public-key cryptography [21]. Although the theoretical complexity of
factorisation is unknown, it is a computationally expensive task with the best known algo-
rithms. The development of new algorithms and faster machines has made the factorisation
of “general” integers with 100–120 digits feasible.

Several authors have considered vector and parallel implementations of the MPQS and
NFS algorithms [5, 8, 12, 16, 19, 20]. These algorithms have the property that the run-time
depends mainly on the size of the number N to be factored. For another class of algorithms
the run-time depends mainly on the size of the factor found. This class includes Lenstra’s
“elliptic curve method” (ECM) [14] and Pollard’s “rho” method [18], which are considered
in this paper.

We have implemented variants of ECM and Pollard “rho” on three computers with
different architectures –

• The Fujitsu AP1000, a parallel machine with up to 1024 processors [10]. Each pro-
cessor is a 25MHz RISC microprocessor with 16MB of memory. The processors are
connected by a torus with wormhole routing. Each processor has a floating-point unit
with a peak speed of 5.6 Mflop in double-precision. Our machine has 128 processors,
so its peak speed is about 0.7 Gflop.

• The Fujitsu VP2200/10, a vector processor with a peak speed of 1.25 Gflop [22].

∗To appear in PCW ’95: Proceedings of the Fourth International Parallel Computing Workshop
1995, Imperial College, London, 25–26 September 1995, 233–242.
Copyright c© 1995, the authors. rpb156 typeset using LATEX

1

• The Fujitsu VPP500, a parallel machine with up to 224 vector processors connected
by a crossbar network [6]. Each processor is similar to the VP2200/10 and has a peak
speed of 1.6 Gflop. The machine available to us had 4 processors and peak speed
6.4 Gflop.

In the following Sections we describe the implementation of ECM and Pollard “rho”
on the AP1000, VP2200 and VPP500, and compare their performance. Many examples of
successful factorisations may be found in [4, 5, 7], so here we concentrate on vectorisation
and parallelisation aspects of the implementations.

2 The Elliptic Curve Method

The elliptic curve method (usually abbreviated ECM) was proposed by Lenstra [14].
Practical improvements, such as the addition of a second phase, were suggested by Brent [3],
Montgomery [15] and others. Each “trial” of the algorithm depends on a random seed
and has a positive (but generally small) probability of finding a factor f . Because many
independent trials can be performed in parallel, ECM is obviously amenable to a parallel
implementation. The speedup is expected to be proportional to the number of processors
provided f is not too small.

A vectorised implementation of ECM on the Fujitsu VP100 was written in 1988. The
language used was a dialect of Fortran (close to Fortran 77 with directives for vectorisation).
An improved version was implemented in 1991 on the Fujitsu VP2200. Because the Fujitsu
vector processors are designed for fast floating-point arithmetic, the inner loop uses 64-bit
floating-point multiply, add, INT and DFLOAT operations (for details see [5]). The base
β = 226 of the multiple-precision number representation is chosen so that integers up to
β2 can be represented exactly in floating-point format. Operations which are not critical
to performance, such as input and output, are done with the MP package [1], which is
convenient but slow because it was not written with vectorisation in mind.

In 1994 Eldershaw modified Brent’s VP2200 implementation of ECM to obtain AP1000
and VPP500 implementations. The modifications were along the lines suggested in [4]. On
the AP1000 each processor performs one or more independent trials (without vectorisation)
and reports back to the host processor if a factor is found. On the VPP500 it is important
for each processor to perform several trials, since the vector length of inner-loop operations
is proportional to the number of trials per processor.

In more detail: P blocks of R trials (phase 1) are carried out simultaneously on P
processors. The trials within each block have consecutive seed values, and the first seed
value for each block is R larger than that for the previous block. In effect R×P trials are
being carried out with consecutive seeds. At the end of the block of R trials (phase 1),
each processor checks if a factor has been found. If not, each processor carries out phase 2
of the algorithm for each of its R trials using the corresponding first phase results.

In [4, 5] Brent gave the theoretical expected run-time TP for a machine with P proces-
sors:

TP = T1/P + O(T
1/2+ε
1) (1)

Tests were run on the AP1000 with varying numbers of processors (powers of 2 from 20 to
27). The results confirmed (1). Typical results are shown in Figure 1. Linear regression
shows that there is less than 3% error in the gradient of a linear fit to the data points. We

2

����������������
�

�
�

�
�

�
�!!!!!!

""
��

Time

1/P
0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Figure 1: Time TP (arbitrary units) versus 1/P for ECM on AP1000

can say that ECM is scalable, meaning that the speedup for sufficiently large problems on
a parallel machine with P processors is proportional to P .

The VP2200 and VPP500 programs were very effectively vectorised – in a typical run,
at least 90% of the overall time was spent using the vector unit. The AP1000 ran only in
scalar mode, but the multiple processors reduced the time by two orders of magnitude (as
predicted in (1)) in comparison to a single processor run.

To give a typical example of the performance of the programs: a test run found a
32-digit factor

12567880628356583361572166052961

of a 79-digit number (9885 + 1 divided by known factors) in 1555 seconds on the first
attempt on the AP1000, using the first phase of ECM with limit 100000 and 256 trials.
The same computation could be performed on the VP2200 in 915 seconds.

Another example: using ECM with limit 240000 and 256 trials, a 41-digit factor

25233450176615986500234063824208915571213

of a 92-digit number (55126 + 1 divided by known factors) was found by the second phase
in 7042 seconds on the AP1000. (To find factors of this size by ECM requires an element
of luck.)

The Fortran compilers on the VP2200 and VPP500 can achieve close to peak speed for
well-vectorised loops. Considering their peak speeds, the VPP500 should have performed
about 5 times faster than the VP2200. However, various overheads due to the parallelisa-
tion reduced this ratio for short runs. Times typical of small runs on the three machines
are: on the VP2200, 30 seconds; on the AP1000, 68 seconds; and on the VPP500, 23
seconds (all to perform the same amount of work). However for longer runs, the VPP500
performed better. For example, on one run the VP2200 took 292 seconds and the VPP500

3

took only 50 seconds. The ratio (5.84) is greater than the ratio of peak speeds (5.12).
This may be because the VPP500 has a better memory bandwidth per flop, so it is eas-
ier for the compiler to achieve close to peak performance in vectorised loops. If INT and
DFLOAT are counted as floating-point operations (which is reasonable, since they use the
vector pipelines) then our programs achieve greater than 55% of peak performance on the
VP2200 and about 64% on the VPP500.

3 Brent-Pollard “rho”

The Brent-Pollard “rho” programs, written by Eldershaw, were based on algorithm P ′′
2

in Brent’s paper [2] which improved the efficiency of Pollard’s original “rho” method [18].
On the AP1000 the calculations are performed using MP [1]. Parallelisation is carried
out as suggested in [4]. That is, each processor independently repeats the same procedure
using a different function F (the difference depending upon a single parameter) to generate
a pseudo-random sequence.

As pointed out in [4], a speedup of order
√

P is all that can be expected when using P
processors. This gives an expected run time of:

TP ∼ T1/
√

P (2)

assuming that the computation stops as soon as one processor finds a factor.

Tests were run on the AP1000 with the number of processors varying in powers of two
(from 20 to 27). The results were reasonably consistent with the prediction (2). Linear
regression of TP vs 1/

√
P shows an error of less than 10% in the gradient of a linear fit to

the data points. Experimental data points along with the fitted line (dotted) are shown in
Figure 2. Parallelisation of the “rho” algorithm is not nearly as effective as for the ECM,
i.e. “rho” is not scalable.

Consider implementing the “rho” algorithm on a vector machine with vector lengths
v. Because of vector startup times and parts of the code which run in scalar mode, we
can expect the time for v independent function evaluations to be proportional to v + v1/2,
where v1/2 is a constant. Since the expected number of function evaluations to find a factor
is proportional to

√
v, the expected run time Tv is proportional to

v + v1/2√
v

(3)

The function in (3) has a minimum of 2
√

v1/2 at v = v1/2. Thus, the maximum speedup is
approximately

√
v1/2/2.

A vectorised version was implemented on the VP2200. The effect of varying the vector
length v is shown in Figure 3. Note that the units of time are arbitrary and T1 = 19.4 is
well off the page. The results are roughly as predicted by (3). For the optimal value of v
(a few hundred) the speedup over v = 1 is about 12.

4 Conclusion

The effect of parallelisation was as predicted – ECM obtains close to linear speedup, but
“rho” only obtains a speedup of order

√
P on a machine with P processors. Nevertheless,

4

,
,

,
,

,
,

,
,

,
,

�
�

�
�

�
%
%
%
%

((�
��

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8

Figure 2: Time TP (arbitrary units) versus 1/
√

P for Brent-Pollard Rho

DDD

E
E
E�
�
�B
B
B
DDD ��((�

�
T
T
T((((((((`̀ (((((((

(((

4

3

2

1

0
0 300

v
600 900

Figure 3: Time versus vector length v for Brent-Pollard Rho

5

“rho” is much simpler than ECM and should be faster than ECM for small factors and a
small number of processors, provided both implementations are equally well vectorised.

Parallel versions of the MPQS and NFS methods have not yet been implemented on
the AP1000 or VPP500. However, we would expect that a careful implementation of these
methods would obtain good speedup. Most of the work involves sieving, and the sieving
phase can be split across many processors and/or vectorised efficiently [12, 13, 20]. After
sieving is completed a large sparse linear system has to be solved over a finite field. This is
relatively easy. For example, the factorisation of a 105-digit number by GNFS, described
in [16], required the solution of a linear system with 1.29 million columns with 30 nonzeros
per column. It was solved using a block Lanczos algorithm [17] which could have been
parallelised. Other parallel algorithms for the solution of large sparse linear systems are
discussed in [11].

A good factorisation strategy is to use trial division to remove very small factors,
possibly followed by Brent-Pollard “rho” and/or Pollard “p ± 1” [15], and then ECM. If
ECM can not complete the factorisation in a reasonable time, MPQS (or NFS) is needed.
Even in this case, the time spent on ECM is not wasted, because the time required by MPQS
is greatly reduced for each factor found by ECM. Most of the nontrivial factorisations listed
in [7] were found using a combination of methods, and could not have been found in a
reasonable time with a single method.

Acknowledgements

The work of the first author was performed during a visit to the Research School of
Information Sciences and Engineering at the Australian National University as a summer
scholar. The ANU Supercomputer Facility, the ANU-Fujitsu CAP Project, and Fujitsu
Ltd. kindly provided access to the VP2200, AP1000 and VPP500 respectively. We thank
Dr M. Hegland, Mr D. Sitsky and Dr B. Zhou for their assistance. A preliminary version
of this paper appeared as [9].

References

[1] R. P. Brent, “Algorithm 524: MP, a Fortran multiple-precision arithmetic package
[A1], ACM Trans. on Mathematical Software 4 (1978), 71–81.

[2] R. P. Brent, “An improved Monte Carlo factorization algorithm,” BIT 20 (1980),
176–184.

[3] R. P. Brent, “Some integer factorization algorithms using elliptic curves,” Australian
Computer Science Communications 8 (1986), 149–163.

[4] R. P. Brent, “Parallel algorithms for integer factorisation”, in Number Theory and
Cryptography (edited by J. H. Loxton), Cambridge University Press, 1990.

[5] R. P. Brent, “Vector and parallel algorithms for integer factorisation”, Proc. Third
Australian Supercomputer Conference, Melbourne, 1990.

[6] R. P. Brent, A. J. Cleary, M. Hegland, J. H. Jenkinson, Z. Leyk, M. Nakanishi,
M. R. Osborne, P. J. Price, S. Roberts and D. B. Singleton, “Implementation and per-
formance of scalable scientific library subroutines on Fujitsu’s VPP500 parallel-vector

6

supercomputer”, Proc. Scalable High Performance Computing Conference, (Knoxville,
Tennessee, 23-25 May, 1994), IEEE Computer Society Press, Los Alamitos, California,
1994, 526–533.

[7] R. P. Brent and H. J. J. te Riele, “Factorizations of an±1, 13 ≤ a < 100”, Report NM-
R9212, Centrum voor Wiskunde en Informatica, Amsterdam, June 1992, v+363 pp.
ISSN 0169-0388. Updates available by ftp from nimbus.anu.edu.au:/pub/Brent.

[8] T. R. Caron and R. D. Silverman, “Parallel implementation of the quadratic sieve”,
J. Supercomputing 1 (1988), 273–290.

[9] C. Eldershaw and R. P. Brent, “Factorization of large integers on some vector and
parallel computers”, Proceedings of Neural, Parallel and Scientific Computations 1
(1995), 143-148. Also Tech. Report TR-CS-95-01, CSL, ANU, January 1995, 6 pp.

[10] H. Ishihata, T. Horie and T. Shimizu, “Architecture for the AP1000 highly parallel
computer”, Fujitsu Sci. Tech. J. 29 (1993), 6–14.

[11] E. Kaltofen, “Analysis of Coppersmith’s block Wiedemann algorithm for the parallel
solution of sparse linear systems”, Mathematics of Computation 64 (1995), 777–806.

[12] A. K. Lenstra and H. W. Lenstra (editors), The Development of the Number Field
Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.

[13] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard “The factorization
of the ninth Fermat number”, Mathematics of Computation 61 (1993), 319–349.

[14] H. W. Lenstra, Jr., “Factoring integers with elliptic curves”, Annals of Math. (2) 126
(1987), 649–673.

[15] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factorisation”,
Mathematics of Computation 48 (1987), 243–264.

[16] P. L. Montgomery, “A survey of modern integer factorization algorithms”, CWI Quar-
terly 7 (1994), 337–366.

[17] P. L. Montgomery, “A block Lanczos algorithm for finding dependencies over GF (2)”,
Proc. Eurocrypt, 1995.

[18] J. M. Pollard, “A Monte Carlo method for factorisation”, BIT 15 (1975), 331–334.

[19] C. Pomerance, J. W. Smith and R. Tuler, “A pipeline architecture for factoring large
integers with the quadratic sieve algorithm”, SIAM J. on Computing 17 (1988), 387–
403.

[20] H. J. J. te Riele, W. Lioen and D. Winter, “Factoring with the quadratic sieve on
large vector computers”, Belgian J. Comp. Appl. Math. 27(1989), 267–278.

[21] R. L. Rivest, A. Shamir and L. Adelman, “A method for obtaining digital signatures
and public-key cryptosystems”, Comm. ACM 21 (1978), 120–126.

[22] N. Uchida, “Fujitsu VP 2000 series supercomputers”, Int. J. High Speed Computing 3
(1991), 169–185.

7

