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Abstract

We consider the numerical stability of O(n?)
algorithms for solving systems of n linear
equations with a low displacement-rank
structure. For example, the matrices involved
may be Toeplitz or Hankel. We compare the
results which have been obtained for algorithms
of the Levinson and Schur type, fast QR
algorithms combined with the seminormal
equations, and recent algorithms which
incorporate partial pivoting without destroying
the structure.
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Outline Notation
e Stability and weak stability (briefly) Let
ao ... an_l
e Positive definite Toeplitz matrices A=
— The Levinson algorithm A1—n - Qp

— The Bareiss algorithm

e General Toeplitz and other structured
matrices

— QR algorithms (e.g. BBH)

— Partial pivoting algorithms
(e.g. GKO)

Acronyms

BBH = Bojanczyk, Brent & de Hoog.
BBHS Bojanczyk, Brent, de Hoog
& Sweet.

Gohberg, Kailath & Olshevsky.

GKO

be a real, nonsingular, n x n Toeplitz matrix, so
ij = aj—i

for 1 <4,j < n. (The results sometimes extend
to full-rank m x n matrices, m > n, but for
simplicity we assume m = n today. We consider
more general structured matrices later.)

AT A has a Cholesky factorization
ATA = RTR,

where R is a (unique) upper triangular n X n
matrix with positive diagonal elements. Also,

A=C(R,
where @ is orthogonal, i.e.

QTR=1




Condition Number of A

If the singular values of A are o1, ...,0,, where
01> ...> 0, > 0, then the spectral condition
number of A is

k = ko(A) = 01/0p.
We say that A is well-conditioned if k(A) is
“small” in some sense.

We do not considered “structured” condition
numbers here (though the distinction may be
important, e.g. for Cauchy matrices).

For convenience in stating the error bounds, we
may assume that o1 is of order unity.

Let B be a principal k x k submatrix of A.
If A is symmetric positive definite then

K:Q(B) < KJQ(A).

However, in general this is not true —
B could be badly conditioned or even singular
when A is well-conditioned.

Error Bounds and “O” Notation

Let € be the machine precision. It is convenient
to subsume a polynomial in n into the “O”
notation. Thus, an error bound of the form
|E|| = On(g) or simply ||E| = O(g) will mean
that

|B| < P(n)e

for some polynomial P(n) and all sufficiently
small e. If the error bound depends on s then
this will be mentioned explicitly, e.g.

1]l = O(xe).

The meaning of “sufficiently small” may depend
on k (for example, we may need x2e < 1).

We shall ignore O(£2) terms in the error
analyses.

Numerical Quantities

We distinguish several classes of numerical
quantities —

1. Exact values, e.g. input data such as a;.

2. Computed values, usually indicated by a
tilde, e.g. ;.

3. Perturbed values given by error analysis,
usually indicated by a hat, e.g. @; ;.
These are not computed, but the error
analysis shows that they exist and gives
bounds on their difference from the
corresponding exact values.

Stability

Consider algorithms for solving a nonsingular,
n X n linear system Az = b.

There are many definitions of numerical
stability in the literature. Our definitions follow
those of Bunch(1987). Definition 1 says that the
computed solution has to be the ezxact solution
of a problem which is close to the original
problem. This is the classical backward stability
of Wilkinson.

Definition 1 An algorithm for solving linear
equations is stable for a class of matrices A if
for each A in A and for each b the computed
solution T to Ax = b satisfies Az = 3, where A

is close to A and b is close to b.

Note that the matrix A does not have to be in
the class A. For example, A might be the class
of nonsingular Toeplitz matrices, but A need
not be a Toeplitz matrix. (If we do require

A € A we get what Bunch calls strong stability.)




Closeness

In Definition 1, “close” means close in a relative
sense, using some norm, i.e.

14 = All/IIAll = O(e), [[b—bll/ 18] = O()-

Recall our convention that polynomials in n
may be omitted from O(e) terms.

We are ruling out faster than polynomial growth
in n, such as O(2"¢) or O(nlo% e). Perhaps this
too strict (consider Gaussian elimination).

The Residual

The condition of Definition 1 is equivalent to
saying that the scaled residual
1Az — bl| /([|A]l - [|2]]) is small.

How Good is the Solution ?

Provided ke is sufficiently small, stability
implies that

12 = z||/[l«]] = O(xe).

Weak Stability

Definition 2 An algorithm for solving linear
equations is weakly stable for a class of
matrices A if for each well-conditioned A in A
and for each b the computed solution T to

Az = b is such that ||Z — z||/||z| is small.

In Definition 2, “small” means O(g), and
“well-conditioned” means that x(A) is bounded
by a polynomial in n. Tt is easy to see that
stability implies weak stability.

Define the residual

r= AT —b.
It is well-known that

el _ I —all _ il
L e I

Thus, for well-conditioned A,

& — ||/ ||| is small if and only if ||r||/|[b] is
small. (This gives an equivalent definition of
weak stability.)
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The Levinson-Durbin Algorithm

In 1947, Levinson gave an algorithm for solving
a symmetric n x n Toeplitz system in O(n?)
operations and O(n) storage. In linear
prediction we want to solve a Toeplitz system
with a special right-hand side, called the
“Yule-Walker equations”: Az = b, where

b= —(a1,a9,...,a,)".
Durbin (1960) streamlined Levinson’s algorithm
for this special case.

The algorithm was actually discovered by
Wiener (1941) and (independently) by
Kolmogorov (1941). Tt is related to Szegd
recursions for polynomials orthogonal on the
unit circle. Thus, it could be called the
Szegd-Kolmogorov-Wiener-Levinson-Durbin
algorithm !

In the linear prediction problem, A is
symmetric positive definite, so we assume this
when discussing the Levinson-Durbin algorithm.
It is also convenient to assume that ag = 1.
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The Levinson-Durbin Recursion

The algorithm is defined by the recursion (for
i=12,...,n):

Kj = —(aj+zj_1p0j-1+--
+j-1,5-101)/Ej,
zj1+ Kjzgt,
m] = J 3
K;
_ 2\
Ej = (1-Kj)Ej,
where Ey =1,
T
Tj = (Tj1, Tj2,- -, Tjg)
and
R_ (r o AT
zj = (%5, Tjj-1, - - - Tj1)

is the reflection of z;. One can verify by
induction that z; solves the j-th order
Yule-Walker equations and

T =zp = (T, Tn2, - .,xnyn)T

solves Az = b.
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Interpretation of K; and E;

The K; are called “reflection coefficients” or
“partial correlation coefficients” and satisfy

—1<Kj<1.

Note that the formula for K involves an inner
product.

The E; are the mean square prediction errors.
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Matrix Factorization Interpretation

If

1 0 0 0
mn_l,l 1 0 0
C = Tp—1,2 Tp-21 1 0
Tn—-1mn—-1 Tp—2n—2 1

and

D= diag(En_l, En_2, ey E())
then

-1 _ CD—lcT

so the Levinson-Durbin algorithm computes a
Cholesky factorization of A~!. The factorization
can be used to find upper and lower bounds on
[|A=Y|| (which is much the same thing as x(A)).

Note that A is sure to be poorly conditioned if
E,_1 is small, i.e. if the mean square prediction
error is small. (But this is what we want —
Catch 22 1)
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Theorem 1 (Cybenko, 1980)

ma L !
X ) -
En—l ;":11(1 — Kj)

1+K
<47 <H i

where
Ep1= H(l - K]2)7

and the K; are the reflection coefficients.

Lemma 1 (Cybenko)

el =

n
H1+K ‘

Theorem 2 (Cybenko)
If floating-point arithmetic is used with machine
precision g, then the residual r = A% — b satisfies

Irl =0 ( (ﬁ[l(u K ) - 1)) .
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Corollary 1
If all K; > 0, then ||r||/||lz|| = O(e).

Corollary 2
If all the reflection coefficients are non-negative,
then the Levinson-Durbin algorithm is stable.

Comparison with Cholesky

Cybenko notes that when K; > 0 the bounds on
the residual for the Levinson-Durbin method
and Cholesky’s method are of comparable size.
However, this does not prove that the
Levinson-Durbin method is stable (in the sense
of Definition 1) for all positive-definite

matrices A.
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What if some K; <07

Cybenko’s analysis is not sharp if some of the
reflection coefficients are negative, because of
the absolute values |K;| in his inequalities’.
However, from Cybenko’s results we can deduce
a bound which is similar to that for Gaussian
elimination with partial pivoting. The proof is
easy, but I have not seen it in print. From
Theorem 1,

1 1 -
— < (1-K?),
r1(A) IIA*1||1 1:[

so, from Theorem 2,
where

32
- )
M= max (1+|K)1-K*)= 77

(the maximum occurs at |K| = }). Thus

Koltracht and Lancaster (1986) have improved Cy-
benko’s upper bound on x(A) in this case.
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Theorem 3

For the Levinson-Durbin algorithm with
positive definite symmetric A, but no restriction
on the signs of the reflection coefficients,

0w (Z))

This is not too bad when compared with the
bound O(2"¢) for Gaussian elimination with
partial pivoting. In both cases, ||7| is usually
much smaller than the corresponding bound.

Corollary 3

The Levinson-Durbin algorithm for solving the
positive definite symmetric Yule-Walker
equations of bounded size n is weakly stable.

Numerical experiments (BBHS, Varah) suggest
that weak stability is all that we can expect to
prove.
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Szegd/Levinson vs Schur/Bareiss

The algorithms of Wiener, Levinson, Durbin,
Trench and Zohar find an LU factorization of
A~! and (in the symmetric case) are related to
the classical Szeg6 recursions for polynomials
orthogonal on the unit circle. These algorithms
typically involve inner products.

Another class of algorithms, typified by the
algorithm of Bareiss (1969), find an LU
factorization of A, and (in the symmetric case)
are related to the classical algorithm of Schur
for the continued fraction representation of a
holomorphic function in the unit disk. These
algorithms typically involve outer products.

It is interesting to compare the numerical
properties of the two classes of algorithms.
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Bareiss — Positive Definite Case

Sweet (1982-1993) and BBHS (1993) have
shown that the numerical properties of the
Bareiss algorithm when implemented in
floating-point arithmetic are similar to those of
Gaussian elimination (without pivoting).

Thus, the algorithm is stable for positive
definite symmetric A. This is a stronger result
than has been proved for the Levinson
algorithm — we only showed that it was weakly
stable for bounded n, and numerical results by
Varah, BBHS suggest that this is all that we
can expect.
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Bareiss — General Full Rank Case

For general Toeplitz A the Bareiss algorithm is
unstable, just like Gaussian elimination without
pivoting. In fact, both break down immediately
if @1,1 = 0, and exhibit instability if ay,; is
small.

Sweet (1993) has shown that it is possible to
introduce pivoting into the Bareiss algorithm to
avoid instability?. However, in the worst case
the overhead of pivoting is O(n?®) so we no
longer have a “fast” O(n?) algorithm.

There are analogous “lookahead” modifications
of Levinson’s algorithm (Chan & Hansen,
Freund & Zha, Gutknecht, ...) but similar
comments apply.

2Using a connection between the Bareiss multipliers
and the Trench-Zohar algorithm, Sweet also shows how
to introduce pivoting into the Trench-Zohar algorithm.
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Fast Orthogonal Factorization

In an attempt to achieve stability without
pivoting, it is natural to consider algorithms for
computing an orthogonal factorization

A=QR

of A. The first such O(n?) algorithm was
introduced by Sweet (1982-84). Unfortunately,
Sweet’s algorithm is unstable3.

Other O(n?) algorithms for computing the
matrices Q and R or R™! were given by

BBH (1986), Chun et al (1987),

Cybenko (1987), and Qiao (1988), but none of
them has been shown to be stable. In several
cases examples show that they are not stable.

31t depends on the condition of a submatrix of A — see
Luk and Qiao (1987).
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The Problem — @

Unlike the classical O(n?®) Givens or
Householder algorithms, the O(n2) algorithms
do not form @ in a numerically stable manner
as a product of matrices which are (close to)
orthogonal.

For example, the algorithms of Bojanczyk,
Brent and de Hoog (1986) and Chun

et al (1987) depend on Cholesky downdating,
and numerical experiments show that they do
not give a @ which is close to orthogonal.
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The Saving Grace — R and
Semi-Normal Equations

It can be shown (BBH, 1995) that, provided the
Cholesky downdates are implemented in a
certain way, the BBH algorithm computes R in
a weakly stable manner. In fact, the computed
upper triangular matrix R is about as good as
can be obtained by performing a Cholesky
factorization of AT A, so

|ATA — RTR|/||ATA|| = O(e) -
Thus, by solving
RTRz = ATp

(the so-called semi-normal equations) we have a
weakly stable algorithm for the solution of
general Toeplitz systems Az = b in O(n?)
operations. The solution can be improved by
iterative refinement if desired.

Note that the computation of @) is avoided.
I do not know a satisfactory O(n?) algorithm
for the computation of Q.
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Error Bounds
We obtain a result Z for which
& — ||/ ||zl = O(x%),

where k = k(A), provided k2 < 1. The
residual r = AZ — b satisfies

I/l = O(xe) -

The method is weakly stable (according to
Definition 2), although probably not stable. For
a stable method the error bounds would be
reduced by a factor of .
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Use of Partial Pivoting

The idea of computing a QR factorization in
O(n?) operations is only partially successful
because, as we saw above, the computed matrix
Q is useless. This motivates returning to the
LU factorization, but trying to incorporate
partial pivoting.

At first sight, pivoting seems to destroy the
structure. However, there is a clever way
around this.

First, a small digression to more general
structured matrices - - -
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Displacement Structure

Structured matrices satisfy a Sylvester equation
which has the form

Via,a}(R) = AfR — RA, =®¥, (1)

where Ay and A, have some simple structure
(usually banded, with 3 or fewer full diagonals),
® and ¥ are n X a and a X n respectively, and
« is some small integer (usually 4 or less).

The pair of matrices (®, ¥) is called the
{Ay, Ap}-generator of R.

a is called the {Ay, Ap}-displacement rank of R.
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Example — Cauchy

Particular choices of Ay and Ay lead to
definitions of basic classes of matrices. Thus, for
a Cauchy matrix

t; — 8

C(t,s):[ ! } ,

we have
Af = Dt = diag(tthv cee at‘n) 3

Ap = Ds = diag(s1,52,.--,5n)

and
ol =w=1,1,...,1].

More general matrices, where ® and ¥ are any
rank-a matrices, are called Cauchy-type.
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Example — Toeplitz

For a Toeplitz matrix T = [t;;] = [ai—;]
o o0 --- 01
1 0 0

Ap=Zy=|0 1 S

- o
c o
o
=
—

T
|1 0 0
T la arptar - asgitana
and
_ | @n—1—QG-1 -+ a1 — 01— Qa
\I’_{ 0 0 1 ] .

We can generalize to Toeplitz-type matrices in
the obvious way.
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Gaussian Elimination and Schur
Complements

Let the input matrix, Ry, have the partitioning

T
Rlz[dl Wl}.
yi R

The first step of normal Gaussian elimination is

1 ot
to premultiply R; b , which
p Py Ruby | o g g }
. d1 W{
reduces it to [ 0 Ry |’ where

Ry = Ry —y,wi /dv

is the Schur complement of d1 in R;.

At this stage, Ry has the factorization

1 oT dy W{
Ry = .
Y1 / d1 I 0 RQ
One can proceed recursively with the Schur

complement Ry, eventually obtaining a
factorization Ry = LU.
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Structured Gaussian Elimination

The key to structured Gaussian elimination is
the fact that the displacement structure is
preserved under Schur complementation, and
that the generators for the Schur complement
Rp+1 can be computed from the generators of
Ry, in O(n) operations.

Partial Pivoting

Row and/or column interchanges destroy the
structure of matrices such as Toeplitz matrices.
However, if Ay is diagonal (which is the case for
Cauchy and Vandermonde type matrices), then
the structure is preserved under row
permutations.

This observation leads to the GKO-Cauchy
algorithm for fast factorization of Cauchy-type
matrices with partial pivoting (and many recent
variations on the theme by Boros, Gohberg,
Heinig, Kailath, Olshevsky, ...).
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Toeplitz to Cauchy

Heinig (1994) and (later) GKO (1995) show
that, if T" is a Toeplitz-type matrix, then

R=FTD'F*
is a Cauchy-type matrix, where

L omi(k—1)(j—1
F= %[e mi(k—1) (4 )/n]lsk’an
is the Discrete Fourier Transform matrix,

D = diag(1, emim L e”i("’l)/”),

and the generators of T and R are simply
related (we omit the details).
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GKO-Toeplitz

We can convert the generators of 7" to the
generators of R in O(2anlogn) operations via
FFTs. R can then be factorized as R = PTLU
using GKO-Cauchy. Thus, from the
factorization

T =FPTLUFD,

a linear system involving T' can be solved in
n? + 2nlogn operations. The procedure of
conversion of Cauchy form, factorization, and
solution requires O(n?) (complex) operations.

Other structured matrices, such as
Toeplitz-plus-Hankel, Vandermonde,
Chebyshev-Vandermonde, etc, can be converted
to Cauchy-type matrices in a similar way.
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Error Analysis

Because GKO-Cauchy (and GKO-Toeplitz)
involve partial pivoting, we might guess that
their stability would be similar to that of
Gaussian elimination with partial pivoting.

The Catch

Unfortunately, there is a flaw in the above
reasoning. During GKO-Cauchy the generators
have to be transformed, and the partial pivoting
does not ensure that the transformed generators
are small.

Sweet & Brent (1995) show that significant
generator growth can occur if all the elements of
@V are small compared to those of |®||¥|. This
can not happen for ordinary Cauchy matrices
because ®*) and ¥(¥) have only one column
and one row respectively. However, it can
happen for higher displacement-rank
Cauchy-type matrices, even if the original
matrix is well-conditioned.
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The Toeplitz Case

In the Toeplitz case there is an extra constraint
on the selection of ® and ¥, but it is still
possible to give examples where the the
normalized solution error grows like k2 and the
normalized residual grows like k. Thus, the
GKO-Toeplitz algorithm is (at best) weakly
stable.

It is not hard to think of modified algorithms
which avoid the examples given by Sweet &
Brent, but it is not clear if they are stable in all
cases. (Stability depends on the worst case,
which may be rare and hard to find by random
sampling.)

In practice, we can use an O(n?) algorithm;
check the residual (or, cheaper, check the
growth factors a posteriori), and resort to
iterative refinement or a stable O(n?) algorithm
in the (rare) cases that it is necessary.
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Some Open Problems

Let A be a structured matrix (e.g. Toeplitz or
Cauchy type).

e Are Schur-type algorithms (e.g. Bareiss)
significantly more accurate than
Levinson-type algorithms in the positive
definite case ? (Yes ?)

e Is there a fast, stable algorithm for
computing Q@ = AR™! ?

e Is there a fast algorithm using some form
of pivoting which is as stable as Gaussian
elimination with partial pivoting ? (The
answer may depend on the displacement
rank.) Is this good enough in practice ?

e Does consideration of structured
perturbations and structured condition
numbers give sharper error bounds than
“standard” error analysis 7
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