
Error analysis of a fast partial pivoting method for structured matrices∗

D.R. Sweet

Maritime Operations Division
Defence Science and Technology Organisation

and R.P. Brent

Computer Sciences Laboratory
Australian National University

25 April 1995

ABSTRACT

Many matrices that arise in the solution of signal processing problems have a special displacement structure.
For example, adaptive filtering and direction-of-arrival estimation yield matrices of a Toeplitz type. A recent
method of Gohberg, Kailath and Olshevsky (GKO) allows fast Gaussian elimination with partial pivoting for
such structured matrices. In this paper, a rounding error analysis is performed on the Cauchy and Toeplitz
variants of the GKO method. It is shown the error growth depends on the growth in certain auxiliary vectors,
the generators, which are computed by the GKO algorithms. It is also shown that in certain circumstances,
the growth in the generators can be large, and so the error growth is much larger than would be encountered
with normal Gaussian elimination with partial pivoting. A modification of the algorithm to perform a type of
row-column pivoting is proposed which may circumvent this problem.

Keywords: Structured matrices, fast algorithms, displacement rank, generators, pivoting, error analysis

1 INTRODUCTION

Many problems which occur in signal processing and other fields lead to linear systems with special matrices.
Such systems include Toeplitz matrices, with constant NW-SE diagonals, Hankel matrices, with constant SW-NE
diagonals, Vandermonde matrices, with entries of the form vij = xj−1

i , and Cauchy matrices with entries of the
form cij = 1/(ti − sj). There are also generalized version of these structures called Toeplitz-type, and so on.

Normally, the solution of a linear system requires O(n3) operations, where n is the order of the system.
However, the structure of such systems has been exploited in the past1,4 to derive fast solvers, i.e. those that require
O(n2) or fewer operations. However these fast algorithms were in general numerically unstable for indefinite
systems.2,8 Recently, methods have been proposed8,3,7 which are numerically stable, but which attempt to retain
the O(n2) complexity. However, all of these algorithms will require O(n3) operations in the worst case.

∗Copyright c© 1995, the authors. To appear in Advanced Signal Processing Algorithms, Proc. SPIE 40th Annual Meeting, San
Diego, July 1995. rpb157sp typeset using LATEX

Recently, Gohberg, Kailath and Olshevsky5 have shown how to perform Gaussian elimination with partial
pivoting in a fast way with Cauchy-type and Vandermonde-type matrices. They also show how to convert
Toeplitz-type and Hankel-type problems by simple orthogonal operations to Cauchy problems. The solution to
the original systems can be recovered from those of the transformed systems by the reverse orthogonal operations.

It might be assumed that such fast solvers should have the same stability properties as Gaussian elimination
with partial pivoting. One of the aims of this paper is analyse the error behaviour of these algorithms by means
of a backward error analysis. It is shown there that error propagation depends on the magnitude of the both the
triangular factors L and U (as in Gaussian elimination) and the generators, auxiliary vectors which are computed
during the course of the algorithm.

It is shown that in some cases the generators can suffer a large growth and cause a corresponding growth in
the backward and forward error. A modification is proposed which may prevent this growth, and so restore the
stability of the algorithm in these cases.

The paper is structured as follows. In section 2, the Gohberg-Kailath-Olshevsky (GKO) algorithm for Cauchy
and Toeplitz matrices is briefly described. The error analyses of the Cauchy and Toeplitz variants of the GKO
algorithm are carried out in sections 3 and 4 respectively, and in section 5, examples for both variants are given
where a large growth occurs in the generators and hence the errors in the solutions. The modified version of the
GKO algorithm is proposed in section 6, and numerical tests of this are carried out there. In the last section,
some conclusions are drawn and suggestions for future work given.

Notation. The following notation will be used. ε is the machine epsilon, and n is the order of the matrix to
be factorized. Scalars of the form ci and ki are small constants. ej denotes the jth column of the identity matrix.
Elementwise matrix multiplication is denoted by the centred circle ◦. For a matrix A, |A| is the matrix of moduli
of the {aij}, AI denotes elementwise inversion, and A′ denotes augmentation of A to order n by adding zero rows
and zero columns respectively above and to the left of A, Other submatrices are indicated in MATLAB style, i.e.
for a matrix A, Ap:q,r:s selects rows p to q of columns r to s, and a colon without an index range selects all of the
rows or columns.

2 THE GOHBERG-KAILATH-OLSHEVSKY (GKO)
ALGORITHM

In this section, we first define the displacement operator, displacement equation and displacement rank for
structured matrices; we then give the general Gaussian elimination algorithm for structured matrices, followed
by the variants for Cauchy and Toeplitz matrices.

2.1 Displacement structure

Gohberg et al 5 show that structured matrices satisfy a Sylvester equation which has the form

∇{Af ,Ab}(R) = AfR−RAb = ΦΨ, (1)

where Af and Ab have some simple structure (usually banded, with 3 or fewer full diagonals), Φ and Ψ are n×α
and α × n respectively, and α is some small integer (usually 4 or less). The pair of matrices Φ,Ψ is called the
{Af , Ab}-generator of R, and α is called the {Af , Ab}-displacement rank of R.

Particular choices of Af and Ab lead to definitions of basic classes of matrices. Thus, for a Cauchy matrix

C(t, s) =
[

1
ti − sj

]
ij

,

we have
Af = Dt = diag(t1, t2, . . . , tn), Ab = Ds = diag(s1, s2, . . . , sn) (2)

and
ΦT = Ψ = [1, 1, . . . , 1]. (3)

More general matrices, where Af and Ab are as in (2) but Φ and Ψ are general rank-α matrices, are called
Cauchy-type.

Similarly, for a Toeplitz matrix T = [tij] = [ai−j]

Af = Z1 =



0 0 · · · 0 1
1 0 0

0 1
...

...
. . .

...
0 · · · 0 1 0

 , Ab = Z−1 =



0 0 · · · 0 −1
1 0 0

0 1
...

...
. . .

...
0 · · · 0 1 0

 , (4)

Φ =
[

1 0 · · · · · · 0
a0 a1−n + a1 · · · a−2 + an−2 a−1 + an−1

]T

(5)

and

Ψ =
[
an−1 − a−1 an−2 − a−2 · · · a1 − a1−n a0

0 · · · · · · 0 1

]
. (6)

2.2 Gaussian elimination for structured matrices

Let the input matrix, R1, have the partitioning R1 =
[
d1 wT

1

y1 Ṙ1

]
. Then, the first step of normal Gaussian

elimination is to premultiply R1 by
[

1 0T

−y1/d1 I

]
, which reduces R1 to

[
d1 wT

1

0 R2

]
, where R2 = Ṙ1 −

y1w
T
1 /d1 is the Schur complement of d1 in R1. At this stage, R1 has the factorization

R1 =
[

1 0T

y1/d1 I

] [
d1 wT

1

0 R2

]
. (7)

One then proceeds recursively with the Schur complement R2 =
[
d2 wT

2

y2 Ṙ2

]
, eventually yielding a factorization

R1 = LU , where each column k of L is [0T 1 yT
k]T , and each row k of U is [0T 1 wT

k].

The essence of structured Gaussian elimination arises from the fact that the displacement structure is preserved
under Schur complementation, and that the generators for the Schur complement Rk+1 can be computed from
the generators of Rk in O(n) operations. This is expressed constructively in the following theorem.

Theorem 2.1. Let matrix R1 =
[
d1 wT

1

y1 Ṙ1

]
satisfy the Sylvester equation

∇{Af,1,Ab,1}(R1) = Af,1R1 −R1Ab,1 = Φ(1)Ψ(1), (8)

where Φ(1) = [ϕ(1)T
1 ϕ

(1)T
2 · · · ϕ

(1)T
n]T , Ψ(1) = [ψ(1)

1 ψ
(1)
2 · · · ψ

(1)
n], ϕ(1)

i ∈ C1×α and ψ
(1)
i ∈ C1×α,

(i = 1, 2, . . . , n). Then R2, the Schur complement of d1 in R1, satisfies the Sylvester equation

∇{Af,2,Ab,2}(R2) = Af,2R2 −R2Ab,2 = Φ(2)Ψ(2), (9)

where Af,2 and Ab,2 are respectively Af,1 and Ab,1 with their first rows and first columns deleted, and where
Φ(2) = [0, ϕ(2)T

2 , ϕ
(2)T
3 , · · · , ϕ(2)T

n]T and Ψ(2) = [0, ψ(2)
2 , ψ

(2)
3 , · · · , ψ(2)

n] are given by

Φ(2)
2:n,: = Φ(1)

2:n,: − y1ϕ
(1)
1 /d1, (10)

Ψ(2)
:,2:n = Ψ(1)

:,2:n − ψ
(1)
1 wT

1 /d1 . (11)

The proof of this theorem is given in reference5 .

Equations (10) and (11) form the basis of the following general structured Gaussian elimination algorithm.

Algorithm 2.1 (Structured Gaussian elimination)

• Recover from the generator Φ(1), Ψ(1) the first row and column of R1 =
[
d1 wT

1

y1 R
(1)
22

]
.

• [1 yT
1 /d1]T and [d1 wT

1] are respectively the first column and row of L1 and U1 in the LU factorization
of R1.

• Compute by equations (10) and (11), the generator Φ(2),Ψ(2) for the Schur complement R2.

• Proceed recursively with Φ(2) and Ψ(2). Each major step yields [1 yT
k /dk]T and [dk wT

k], which are
respectively the first column and row of Lk and Uk in the LU factorization of Rk. Column k of L and row
k of U are respectively [0T

k−1 1 yT
k /dk]T and [0T

k−1 dk wT
k].

Pivoting. Gaussian elimination without pivoting is unstable in general. When Af is diagonal (i.e. R is
Cauchy or Vandermonde), partial pivoting can be carried out as follows. Suppose we wish to swap rows 1 and q
of R1. Let P1 be the matrix which applies this permutation. Then it is easy to see that P1R1 satisfies (8) with
the (1, 1) and (q, q) entries of Af,1 swapped, and with swapped row vectors ϕ(1)

1 and ϕ(1)
q .

2.3 The Cauchy variant of the GKO algorithm (GKO-Cauchy)

Recall that a Cauchy-type matrix satisfies the Sylvester equation (8) with

Af,1 = Dt = diag(t1, t2, . . . , tn) and Ab,1 = Ds = diag(s1, s2, . . . , sn).

It can be easily verified that if ti 6= sj , then the (i, j) entry of R(1) = R is given by

rij =
ϕiψj

ti − sj
. (12)

There may be some cases where ti = sj and ϕiψj = 0 for some (i, j), and rij cannot be recovered from its
generator. We do not consider these cases in this paper.

In general, at major step k, the reduced matrix R(k) has zeroes under the main diagonal for the first k − 1
columns, and the kth Schur complement, Rk, in the bottom-right partition. Its entries may be computed by

r
(k)
ij =

ϕ
(k)
i ψ

(k)
j

ti − sj
, k ≤ i, j ≤ n (13)

= (Rk)i−k+1,j−k+1 (14)

Eq.(13) can be used in algorithm 2.1 with pivoting to yield the Cauchy version of the GKO algorithm. Details
are given in reference5 .

2.4 The Toeplitz variant of the GKO algorithm (GKO-Toeplitz)

A Toeplitz-type matrix can be easily converted, by fast orthogonal transformations, into a Cauchy-type
matrix which can be factorized as in algorithm 2.1. The inverse orthogonal transforms yield the factorization of
the original matrix. The following result of reference5 shows how this conversion may be done.

Theorem 2.2. Let T be a Toeplitz-type matrix, satisfying

∇{Z1,Z−1}(T) = ΩΓ,

Ω = [ωT
1 ωT

2 · · ·ωT
n]T , Γ = [γ1 γ2 · · · γn],

where the {ωi} and the {γi} are 1× α and α× 1 respectively.
Then

R = FTD−1F ∗ (15)

is a Cauchy-type matrix, satisfying
∇{DF ,DF } = ΦΨ,

where F = 1√
n
[e2πi(k−1)(j−1)/n]1≤k,j≤n is the Discrete Fourier Transform matrix,

DF = diag(1, e2πi/n, . . . , e2πi(n−1)/n), DF = diag(eπi/n, e3πi/n, . . . , eπi(2n−1)/n) , (16)

D = diag(1, eπi/n, . . . , eπi(n−1)/n)

and
Φ = FΩ, Ψ∗ = FDΓ∗. (17)

Theorem 2.2 allows the generators of T to be converted to the generators of R in O(2αn log n) operations via
FFTs. R can then be factorized as R = PTLU , where P is a permutation matrix. Using (15), we obtain

T = F ∗PTLUFD . (18)

3 ERROR ANALYSIS OF GKO-CAUCHY ALGORITHM

In this section, a backward error analysis will be carried out, which yields a bound for the perturbation matrix
E, defined by

L̃Ũ = R+ E, (19)

where R is the matrix to be factorized, and L̃ and Ũ are the computed factors. In the analysis, we first derive
some preliminary results which apply to any algorithm for structured Gaussian elimination (SGE), and indicate
a general methodology for error analysis of SGE algorithms. We then carry out the analysis for Cauchy-type
matrices in general and for the Cauchy-type matrix derived from a Toeplitz matrix by eq.(15).

3.1 Preliminary results

The following two lemmas may be used for the error analysis of SGE algorithms in general, and the GKO-
Cauchy algorithm in particular. The first lemma shows that if G is the perturbation in the Sylvester equation
caused by replacing R by L̃Ũ , then the displacement of E is G.

Lemma 3.1. Let R be a general structured matrix that satisfies (1), let Af , Ab, Φ and Ψ be as defined above,
and let L̃, Ũ and E be as in (19). Suppose L̃ and Ũ satisfy

Af L̃Ũ − L̃ŨAb = ΨΦ +G ; (20)

then E satisfies
∇{Af ,Ab}(E) ≡ AfE − EAb = G. (21)

Proof. From (19) and (20),
Af (R+ E)− (R+ E)Ab = ΦΨ +G . (22)

Expanding the above, and using (1) we obtain (21).

Corollary 3.2. If R is a Cauchy-type matrix with Af = Dt and Ab = Ds, then E satisfies

DtE − EDs = G (23)

and
eij =

gij

ti − sj
, i, j = 1, . . . , n (24)

Proof. (23) follows directly from (21), and (24) follows by evaluating each component of (23).

The second lemma shows that G is the sum of the local perturbation matrices incurred in each step of the
relevant structured Gauss elimination (SGE) algorithm.

Lemma 3.3. Let ∇{Af ,Ab} be the displacement operator as defined in (1); let L̃, Ũ and G be as defined above;
let the {Φ̃(k), Ψ̃(k)}k=1,2,... be the computed generators of the {R′

k}k=1,2,..., the reduced matrices at step k of SGE,
and define Φ̃(n+1) = Ψ̃(n+1) = 0. Then

G =
n∑

k=1

Hk , (25)

where Hk, the local perturbation in each step of SGE, is defined by

∇{Af ,Ab}(̃l:kũk:) = Φ̃(k)Ψ̃(k) − Φ̃(k+1)Ψ̃(k+1) +Hk , k = 1, . . . , n . (26)

Proof. Writing (26) explicitly, we get

Af l̃:kũk: − l̃:kũk:Ab = Φ̃(k)Ψ̃(k) − Φ̃(k+1)Ψ̃(k+1) +Hk , k = 1, . . . , n . (27)

Summing the members of (27), we obtain

Af

n∑
i=1

l̃:kũk: −
n∑

i=1

l̃:kũk:Ab = Φ̃(1)Ψ̃(1) − Φ̃(n+1)Ψ̃(n+1) +
n∑

i=1

Hk . (28)

But
∑n

i=1 l̃:kũk: = L̃Ũ , Φ̃(1) = Φ, Ψ̃(1) = Ψ and Φ̃(n+1) ≡ Ψ̃(n+1) ≡ 0. Substituting these identities into (28) and
comparing the resulting relation with (20), we obtain (25)

3.2 Methodology of error analysis for SGE algorithms

Lemmas 3.1 and 3.3 may be used in a general methodology for the error analysis of SGE algorithms of the
type of Algorithm 2.1.

In the following methodology and the subsequent analysis of the GKO algorithm, we now let Φ(k) and Ψ(k)

be the computed values of these quantities, uk:, r(k)
k:n,k, l:k, Φ(k+1) and Ψ(k+1) be the values of these quantities

computed in exact arithmetic from Φ(k) and Ψ(k) using steps 1 to 3 of algorithm 2.1, and ũk:, r̃(k)
k:n,k, l̃:k, Φ̃(k+1)

and Ψ̃(k+1) be the actual computed values of uk:, r(k)
k:n,k, l:k, Φ(k+1) and Ψ(k+1) respectively. The methodology is

as follows:

1. Using a standard rounding error analysis, derive expressions of the form

ũk: = uk: + δũk: (29)

r̃(k)
k:n,k = r(k)

k:n,k + δr̃(k)
k:n,k (30)

l̃:k = l:k + δl̃:k (31)

Φ̃(k+1) = Φ(k) − l̃:kφ
(k)
k + δΦ̃(k+1) (32)

Ψ̃(k+1) = Ψ(k) − ψ
(k)
k ũk:/r̃

(k)
kk + δΨ̃(k+1) (33)

where δũk:, etc. are error terms.

2. Evaluate Φ(k)Ψ(k) − Φ̃(k+1)Ψ̃(k+1) using (29) to (33). This can be expressed in the form

Φ(k)Ψ(k) − Φ̃(k+1)Ψ̃(k+1) = Af l̃:kũk: − l̃:kũk:Ab + Fk , (34)

where Fk is an error term. But by (27),
Hk = −Fk .

3. After some manipulation, Fk can be expressed as the sum of terms of the form S(Af , Ab)◦T (V (k))◦ l̃:kũk:◦∆̂
or S(Af , Ab) ◦ T (V (k+1)) ◦ L:,k+1:nUk+1:n,: ◦ ∆̂. Here, the S(Af , Ab) are matrices formed from Af and Ab,
∆ is a matrix whose elements are bounded in magnitude by ε, and V (k) is defined by

|Φ(k)||Ψ(k)| ≡ V (k) ◦ Φ(k)Ψ(k) . (35)

4. Apply (25) to derive an expression for G.

5. Lemma 3.1 shows that G satisfies
∇{Af ,Ab}E = G . (36)

Using the appropriate algorithm to recover a structured matrix from its generators, derive an expression
for E from the expression for G. Note that in general, G will be of full rank. However, (36) will still be
satisfied by E and G.

6. Derive bounds for some norm ‖E‖.

3.3 Error analysis of GKO for Cauchy-type matrices

In this subsection, we use the above methodology to derive the first of our main results — a bound for ‖E‖
when a Cauchy matrix R is factorized by the GKO algorithm. The results are encapsulated in three theorems,

which yield expressions for the {Hk}, an elementwise bound for G, and a bound for ‖E‖ respectively. We then
discuss the size of the bound for ‖E‖.

Theorem 3.4. Let R be a Cauchy matrix to be factorized by the GKO algorithm and let Fk, Hk, V (k), l̃:k,
ũk: be as defined above. Then

Fk = c1∆̂(1) ◦D(k)
vc Dp l̃:kũk: + c2 l̃:kũk:DqD

(k)
vr ◦ ∆̂(2) + c3(r

(k)
kk)−1v

(k)
kk ∆̂(3) ◦ l̃:kũk: +

c4∆̂(4) ◦BI ◦ V (k+1) ◦ L̃:,k+1:nŨk+1:n,: (37)

where c1 to c4 are small constants, D(k)
vc = diag(v(k)

:k), D(k)
vr = diag(v(k)

k:), Dp = diag{ti−sk}i, Dq = diag{tk−sj}j,
B = [1/(ti − sj)] is the ordinary Cauchy matrix with displacement operator ∇{Ds,Dt} and the ∆̂(·) are matrices
whose elements are less than ε in magnitude; and Hk = −Fk.

Proof. In the following, we simplify our notation and drop the superscript (k); where the superscript is (k+1)
we indicate this by a prime (′); and we drop the subscripts : k, k : and k : n, k. In the following, we will not give
all the steps in the derivation of the various expressions, as these tend to be straightforward but very tedious.
However, we will indicate how key intermediate expressions are derived.

We use the normal properties of floating point operations, viz. fl(a) = a(1+ δ1) and fl(a?b) = (a?b)(1+ δ2),
where fl(a) denotes rounding, fl(a ? b) is any of the basic four floating-point operations, and |δ1|, |δ2| < ε.

Following step 1 of the above methodology, we evaluate expressions for the computed values of r̃, l̃ and ũ
(subscripts and superscripts dropped), yielding after a few steps

ũ = u + 2ũ∆(1) + φkD(1)ΨD−1
q , (38)

r̃ = r + 2∆(2)r̃ +D−1
p D(2)Φψk , (39)

l̃ = l + 5∆(3) l̃ + r̃−1
kk D

−1
p D(2)Φψk − bkkr̃

−1
kk ∂

(2)
k φkψk l̃ . (40)

Here the above and subsequent ∆(·) denote diagonal matrices with elements of magnitude less than ε; the D(·)

are elementwise operators which multiply each element of their matrix operands by a factor less than ε, and the
∂

(·)
k are similar elementwise vector operators. Similarly, it can be shown that the computed values of Φ′ and Ψ′

satisfy

Φ̃′ = Φ− l̃φk +D(3)Φ′ +D(4)(̃lφk) , (41)
Ψ̃′ = Ψ− ψkũ/r̃kk +D(5)Ψ′ + 2D(6)(ψkũ)/r̃kk . (42)

Carrying out step 2 of the above methodology, we obtain

ΦΨ− Φ̃′Ψ̃′ = Φψkũ/r̃kk + l̃φkΨ− l̃φkψkũ/r̃kk − 2ΦD(6)(ψkũ)/r̃kk − Φ′D(5)Ψ′ −D(4)(̃lφk)Ψ−
D(3)Φ′Ψ′ +D(4)(̃lφk)ψkũ/r̃kk + 2̃lφkD(6)(ψkũ)/r̃kk . (43)

Let T3 denote the first three terms in (43). ¿From (13) and the definitions of Dp and Dq, we have Φψk = Dpr
and φkΨ = ũDq. Using these relations in T3, and expressing r in terms of (r̃ - error terms) using (39) and u in
terms of (ũ - error terms) using (38), we can show that

T3 = Dt l̃ũ− l̃ũDs − 3Dp∆(4) l̃ũ− 2̃lũ∆(5)Dq + 2r−1
kk δl̃ũ−D(2)Φψkũ/rkk − l̃φkD(1)Ψ + r̃−1

kk ∂
(2)
k φkψk l̃ũ , (44)

where |δ| < ε. By putting (44) in the first three terms of (43), we get an equation of the form (34), where Fk is
given by the last six terms in (43) plus the last six terms in (44). Terms involving the D(·) may be expressed in
terms of l̃ũ or L̃Ũ by using the definition of V , which in the current notation is

vij =
|φi||ψj |
φiψj

.

Consider the factor ΦD(6)(ψkũ)/r̃kk in the term −2ΦD(6)(ψkũ)/r̃kk. We have

(ΦD(6)(ψkũ)/r̃kk)ij = φi∂
(6)
j (ψkũj)/r̃kk.

Recall that φi = [φi1, φi2] and ψj = [ψ1j , ψ2j]. Then

(ΦD(6)(ψkũ)/r̃kk)ij = (φi1δ
(6)
1j ψ1k + φi2δ

(6)
2j ψ2k)ũj/r̃kk

where δ(6)1j and δ
(6)
1j are the scaling factors from the operator ∂(6)

j . From the definition of V , and using the fact
that l̃i

.= r̃ik/r̃kk, this can be shown to be

(ΦD(6)(ψkũ)/r̃kk)ij = δ̂
(6)
ij vikb

−1
ik l̃iũj ,

where |δ̂(6)ij | ≤ maxj=1,2 |δ(6)kj | ; in matrix form, we obtain

ΦD(6)(φkũ)/r̃kk = ∆̂ ◦ diag{vik/bik}̃lũ (45)

where ∆̂ and subsequent ∆̂(·) are matrices with elements bounded in magnitude by ε. All the other terms can
similarly be expressed in either (i) an elementwise product of ∆̂(·) and a normal product of l̃ũ and matrices
derived from B or V or (ii) the form ∆̂(·) ◦BI ◦ V ′ ◦L:,k+1:nUk+1:n,:. When this is carried out, the result follows.

The next theorem uses lemma 3.3 to obtain an elementwise bound for |G|.

Theorem 3.5. Let Hk be as in theorem 3.4. Then

|G| ≤ c1b
−1
min∆̂(1) ◦ |L̂||U |+ c2b

−1
min|L||Û | ◦ ∆̂(2) + c3b

−1
min∆̂(3) ◦ |L|diag{v(k)

kk }|U |

+ c4|BI | ◦ ∆̂(4) ◦
n∑

k=2

|R̂′
k| (46)

where bmin is the minimum modulus of the elements of B, L̂ = [v(k)
:k]nk=1 ◦ L, Û = U ◦ [v(k)

k:]nk=1, and
R̂′

k = V (k) ◦ L:,k:nUk:n,:.

Proof. G is evaluated by carrying out the summation in (25), and using the identities
∑n

i=k a:kbk: = AB and∑n
i=k xka:kbk: = Adiag{xk}B.

We now apply the last step in the above methodology to derive an expression for ‖E‖.

Theorem 3.6. Let E be the backward error E = L̃Ũ −R in the factorization of R using the GKO algorithm,
let L̂, Û , R̂, B and V be as above. Then ‖E‖ is bounded by

‖E‖ ≤ ε(c5
bmax

bmin
g1 + c6ng2)‖L‖‖U‖ , (47)

where the Frobenius norm is used, bmax and bmin are the maximum and minimum moduli of the elements of B,
c5 and c6 are small constants, and g1 and g2 are generator growth factors, defined by

g1 = c7
‖L̂‖
‖L‖

+ c8
‖Û‖
‖U‖

+ c9‖diag{v(k)
kk }‖ , (48)

g2 = max
k=2,...,n

{|R̂k‖/‖Rk‖} , (49)

with c7, c8, c9 < 1.

Proof. From step 5 of the above methodology, we essentially invert the Sylvester equation (36) to derive an
expression for E. To do this we apply (24) in corollary 3.2. This can be written in matrix form

E = B ◦G

so

|E| = |B| ◦ |G| (50)

≤ c1
bmax

bmin
∆̂(5) ◦ |L̂||U |+ c2

bmax

bmin
‖L||Û | ◦ ∆̂(6) + c3

bmax

bmin
∆̂(7) ◦ |L|diag{vkk}|U |+

c4∆(8) ◦
n∑

k=2

|R̂′
k| . (51)

We now define g2 ≡ maxk=2,...,n ‖R̂(k)‖/‖R(k)‖, g4 ≡ ‖L̂‖/‖L‖, g5 ≡ ‖Û‖/‖U‖ and g6 ≡ ‖diag{v(k)
kk }‖. These can

be considered to be generator growth factors — they are functions of the V (k), which from its definition (35) are
the ratio of the products of the magnitudes of the generators to the products of the generators. We will see in
section 5 that these growth factors can sometimes be large.

Taking the Frobenius norm of (51), we can easily show that

‖E‖ ≤ c1δ1
bmax

bmin
g3‖L‖‖U‖+ c2δ2g4

bmax

bmin
‖L‖‖U‖+ c3δ3

bmax

bmin
g5‖L‖‖U‖+ c6nδ4g2‖L‖‖U‖ . (52)

where 0 ≤ |δ1|, . . . , |δ4| < ε. The result follows when the first three terms of (52) are collected.

The following corollary specializes the above result to the case when R is derived from a Toeplitz matrix.

Corollary 3.7. Let R be derived from a Toeplitz matrix T by the transformation (15) in theorem 2.2, let
c1, c2, g1 and g2 and E be as defined in theorem 3.6. Then ‖E‖ is bounded by

‖E‖ ≤ εc10g3n‖L‖‖U‖ (53)

where c10 = max(2c5/π, c6) and g3 = max(g1, g2).

Proof. Recall that B = [1/(ti − sj)] is the ordinary Cauchy matrix with displacement operator ∇{Ds,Dt};
from eqs.(16) in theorem 2.2, the ti are n equally-spaced points around the unit circle, including one at (1,0),
and the sj are also n equally-spaced points around the unit circle, with each sj between two of the ti. Clearly
π/n < ti − sj < 2 ∀i, j, so by the definition of B,

bmax

bmin
< 2n/π . (54)

Using (54) in (52), bounding 2c5/π and c6 by c10, and bounding g1 and g2 by g3 yields the result.

The above results show that the expressions for the backward error bounds from the GKO algorithm are
similar to the ones for Gauss elimination with partial pivoting (GE/PP),6 except for the generator growth factors
which might arise in particular cases where the Φ(k) and Ψ(k) are large, but not the Φ(k)Ψ(k) or the Rk. So there
may be some cases where large error growth may occur in the GKO algorithm but not GE/PP. In section 5, we
give an example where this occurs.

4 ERROR ANALYSIS OF GKO-TOEPLITZ ALGORITHM

Recall that the steps in the GKO-Toeplitz algorithm are (i) compute the generators from the Toeplitz matrix
T using (5) and (6), (ii) convert them to generators of a Cauchy matrix using (17) and (iii) compute factors L

and U of this Cauchy matrix using the GKO algorithm. The factors of T are then given by (18). There are errors
incurred at each of these steps. In this section, we do not consider permutations, as these do not contribute to
the error. We will derive a bound for the perturbation matrix ET , defined by

F ∗L̃ŨFD = T + ET . (55)

In our development, we show in theorem 4.1 that ET consists of two components — the first due to the error
‖E‖ incurred in the Cauchy factorization and the second due to the errors incurred in computing the Cauchy
generators Φ̃ and Ψ̃. The latter is a Toeplitz-type perturbation ∆T such that T + ∆T transforms exactly to Φ̃
and Ψ̃. We then derive two lemmas needed to derive ∆T , and then present the main result of this section in
theorem 4.4.

4.1 Main components of ET

ET has two main components, as is shown in the following.

Theorem 4.1. Let F and D be as in theorem 2.2, let Φ̃ and Ψ̃ be the Cauchy generators computed using (5),
(6) and (17), and let L̃ and Ũ be the factors computed from Φ̃ and Ψ̃ using the GKO algorithm.

Then the perturbed factorization of T satisfies

F ∗L̃ŨFD ≡ T + ET = T − F ∗EFD + ∆T , (56)

where E is as in theorem 3.6 and ∆T is a Toeplitz-type perturbation of T such that T + ∆T has generators Ω̃
and Γ̃ that transform exactly to Φ̃ and Ψ̃ using (5), (6) and (17).

Proof. Let R̃ be the Cauchy matrix generated by Φ̃ and Ψ̃. We have

R̃ = L̃Ũ + E ,

and we know from (15) that Φ̃ and Ψ̃ are the generators for

R̃ = F (T + ∆T)D−1F ∗

where T + ∆T is some Toeplitz-type matrix. From the above two equations we obtain

T + ∆T = F ∗R̃FD = F ∗(L̃Ũ + E)FD ,

from which the desired result follows.

Thus, by (56), we see that ET has one component with the same norm bound as E, and another which
perturbs T to a matrix such that its generators, say Ω̃ and Γ̃, transform exactly to Φ̃ and Ψ̃. Before we derive an
expression for ∆T , we need two preliminary results : expressions for Ω̃ and Γ̃, and a method to recover T + ∆T
from its generators Ω̃ and Γ̃.

4.2 Estimation of ∆T — preliminary results

The required results are given in the following two lemmas.

Lemma 4.2. Let Ω and Γ be as in (5) and (6), and let Ω̃ and Γ̃ transform exactly to Φ̃ and Ψ̃ using (17). Let
[a,b] = Ω̃− Ω and let [c,d] = Γ̃∗ − Γ∗. Then

a = 0 (57)

and ‖b‖, ‖c‖ and ‖d‖ are bounded by

‖b‖ ≤ εk1n
3/2‖ω:2‖ , (58)

‖c‖ ≤ εk2n
3/2‖γ1:‖ , (59)

‖d‖ ≤ ε . (60)

Proof. We first consider the errors incurred in the computation of Φ̃ and Ψ̃. We have

Φ̃ = fl{F̃ [e1, ω̃:2]}, where F̃ = fl(F) , ω̃:2 = fl(ω:2) (61)
= [1, f l(F̃ ω̃:2)] , where 1 = [1, 1, . . . , 1]T (62)

= [1, F̃ ω̃:2 + k3n‖ω̃:2‖δ(1)] (63)

where |δ(1)i | < ε , i = 1, . . . , n. After a few more steps, this becomes

Φ̃ = F [e1,ω:2 + b] (64)

where b = ∆(7)ω:2 + k4(n+ 1)‖ω̃:2‖F ∗δ(1). In a similar way, it can be shown that

Ψ̃∗ = FD[γ∗1: + c, en + d] (65)

where c = k5D
∗∆(8)Dγ∗1: + k6(n+ 1)‖γ1:‖δ

(2) and d = D∗F ∗dn∆(9)fTn:. Now the expressions in square brackets
transform exactly to Ω̃ and Γ̃ respectively, and by taking norms of b, c and d the bounds (58) to (60) can be
demonstrated in a few steps.

Lemma 4.3. For any matrix A, let ∇{Z1,Z−1}A = B. Then A can be recovered from B using

aij =
n∑

k=j

b1+(i+k−j) mod n,k −
j−1∑
k=1

b1+(i+k−j) mod n,k . (66)

Proof. ¿From the displacement operator ∇{Z1,Z−1}, the following properties of B are easily seen:

bij = ai−1,j − ai,j−1, 1 < i ≤ n , 1 ≤ j < n , (67)
b1j = anj − ai,j+1, 1 ≤ j < n , (68)
bin = ai−1,j + ai1, 1 < i ≤ n and (69)
b1n = an,n−1 + a11 . (70)

It can be easily verified that if the elements of A are given by (66), then (68) to (70) are satisfied.

Eq.(66) shows that an element aij is recovered by computing x− y, where x is the sum of elements of B down
the diagonal, commencing from bi+1,j and proceeding to the last column, wrapping from the last row to the first
if necessary during the summing; y is a similar “wrapped diagonal sum” from the first column to bi,j−1.

4.3 Main result

We now use theorem 4.1, lemma 4.2 and lemma 4.3 to derive a bound for the backward error ‖ET ‖ in the
GKO-Toeplitz algorithm.

Theorem 4.4. Let F and D be as in theorem 2.2, and let L̃ and Ũ be the factors computed from from T
using the GKO-Toeplitz algorithm.

Then the perturbed factorization of T satisfies

F ∗L̃ŨFD ≡ T + ET = T + E(1) + E(2) (71)

where E(1) is a general matrix with norm ‖E(1)‖ = ‖E‖, E is as in theorem 3.6 and E(2) is a Toeplitz-type matrix
with norm bounded by

‖E(2)‖ ≤ εc11n
2(‖t1:‖+ ‖t:1‖) . (72)

Proof. By comparing (71) and (56), we see that E(1) = −F ∗EFD, and because F and D are orthogonal
matrices,

‖E(1)‖ = ‖E‖ . (73)

¿From the above comparison we also have E(2) = ∆T , a Toeplitz-type perturbation of T such that T + ∆T
has generators Ω̃ and Γ̃ that transform exactly to the Cauchy generators Φ̃ and Ψ̃ computed using (5). In the
following, we use E(2) for ∆T . From lemma 4.2, we have

∇(T + E(2)) = Ω̃Γ̃ = ΩΓ + e1c∗ + ω:2d∗ + beT
n ,

where b, c and d are bounded as in (58) to (60). The second-order error term bd∗ has been omitted. We then
have

∇E(2) = e1c∗ + ω:2d∗ + beT
n ,

and we use (66) to compute E(2). This yields, after some algebra

|e(2)
:j | = Cj−1(|cR|+ |bR|) + |p:j |

where Ck is a matrix which by premultiplication, circularly upshifts a vector k places, xR indicates the reversal
of x, and the moduli of p:j are bounded by

|pij | ≤ |ω:2|TCj−i−1|d|
≤ ‖ω:2‖‖d‖ . (74)

Using (58), (59), (74) and (60) it is easily seen that

‖e(2)
:j ‖ ≤ c12n

3/2(‖ω:2‖+ ‖γ1:‖)

from this, and using the definitions (5) and (6), we obtain the bound (72) for E(2) after a few steps. This, together
with (73), yields the result

5 DISCUSSION OF ERROR BOUNDS

We first discuss the factors in the above error bounds and relate them to what would be expected in Gauss
elimination with partial pivoting. Then we show, for both the Cauchy and Toeplitz variants, that there are some
cases where the backward error growth can be large.

5.1 Relation of bounds to those of Gauss elimination with partial pivoting (GE/PP)

Consider the backward error E incurred by the Cauchy variant (eq.(47)). The term ‖L‖‖U‖ is similar to that
obtained with GE/PP.6 However, the first factor contains the generator growth factors g1 and g2. These are given

by ratios of norms of the hatted quantities to the unhatted quantities in (48) and (49). The former are derived
from the latter by elementwise multiplication by submatrices of the V (k), which from their definitions (35) are
the ratio of the products of the magnitudes of the generators to the products of the generators. For an ordinary
Cauchy matrix, v(k)

ij = 1 ∀i, j, k because Φ(k) and Ψ(k) have only one column and row respectively. However,
for higher displacement-rank Cauchy matrices, there may be significant cancellation in the computation of the
denominator of (35), so they may be significant growth in the size of the L̂, Û and R̂k compared to the L, U and
Rk respectively.

The backward error ET incurred by the Toeplitz variant has two components — one with the same norm as E
above, and a Toeplitz-type component with norm bounded as in (72). The latter bound is proportional to n2 and
contains no growth factors, so it would be expected that the bound would be dominated by the first component.

We next give examples where the generator growth might be expected to be large in the Cauchy and Toeplitz
variants.

5.2 Examples of large generator growth

Cauchy case. Here, we can select an example where all the elements of V = V (1) are large. This will occur
when significant cancellation occurs in the computation of the φiψj . Such an example is

Φ = [a,a + f] , Ψ = [a,−a]T ,

where ‖a‖ is of order unity, and ‖f‖ is very small. Then ΦΨ = −fa, that is, all the elements of ΦΨ are very small
compared to those of |Φ||Ψ|. Moreover, because a and f can be arbitrary except for their norms, the original
matrix [(ti − sj)−1φiψj] is in general well-conditioned.

Toeplitz case. This case has an extra constraint on the selection of Φ and Ψ, since it must be generated from
Ω and Γ using the transformations (17). Because of this constraint, there is no case where all the elements of V
can be made large. However, all of the first column of V can be made large, and this will cause error growth,
in spite of the pivoting. This can be shown, for example, to happen if the ai−j = tij are selected as follows for
even n:

a0 = 1 (75)
an/2−1 = −a−n/2−1 = − sin(π/n) + =(δ/2) , δ � 1 (76)

an−1 = −a1−n = cos(π/n) + <(δ/2) , (77)
aj = 0 otherwise . (78)

Numerical examples. Order-8 Toeplitz matrices were generated according to (75) to (78), with δ = 10−k,
k = 2, . . . , 16. For each matrix, the system Tx = 1 was solved. It was found that the normalized solution error
‖x̃− x‖/‖x‖ grew as the square of 1/δ, and the normalized residual ‖T x̃− 1‖/‖b‖ grew linearly with 1/δ. Thus
the algorithm is only weakly stable in this case.

6 MODIFIED GKO ALGORITHM

The problem with the original pivoting strategy is that when all elements of r:1 are small and all elements
of v:1 are large, normal partial pivoting will not avoid this situation. Complete pivoting will do so, but requires
O(n2) operations to find the pivot at each major step and O(n3) operations overall. However, a strategy of using
the largest element in the first row and column should stabilize the algorithm in most cases, and we see that it
does in the above cases.

To carry out this procedure, find the largest element in row 1 and column 1 of Rk. If it is in column 1,
proceed as in the GKO algorithm. If it is, in row 1, swap the appropriate elements of rk: and {(Ab)jj}, and the
appropriate columns of U and Ψ(k). Continue the elimination as in the GKO algorithm.

Results. When the modified algorithm was used on the same set of systems as was considered in the previous
section, it was found that the normalized solution error ‖x̃ − x‖/‖x‖ grew linearly with 1/δ and the condition
number of T , and the normalized residual ‖T x̃−1‖/‖b‖ was approximately constant at about 4× 10−15, a small
multiple of ε. Thus the modified algorithm is stable in this case.

7 CONCLUSIONS

It has been shown that bound for the backward error in the GKO algorithm is similar to that for partial
pivoting, except that extra factors, the generator growth factors, are included. This factor can be large when
there is sufficient cancellation in the computation of the generators. Examples of this have been presented, and
it was demonstrated that the original GKO algorithm was only weakly stable in these cases. A modified version
which uses row 1/column 1 pivoting was then presented; this version was stable in these cases.

It is not known whether there are any cases upon which the modified algorithm will give large errors. Further
work needs to be done to ascertain this, and if such cases can be found, the pivot strategy needs to be improved
further. The aim is to find the maximum in R, or an element close to the maximum, still in O(n) operations. An
extension of the above strategy may be to have a few iterations in the search, i.e. search for the row-1/column-1
maximum, say at r1p, then search along column p for the maximum there, and so on. This may find a better
pivot at the expense of some extra work.

8 REFERENCES

[1] E. Bareiss, “Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices,” Numer.
Math., Vol. 13, pp. 404-424, 1969.

[2] J. R. Bunch, “Stability of methods for solving Toeplitz systems of equations,” SIAM J. Sci. Stat. Comp.,
Vol. 6, pp. 349-364, 1985.

[3] T. F. Chan and P. C. Hansen, “A lookahead Levinson algorithm for general Toeplitz systems,” IEEE Proc.
Signal Processing,, Vol. 40, pp. 1079-1090, 1992.

[4] J. Chun and T. Kailath, “Fast triangularization and orthogonalization of Hankel and Vandermonde matrices,”
Linear Alg. Apps., Vol. 151, pp. 199-228, 1991.

[5] I. Gohberg, T. Kailath and V. Olshevsky, “Gaussian Elimination with Partial Pivoting for Structured Ma-
trices”, preprint

[6] G. H. Golub and C. Van Loan, Matrix Computations, Second Ed., John Hopkins Press, 1989.

[7] M. H. Gutknecht and M. Hochbruck, “Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz
systems,” IPS Research Rept. 93-11, ETH-Zürich, August 1993.

[8] D. R. Sweet, “The use of pivoting to improve the numerical performance of Toeplitz matrix algorithms,”
SIAM J. Matrix Anal. Appl., Vol. 14, No. 2, pp. 468-493, 1993.

