A GENERAL-PURPOSE PARALLEL SORTING ALGORITHM*

ANDREW TRIDGELL and RICHARD P. BRENT
Computer Sciences Laboratory
Australian National University
Canberra, ACT 0200, Australia

{tridge,rpb}@cslab.anu.edu.au

ABSTRACT

A parallel sorting algorithm is presented for general purpose internal sorting on MIMD machines. The
algorithm initially sorts the elements within each node using a serial sorting algorithm, then proceeds
with a two-phase parallel merge. The algorithm is comparison-based and requires additional storage of
order the square root of the number of elements in each node. Performance of the algorithm on the
Fujitsu AP1000 MIMD supercomputer is discussed.

Keywords: Batcher’s merge-exchange sort, distributed memory, Fujitsu AP1000, nCUBE2, parallel sort-
ing, sorting, Thinking Machines CM5

1. Introduction. Sorting of numeric or alphabetic data is required in many computing applications.
Knuth [8] gives several examples in his classic work on serial sorting algorithms.

Many papers have discussed the task of sorting on parallel computers. See, for example, [1, 2, 12].
Most of these papers have dealt with the problem from a theoretical point of view, neglecting many issues
that are important in a practical implementation of a parallel sorting algorithm [4, 10, 14]. This paper
describes a practical parallel sorting algorithm which is suitable for efficient general-purpose internal
sorting.

A description of the algorithm is given in Sections 2 and 3. In Section 4 the algorithm is compared
with some other parallel sorting algorithms, such as radix sort and sample sort. Finally, the performance
of our implementation on the Fujitsu AP1000 is discussed in Section 5.

The algorithm presented in this paper was first described in [16], which gives a more detailed account
of the implementation of the algorithm and compares results on the AP1000 with results on the Thinking
Machines CM5.

Knuth [8, p. 5] distinguishes between internal sorting, in which the records are kept in the computer’s
high-speed random-access memory, and external sorting, when there are more records than can be held
in memory at once. In this paper we restrict our attention to internal sorting, although our algorithm
could be extended in a straightforward way to handle external sorting.

1.1. Nomenclature. P is the number of nodes (also called cells or processors) available on the
parallel machine, and N is the total number of elements to be sorted. N, is the number of elements in a
particular node p (0 < p < P).

Elements within each node of the machine are referred to as E,;, for 0 <4 < N, and 0 < p < P.

When giving “big O” time bounds we usually assume that P is fixed. Thus, we do not usually
distinguish between O(N) and O(N/P).

The only operation assumed for elements is binary comparison, written with the usual comparison
symbols. For example, A < B means that element A precedes element B. The elements are considered
sorted when they are in non-decreasing order in each node, and non-decreasing order between nodes.
More precisely, this means that E,; < E,; for all relevant ¢ < j and p, and that E,; < E,; for
0 <p < q< P and all relevant ¢, j.

* To appear in Int. J. High Speed Computing 7, 2 (1995), 285-301 (accepted 27 March 1994).
Copyright © 1993, the authors. rpb158 typeset using BTEX

procedure hypercube_balance(integer base, integer num)
if num = 1 return
for all i in [0..num/2)

pair_balance (base+i, base+i+(num+1)/2)
hypercube_balance (base+num/2, (num+1)/2)
hypercube_balance (base, num - (num+1)/2)
end

FiG. 1. Pseudo-code for load balancing

Logarithms are always to base 2, and division of integers in pseudo-code (e.g. Figures 1-2) is assumed
to include an implicit truncation operation.

2. The Sorting Algorithm. The algorithm has four phases. The first and third phases are not
strictly necessary, but are included because they greatly improve the efficiency of the algorithm. The
second and third phases typically consume most of the processing time of the algorithm.

The first phase, called the pre-balancing phase, moves elements between the nodes without reference
to the comparison function so as to achieve a more even distribution of the elements. This serves to
reduce load imbalance problems later on. Pre-balancing can be omitted if the input data is known to be
well-balanced.

The second phase is a serial-sorting phase, in which the elements of each node are sorted with an
efficient serial sorting algorithm.

The third phase, called the primary merging phase, uses a pattern of merge-exchange operations
between the nodes so that the elements are nearly sorted, in the sense that the sort may be completed
with only a small amount of additional work.

The final phase, called the cleanup phase, uses a different pattern of merge-exchange operations
which is guaranteed to complete the sort. The success of the primary merging phase in nearly sorting
the data is judged by the amount of time the cleanup phase takes to complete.

Note that no post-balancing phase is required, because after the initial pre-balancing phase the
algorithm is guaranteed to preserve a balanced distribution.

In Sections 2.1 to 2.4 below, we describe the purpose and implementation of each phase. In Section 3
we describe the merge-exchange operation that is used in both the primary merging and cleanup phases.

2.1. Pre-Balancing. The pre-balancing phase moves the elements between nodes so as to achieve
a more even distribution of the elements. This phase is desirable to minimize the load imbalance between
nodes in later phases of the algorithm. The balancing is achieved by exchanging elements between pairs of
nodes. The communication pattern corresponds to the edges of a hypercube in the case that the number
of nodes is a power of 2. This method produces approximately N/P elements in each node, with an error
of order log P for each node if P is a power of 2 (see Lemma 1).

Pseudo-code for the pre-balancing algorithm is shown in Figure 1. When the algorithm is called,
base is initially set to the index of the smallest node in the system, and num is set to P, the number
of nodes. The algorithm operates recursively and takes [log P] steps to complete. When the number of
nodes is not a power of 2, the effect is to have some of the nodes idle in some phases of the algorithm.
Because the nodes that remain idle change with each step, all nodes take part in at least one pair-balance
with another node. With some distributions of elements and values for P it may be beneficial to iterate
the pre-balancing algorithm until some balancing criterion is met.

As can be seen from the pseudo-code for the algorithm, the actual work of the balance is performed
by another routine called pair_balance. This routine exchanges elements between a pair of nodes so that
both nodes end up with as close as possible to the same number of elements. More precisely, if the nodes
start with N; and Ny elements, they end up with [(V; + Ni)/2] and [(N; + Ni)/2] elements.

Our statements about the pre-balancing phase can be made more precise by the following Lemma.
The proof by induction on d is straightforward, so it is omitted.

LEMMA 1. If P = 2% and the number of elements in node j is N before the pre-balancing phase and
N; after the pre-balancing phase (0 < j < P), then

max |Nj—N;| <d.
0<j<k<P

procedure primary_merge (integer base, integer num)
if num = 1 return
for all i in [0..num/2)

merge_exchange (base+i, base+i+(num+1)/2)
primary_merge (base+num/2, (num+1)/2)
primary_merge (base, num - (num+1)/2)
end

Fi1G. 2. Pseudo-code for primary merge

The worst case in Lemma 1 is illustrated by the example
N; = popcount(j),

where popcount counts the number of 1-bits in the binary representation of its argument. In this example
Ny =0, Np_; = d, and the pre-balancing phase does nothing.

2.2. Serial Sorting. In the serial sorting phase there is no communication between nodes, but a
fast comparison-based serial sorting algorithm is applied to the elements in each of the nodes. At the end
of this phase the data is in the form of P sorted lists of elements, with approximately N/P elements in
each list.

After some experimentation, a combination of quick-sort and insertion sort was chosen for serial
sorting. This was found to give the best performance over a wide range of conditions on the AP1000.

As will be seen in Section 5, the time taken by the serial sorting phase of the algorithm dominates the
total time taken by the sorting algorithm when the number of elements being sorted is large. It is thus
very important that the serial sorting algorithm be optimized as much as possible. This optimization
might include the use of an alternate serial sorting algorithm that can take advantage of particular forms
of the comparison function between data elements. An example would be the use of a radix sorting
algorithm for the sorting of ordinal data types such as integers.

2.3. Primary Merging. Since the aim of the primary merge phase of the algorithm is to “almost
sort” the data in minimal time, significant improvements to the overall parallel efficiency could be attained
by not employing a method guaranteed to fully sort the data; such methods as, for example, Batcher’s
merge-exchange sort [3], which is used in the cleanup phase, generally have a lower parallel efficiency.

The pattern of merge-exchange operations in the primary merge is identical to that used in the
pre-balancing phase of the algorithm. The pseudo-code for the algorithm is given in Figure 2. When the
algorithm is called, base is initially set to the index of the smallest node in the system, and num is set to
P, the number of nodes.

This algorithm completes in [log P steps per node, with each step consisting of a merge-exchange
operation. As with the pre-balancing algorithm, if P is not a power of 2 then some nodes may be left
idle at each step of the algorithm.

If P is a power of 2 and the initial ordering of the elements is random, then at each step of the
algorithm each node has about the same amount of work to perform as the other nodes. In other words,
the load balance between the nodes is very good. The symmetry is only broken by an unusual ordering
of the original data, or if P is not a power of 2. In both of these cases load imbalances may occur.

2.4. Cleanup. The cleanup phase of the algorithm is similar to the primary merge phase, but it
must complete the sorting process. We chose Batcher’s merge-exchange sort to achieve this, because the
algorithm has some useful properties which make it ideal for a cleanup operation.

Pseudo-code for Batcher’s merge-exchange sort is given in [8, Algorithm M, p. 112]. The method
defines a pattern of comparison-exchange operations that sorts a list of elements of any length.

The way the algorithm is normally described, the comparison-exchange operation operates on two
elements and exchanges the elements if the first element is greater than the second. In the application of
the algorithm to the cleanup operation we generalize the notion of an element to include all elements in
a node. This means that the comparison-exchange operation must make all elements in the second node
greater than all elements in the first. This is identical to the operation of the merge-exchange algorithm,
described in Section 3. A proof that it is possible to make this generalization while maintaining the
correctness of the algorithm is given in [8, solution to problem 5.3.4.38]. This proof assumes that each

of the nodes contains the same number of elements. A method for extending this result to the case of
possibly different numbers of elements is given in Section 2.5.

Batcher’s merge-exchange sort is ideal for the cleanup phase because it is very fast for almost sorted
data. This is a consequence of a unidirectional merging property: the merge operations always operate
in a direction so that the lower numbered node receives the smaller elements. This is not the case for
some other fixed sorting networks. Algorithms without the unidirectional merging property are poorer
choices for the cleanup phase as they tend to un-sort the data, undoing the work done by the primary
merge phase, before completely sorting it. In practice the cleanup time is only a small fraction of the
total sort time if Batcher’s merge-exchange sort is used and the merge-exchange operation is implemented
efficiently (see Figure 5).

2.5. N not a multiple of P. The proof given in [8, solution to problem 5.3.4.38] shows that
comparison-exchange based sorting algorithms can be extended to sort lists of elements by replacing the
comparison-exchange operation with a merge-exchange operation. Simple examples demonstrate that the
condition that each of the nodes have the same number of elements is necessary.

In [16] we describe a method called “infinity padding” which allows the cleanup phase of our algorithm
to operate correctly when each node does not have the same number of elements. The method works by
adding implicit co-elements to each of the nodes and calculating the number of real elements that must
remain in each node after each merge-exchange operation.

In this section we describe an alternative to infinity padding which operates not in the merge-
exchange operation but instead as an additional balancing phase coming directly after the pre-balancing
phase of the algorithm. The effect of this change is to simplify the merge-exchange operation.

Let the maximum number of elements in any one node be M. We transfer M — N; elements from the
highest numbered node to each of the lower numbered nodes in turn, starting with node 0. If the highest
numbered node runs out of elements then we continue the process with the next highest numbered node,
and so on.

Now, when a merge-exchange operation is performed between nodes p and ¢ with 0 < p < ¢ < P,
we can be sure that either N, = M and N, < N,, or that N, = 0. This means that if we pad the nodes
that have N, < M elements with M — N, oo-elements, then we can guarantee that these oco-elements
will not move, and thus do not have to be explicitly represented.

This method relies on the fact that the sorting algorithm used for the cleanup phase is unidirectional
in order to guarantee that the implicit co-elements always remain in the higher numbered nodes.

3. Merge-Exchange. The purpose of the merge-exchange operation is to exchange elements be-
tween two nodes so that we end up with one node containing elements that are all smaller than all the
elements in the other node, while maintaining the order of the elements within the nodes. In practice the
merge-exchange operation, along with the initial serial sort, takes the bulk of the processing time for a
sort.

This section explains the merge-exchange portion of our overall parallel sorting algorithm, along with
some special-case optimizations that are important for good performance.

To be useful in our sorting algorithm the merge-exchange operation must be very fast for data that
is already nearly sorted so that the cleanup phase can complete quickly. The memory overhead must also
be minimal so that the algorithm can efficiently utilize available memory.

In our implementation of parallel sorting we always require the node with the smaller node number
to receive the smaller elements. This would not be possible if we used Batcher’s bitonic algorithm (as
in [5]) instead of his merge-exchange algorithm for the cleanup phase.

Suppose that a merge operation is needed between two nodes, p and ¢, which initially contain N,
and N, elements, respectively. For the discussion below (and without loss of generality) let us assume
that the smaller elements are required in node p after the merge.

In principle, merging two already-sorted lists of elements to obtain a completely sorted list is a very
simple process. The most obvious implementation takes N, + N, steps, with each step requiring one
copy and one comparison operation [5, 8]. The problems with this approach are the storage requirements
implied by the presence of a destination array. Using this algorithm as a component of a parallel sort
would be restricted to lists whose maximum length fits in half the available memory of the machine. A
more space-efficient algorithm can be developed. It is clear that such an algorithm must re-use the space
that is freed by moving elements from the two source lists. We now describe how this can be done. The
algorithm has several parts, each of which is described separately.

Our merge operation is similar to known algorithms for in-place merging [6, 9], but is also considerably
simpler and faster due to its use of a temporary storage area of size O(1/N/P). In practice the size of
this temporary storage area is insignificant.

3.1. Find-Exact Algorithm. During a merge-exchange between two nodes, they will need access
to each other’s elements. The simplest method for doing this is for nodes to receive a complete copy of
each other’s elements before the merge begins.

A much better approach is to first determine exactly how many elements from each node will be
required to complete the merge, and to transfer only those elements. This reduces the communications
cost by minimizing the number of elements transferred, and at the same time reduces the memory
overhead of the merge.

The find-exact algorithm allows each node to determine exactly how many elements are required
from another node in order to produce the correct number of elements in a merged list.

When a comparison is made between elements E, 41 and Eg n,— a then the result of the comparison
determines whether node p will require more or less than A of its own elements in the merge. If E, 44
is greater than Eg n,— 4, then the maximum number of elements that could be required to be kept by
node p is A — 1, otherwise the minimum number of elements that could be required to be kept by node
pis A.

The proof of correctness relies on counting the number of elements that could be less than E, 4_;.
If E, A1 is greater than E, n,_4, then there are at least N, — A + 1 elements in node g that are less
than E, 4_;. If these are combined with the A — 1 elements in node p that are less than E, 4_;, then
we have at least N, elements less than E, 4_;. This implies that the number of elements that must be
kept by node p is at most A — 1.

A similar argument can be used to show that, if £, 41 < Eg N, 4, then the number of elements
to be kept by node p must be at least A. Combining these two results leads to a “bisection” algorithm
that can find the exact number of elements required in at most [log N,] steps by successively halving
the range of possible values for the number of elements required to be kept by node p. Once this result
is determined, it is a simple matter to derive the number of elements that must be sent from node p to
node ¢, and from node ¢ to node p.

On a machine with a high inter-processor communications latency, this algorithm could be costly, as
a relatively large number of small messages are transferred. The number of messages could be reduced,
but with a penalty of increased message size and algorithm complexity. One method for doing this is
described in [17]. On the AP1000 the cost of the find-exact algorithm was found to be very small, due
to the low inter-processor communications latency of the machine [7, 13], so the method of [17] was not
implemented.

We assume for the remainder of the discussion on the merge-exchange algorithm that the find-exact
algorithm has determined that node p must retain L; elements and must receive Lo elements from node g.

3.2. Transferring Elements. After the exact number of elements to be transferred has been
determined, the transfer takes the form of an exchange of elements between the two nodes. The elements
that are sent from node p leave behind them spaces which must be filled with the incoming elements from
node g. The reverse happens on node ¢, so the transfer process must be careful not to overwrite elements
that have not yet been sent.

After the transfer is complete, the elements on node p are stored in two contiguous sorted lists, of
lengths Ly and Ly where Ly is just N, — Ly. In the remaining steps of the merge-exchange algorithm we
merge these two lists so that all the elements are in order.

3.3. Unbalanced Merging. Before considering the algorithm for memory efficient merging, it is
worth considering a special case where the result of the find-exact algorithm determines that the number
of elements to be kept on node p is much larger than the number of elements to be received from node gq.
In this case the task that node p must undertake is to merge two lists of very different sizes. There is a
very efficient algorithm for this special case, which may occur if the data is almost sorted, e.g., near the
end of the cleanup phase.

Suppose that L, is much greater than L,. First we determine where each of the L, elements that
have been transferred from ¢ belongs in the list of length L;. This can be done with at most Lz [log L]
comparisons using a binary search. As L, is small, this number of comparisons is small, and the results
take only O(Ls) storage.

Once this is done we can copy all the elements in list 2 to a temporary storage area and begin the
process of moving elements from list 1 and list 2 to their proper destinations. This takes at most L; + Lo

5

element copies, but in practice it often takes only about 2Ls copies. This is because when only a small
number of elements are transferred between nodes there is often only a small overlap between the ranges
of elements in the two nodes, and only the elements in the overlap region have to be moved.

The unbalanced merge is faster in practice than a general purpose merge algorithm, and the overall
performance of the sorting procedure is significantly better than it would be if we did not take advantage
of this special case.

3.4. Blockwise Merging. The blockwise merge is a solution to the problem of merging two sorted
lists of elements into one, while using only a small amount of additional storage. The first phase in the
operation is to break the two lists into blocks of an equal size B. The exact value of B is unimportant for
the correctness of the algorithm but does influence the efficiency and memory usage. We assume that B
is O(v/L1 + Ls), which is small relative to the memory available on each node. To simplify the exposition
we also assume, for the time being, that L; is a multiple of B.

The merge takes place by merging from the two blocked lists of elements into a destination list of
blocks. When a block from one of the two source lists becomes empty it is added to the list of destination
blocks. The destination list is initially primed with two empty blocks.

As the merge proceeds there are always exactly 2B free spaces in the three lists. This implies that
there must always be at least one free block on the destination list whenever a new destination block is
required.

The algorithm actually takes no more steps than the simple merge mentioned earlier. Each element
moves only once. The drawback, however, is that the elements end up in a blocked list structure rather
than in a simple linear array.

The simplest method for resolving this problem, at the expense of additional memory accesses, is to
rearrange the blocks into standard form. This is what has been done in our current implementation. It
would be possible to modify the algorithm so that the elements are always kept in a block list form. This
would improve performance at the cost of some additional coding complexity.

So far, we have assumed that L; is a multiple of B. If L; is not a multiple of B then blocks in
the second source list cannot be used as destination blocks without leaving a gap in the final list. To
overcome this problem we copy L; mod B elements from the tail of list 1 and use this copy as a final
source block. Then we offset the blocks when transferring them from source list 2 to the destination list
so that they end up aligned on the proper boundaries. Finally, we increase the amount of temporary
storage to 3B and prime the destination list with three blocks to account for the fact that we cannot use
the partial block from the tail of list 1 as a destination block.

4. Comparison with other algorithms. When designing the parallel sorting algorithm we wished
to produce a general-purpose algorithm, similar in functionality to the many general-purpose serial sorting
algorithms that already exist. Specifically, we aimed for the following properties:

1. Speed. The algorithm should be competitive with the fastest known algorithms.

2. Good memory utilization. The number of elements that can be sorted should be close to the
number that can be stored in the memory of the machine.

3. Flexibility. No restrictions should be placed on the number of records to sort or on the number
of processors.

4. Determinism. The algorithm should not use a random number generator.

5. Comparison-based. The only operation used on keys is binary comparison.

A parallel algorithm based on radix sorting has been shown to perform very well [4], but it relies on
the ordinal properties of the data type being sorted. This limits its application as it cannot be used to
sort with an arbitrary comparison function. Another problem is memory utilization. Radix sorting, in its
usual implementation, requires the use of additional workspace at least as large as the data being sorted.
This limits the number of elements that can be sorted to half that which fits in the machine’s memory.

An advantage of radix sorting is that it can be adapted relatively easily to take advantage of any
vector processing capabilities of the processors. This can give a large performance gain in situations where
radix sorting is possible. We have achieved some success in combining the general purpose algorithm
presented in this paper with a radix sorting algorithm. The performance improvement which results
comes at a cost of decreased generality.

The parallel sample sort algorithm, as with radix sorting, has a problem with high memory require-
ments [4]. It also fails to satisfy property 4 due to its reliance on taking pseudo-random samples of the
input data.

Sorting 16-byte strings on the 128-node AP1000

Elements per ! J T
second x 10 projected serial rate x128 —
S serial rate x128 ¢

'”‘\"’*ee., parallel rate *

1.5

00 1 1 1
108 108 107 108 10°
Number of Elements

F1G. 3. Sorting 16-byte strings on the AP1000

Parallel versions of radix sort [4] and sample sort [4, 14] also require “all-to-all” communications,
which is much more costly in terms of communication overhead on current parallel machines than the
transfer of large contiguous blocks of elements as is used in our algorithm.

Several methods that rely on the number of elements being a multiple of the number of nodes or on
the number of nodes being a power of 2 do not satisfy property 3 (see [2]).

5. Performance. Several runs were made on a AP1000 [7] to examine the performance of our
implementation of the sorting algorithm under a variety of conditions. The AP1000 used contains 128
nodes connected in an 8 by 16 torus network topology, node to node communication on which is performed
in hardware using wormhole routing. Each node comprises a 25 MHz Sparc 1+ processor with 16MByte
of local memory. Not all of the local memory is available to applications, due to the presence of a minimal
operating system on each node. In practice just over 12MByte is available for program use. The AP1000
does not use virtual memory.

The parallel sort algorithm was implemented in the C language using a library of message passing
routines and was compiled with the GNU C compiler (version 2.4.5). The code was written so that it
could be easily ported to other parallel machines such as the Thinking Machines CM5 [18].

An evaluation of the algorithm has been performed on the CM5. The results are given in [16]. They
are comparable to the results obtained on the AP1000, though with some differences due to the different
machine architectures and operating systems.

Our code has also been ported to the nCUBE2 [11]. The results for this machine show a greater
parallel speedup than for either the AP1000 or CM5. This is due to the hypercube connections of the
nCUBE2, which suit our algorithm, along with a high ratio of network speed to processing speed.

When we refer to the parallel speedup of the algorithm we mean the ratio of the time the sorting
task takes to complete with the best available serial algorithm on a single node of the parallel machine to
the time for our parallel algorithm. The fact that our algorithm naturally reduces to the best available
serial algorithm when run on one node of the parallel machine makes the comparison simpler.

Because the algorithm is comparison-based its performance is not dependent on the statistical dis-
tribution or entropy [15] of the test data. It is influenced only by the initial ordering of the elements and
the number of elements on each node. This simplifies the task of generating suitable test data sets, as a
random element generator supplying a uniform distribution can be used.

5.1. Timing Results. The first results are shown in Figure 3. This figure shows the performance
of the algorithm on the 128-node AP1000 as the number of elements, N, spans a wide range of values,
from values which would be easily dealt with on a workstation, to those at the limit of the AP1000’s
memory capacity (2GByte). The elements are 16-byte random strings. The comparison function is the
C library function strecmp().

Percentage of potential speedup with 10° 16-byte strings per node

100 T T T T T T
80 R | ‘ £ -
WA] I i
W iy | /
60 - W/MM _
40 including all nodes — 4
only powers of 2 ——
20 | -
0 1 1 1 1 1 1

20 40 60 80 100 120 140
Number of Nodes

Fi1G. 4. Scalability of sorting on the AP1000

The results give the number of elements that can be sorted per second of real time. This time
includes all phases of the algorithm and gives an overall indication of performance.

Shown on the same graph is the performance of a hypothetical serial computer that operates P
times as fast as one of the P individual nodes of the AP1000. The hypothetical sorting performance is
calculated as the product of P and the measured, single-node performance. Due to memory limitations
on the individual nodes an extrapolation is necessary to estimate the time a single node would take to
perform large sorts. A least squares fit was used to obtain the values of a, b, ¢ and d in the function:

time(N) = a+ blog N + ¢N + dN log N.

This function was chosen because it covers the significant contributions in the quick-sort algorithm and
was found empirically to extrapolate very accurately on machines with large amounts of single processor
memory.

The graph shows that the performance of the sorting algorithm increases quickly as the number of
elements approaches 1 million. After this a slow fall-off occurs, closely following the profile of the ideal
parallel speedup. The roll-off point of 1 million elements corresponds to the number of elements that can
be held in the 128KByte cache of each node. This indicates the importance of caching to the performance
of the algorithm.

It is encouraging to note how close the algorithm comes to the ideal speedup of P for a P-node
machine. The algorithm achieves 85% of the ideal performance for a 128-node machine. The dependence
of this result on the value of P is discussed in the next section.

5.2. Scalability. An important aspect of a parallel algorithm is its scalability, which is a measure
of the algorithm’s ability to utilize additional nodes. Figure 4 depicts the scalability on the AP1000 (as
a percentage of the potential speedup) of sorting 100,000 16-byte strings per node versus the number of
nodes. The number of elements per node is kept constant to ensure that caching factors do not influence
the result.

The points in the graph are connected because this shows more clearly the pattern of dependence
on the value of P. No significance should be inferred from the interpolation of the points.

The left-most data point shows the speedup for a single node. This is equal to 1 as the algorithm
reduces to our optimized quick-sort when only a single node is used. As the number of nodes increases,
the proportion of the ideal speedup decreases, as communication costs and load imbalances begin to
appear. The graph flattens out for larger numbers of nodes, which indicates that the algorithm should
have a good efficiency when the number of nodes is large.

The two curves in the graph show the trend when all configurations are included and when only
configurations with P a power of 2 are included. The difference between these two curves clearly shows
the preference for powers of 2 in the algorithm. It is also clear that certain values for P are preferred to

8

Sorting 16-byte strings on the 128-node AP1000

60
Percentage of ' ' 0.0 <><><><>°<><><><>°<>"°°<><x>W
total time o%wooo%% o9
00
002 g RRE ok Kk ok
1;&9&%‘* * e
n Sk
40 . *****{So Hxkhoke]
[0
[e) oo
0000900 Serial Sort <
o Primary Merge x
2 F 00, Cleanup o
Qoo
00 (o]
0~ o0
° OOC'OOOOOOOO
0 ! ©90%0009000p0020006000000062 %0000
10° 10° 107 108

Number of Elements

Fi1G. 5. Timing breakdown by phase

others. In particular, the parallel sort algorithm performs better on even numbers of nodes than on odd
ones. Sums of adjacent powers of 2 also seem to be preferred, so that when P takes on values of 24, 48
and 96 the efficiency is quite high.

5.3. Where The Time Goes. It is interesting to look at the proportion of the total time spent
in certain phases of the sort, as is shown in Figure 5 sorting 16-byte strings on the AP1000 over a wide
range of list lengths N. The figure depicts results for the initial serial sort, primary merge, and cleanup
phases of the algorithm.

This graph shows that as N increases to a significant proportion of the available memory of the
machine the greatest time is taken by the initial serial sorting of the elements in each cell. This is the
case because this phase of the algorithm takes time O(N log N) whereas all other phases of the algorithm
take time O(N) or lower. It is the fact that this component of the algorithm is able to dominate the time
while NV is still a relatively small proportion of the capacity of the machine, which leads to the practical
efficiency of the algorithm. Many sorting algorithms are asymptotically optimal in the sense that their
speedup approaches P for large N, but few can get close to this speedup for values of N that are of
interest in practice [10].

It is also interesting to note the small impact that the cleanup phase has for larger values of N. This
demonstrates that the primary merge phase does indeed produce an almost sorted data set and that the
cleanup phase can take advantage of this.

The time spent by the overall algorithm in various tasks can also be measured. In this case we look
at what kind of operation each of the nodes is performing, which provides a finer division of the time.

Figure 6 exhibits the timings for the various tasks on the 128-node AP1000 for sorting a wide range
of list lengths N. Again it is clear that the serial sorting dominates for large values of N, for the same
reasons as before. What is more interesting is that the proportion of time spent idling while waiting for
messages and in actual communication, decreases steadily as IV increases. From the point of view of the
parallel speedup of the algorithm, such tasks waste valuable time, which needs to be kept to a minimum.

6. Conclusions. We have presented a practical general-purpose parallel internal sorting algorithm
that, in at least one implementation, comes close to achieving the best possible speedup over an optimized
serial algorithm.

The algorithm derives its generality from the fact that it is comparison-based, and allows for a user-
supplied comparison function. This corresponds to the commonly available serial sorting procedures that
are the mainstay of internal sorting on serial computers.

The algorithm is frugal in its memory requirements, which allows data to be sorted almost to the
limit of a parallel machine’s memory. This is important because it is unreasonable to expect data sets
being sorted on a parallel machine to occupy only a small fraction of the machine’s memory.

9

Sorting 16-byte strings on the 128-node AP1000
60

Percentage of ' L 0eQ0oRORRN0
total time o%w%o%%% o
R0
70 Serial Sorting <
40 F ooo"oo Merg%ng >
4 o Communicating o
Nt Idle <
a9, > Rearranging x
PODR Py,

108 108 107 108
Number of Elements

Fi1G. 6. Timing breakdown by task

7. Availability. Source code for the algorithm is available via anonymous ftp from
nimbus.anu.edu.au (Internet number 150.203.15.21) in the directory pub/tridge/sorting/par_sort.
Also included in this directory is a technical report [16]. The authors may be contacted by e-mail at
tridge@cslab.anu.edu.au and rpb@cslab.anu.edu.au.

Acknowledgments. We thank the referees for their help in improving the exposition. Support by
Fujitsu Laboratories, Fujitsu Limited, and Fujitsu Australia Limited via the Fujitsu-ANU CAP Project
is gratefully acknowledged. Support of Andrew Tridgell via an ATERB postgraduate scholarship is also
gratefully acknowledged.

REFERENCES

[1] M. Astal, J. KoMLés AND E. SZEMEREDI, Sorting in clogn parallel steps, Combinatorica 3, 1983, 1-19.

[2] S. G. AKL, Parallel Sorting Algorithms, Academic Press, Toronto, 1985.

[3] K. E. BATCHER, Sorting networks and their applications, Proc. AFIPS Spring Joint Computer Conference
32, 1968, 307-314.

[4] G. E. BLELLOCH, C. E. LEISERSON, B. M. MaGas, C. G. PLAXTON, S. J. SMITH AND M. ZAGHA,
A comparison of sorting algorithms for the Connection Machine CM-2, Proc. Symposium on Parallel
Algorithms and Architectures, Hilton Head, South Carolina, July 1991.

[6] G. C. Fox, M. A. JoHNSON, G. A. LYZENGA, S. W. OTTO, J. K. SALMON AND D. W. WALKER, Solving
Problems on Concurrent Processors, Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[6] B.-C. HUANG AND M. A. LANGSTON, Practical in-place merging, Communications of the ACM 31, 1988,
348-352.

[7] H. IsuiHATA, T. HORIE AND T. SHIMIZU, Architecture for the AP1000 highly parallel computer, Fujitsu Sci.
Tech. J. 29, 1993, 6-14.

[8] D. E. KNUTH, The Art of Computer Programming, Volume 3: Sorting and Searching (second edition),
Addison-Wesley, Menlo Park, 1981.

[9] M. A. KRONROD, An optimal ordering algorithm without a field of operation, Dokl. Akad. Nauk SSSR, 186,
1969, 1256-1258 (in Russian).

[10] L. NATVIG, Logarithmic Time Cost Optimal Parallel Sorting is Not Yet Fast in Practice!, Proc. Supercom-
puting 90, IEEE Press, 1990, 486-494.

[11] T. RAsHID, personal communication, March 1993.

[12] J. H. REIF AND L. G. VALIANT, A logarithmic time sort for linear size networks, J. ACM 34, 1987, 60-76.

[13] T. SHimizu, T. HORIE AND H. ISHIHATA, Performance evaluation of the AP1000, Fujitsu Sci. Tech. J. 29,
1993, 15-24.

[14] H. SHU AND J. SCHAEFFER, Parallel sorting by regular sampling, J. Parallel and Distributed Computing 14,
1992, 361-372.

10

[15] K. THEARLING AND S. SMITH, An Improved Supercomputing Sorting Benchmark, Proc Supercomputing 92,
IEEE Press, 1992, 14-19.

[16] A. TRIDGELL AND R. P. BRENT, An Implementation of a General-Purpose Parallel Sorting Algorithm,
Report TR-CS-93-01, Computer Sciences Lab, Australian National University, February 1993, 24 pp.
Available by anonymous ftp.

[17] B. B. ZHou, R. P. BRENT AND A. TRIDGELL, Efficient Implementation of Sorting Algorithms on Asyn-

chronous Distributed-Memory Machines, Report TR-CS-93-06, Computer Sciences Lab, Australian Na-
tional University, March 1993, 7 pp.

[18] CM-5 Technical Summary, Thinking Machines Corporation, October 1991.

11

