THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-97-10
Parallel Integer Sorting

Andrew Tridgell, Richard Brent
and Brendan McKay

May 1997

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports

Department of Computer Science

Faculty of Engineering and Information Technology
The Australian National University

Canberra ACT 0200

Australia

or send email to:
Techni cal . Reports@s. anu. edu. au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs. anu. edu. au/ t echreports/

Recent reports in this series:

TR-CS-97-09 M. Manzur Murshed and Richard P. Brent. Constant time
algorithms for computing the contour of maximal elements on the
Reconfigurable Mesh. May 1997.

TR-CS-97-08 Xun Qu, Jeffrey Xu Yu, and Richard P. Brent. A mobile TCP
socket. April 1997.

TR-CS-97-07 Richard P. Brent. A fast vectorised implementation of Wallace’s
normal random number generator. April 1997.

TR-CS-97-06 M. Manzur Murshed and Richard P. Brent. RMSIM: a serial
simulator for reconfigurable mesh parallel computers. April 1997.

TR-CS-97-05 Beat Fischer. Collocation and filtering — a data smoothing
method in surveying engineering and geodesy. March 1997.

TR-CS-97-04 Stephen Fenwick and Chris Johnson. HeROD flavoured
oct-trees: Scientific computation with a multicomputer persistent
object store. February 1997.

Parallel Integer Sorting

Andrew Tridgell, Richard Brent and Brendan McKay
Department of Computer Science
Australian National University

December 13, 1995

Contents

1

2

Introduction

Internal sorting

2.1 Overview of the algorithm
2.2 Distribution requirements
2.3 Localsorting
2.3.1 Quicksort
2.3.2 Radixsort.
2.3.3 American flagsort Lo
2.4 Merge exchange operation
2.4.1 The Find-Exact Algorithm
2.4.2 Unbalanced Merging,
2.4.3 Blockwise Merging
2.5 Primarymerge
26 Cleanup o i e e e
External sorting
3.1 Lower LimitsonI/O
3.2 Overview of the algorithm
3.3 Partitioning oL
3.4 Column and row sorting
3.5 Completion
3.6 Processor allocation
3.7 Largek e
3.8 Other partitionings L.
Performance
4.1 The test environment
4.2 Serialsorting oo
4.3 Internal parallel sorting
4.4 External sorting oo
4.4.1 IO Efficiency
442 Worstcase
Conclusions

Source code
6.1 Using the test program

1 Introduction

This paper presents algorithms and experiments for internal (in core) and exter-
nal (secondary memory) parallel sorting. It concentrates on algorithms appro-
priate for medium scale MIMD parallel computers, with all experiments being
performed on a 128 processor Fujitsu AP1000.

Data sizes ranging from a few hundred thousand to a few hundred million
elements are considered, with all elements being either 64 bit or 128 bit integers.

The internal sorting algorithm is based on earlier work by Andrew Tridgell
and Richard Brent[11], while the external sorting algorithm was developed for
this paper.

The paper also takes a quick look at serial sorting algorithms, as they play
an important part as subroutines in the parallel sorting algorithms.

2 Internal sorting

Internal parallel sorting just means sorting data which fits in the parallel ma-
chines primary memory without resorting to secondary memory. It is not diffi-
cult to come up with a parallel sorting algorithm that is asymptotically optimal
(any local sort then merge algorithm will do) but it can be quite hard to find
an algorithm that actually a achieves a reasonable percentage of the optimal P
times speedup for reasonable data sizes.

This paper describes a local-sort/merge algorithm which uses a number of
algorithmic tricks to achieve quite respectable performance over a wide range
of parameters. It was first described in [11].

2.1 Overview of the algorithm

The internal sorting algorithm is basically a simple parallel merge sort. Each
processor sorts its own elements using a local sorting algorithm then the proces-
sors perform a series of merge-exchange operations to bring the locally sorted
lists into globally sorted order.

The novel parts of the algorithm are in the choice of the pattern of merge
exchange operations, and the implementation details of the merge-exchange
operation itself. Together these lead to a highly efficient algorithm that performs
well under a wide range of circumstances.

The pattern of merge exchanges is split into two parts. In the first part,
called the primary merge, a highly parallelisable hypercube algorithm is used
that “almost sorts” the data. The algorithm produces a ordering of the data
which is close to being completely sorted but needs some cleanup operations.

The second part, called the cleanup, consists of merge exchange operations
following the pattern of Batcher’s merge exchange sort[6]. This algorithm has
the property that it completes very quickly for almost sorted data, and thus is
ideal as a cleanup operation.

The merge exchange operation itself is also split into a number of parts. In
the first part, which we call “find-exact”, the two processors exchange individual
elements in a bisection search to find which elements need to be transferred
between the processors. The processors then do a bulk swap of elements based
on the result of the find-exact operation.

Each processor taking part in the merge-exchange then has two lists of ele-
ments and needs to perform a local merge-exchange between them. This merge
exchange can take advantage of the position of the lists after the bulk swap of
elements to produce a fast memory efficient block-wise merge algorithm.

In the following sections each of the stages of the internal sorting algorithm
is described. A more detailed and general account of the algorithm can also be
found in [11].

2.2 Distribution requirements

The algorithm described below will assume that the elements start out dis-
tributed across the processors. It will also assume a particular packing of the
elements on the processors. The packing that is required is described as follows

Np+1 < Np

If Np+1 > 0 then Np = Np—l

where N, is the number of elements on processor p and p is restricted to suitable
ranges.

This packing is a result of “infinity padding” where virtual infinity elements
are added to the data to bring the total number of elements up to a multiple
of the number of processors P. These virtual infinity elements must be initially
placed in the highest cell numbers to guarantee that they will not have to move
during the sorting process.

An algorithm for efficiently obtaining the required initial distribution is de-
scribed in [11].

2.3 Local sorting

The choice of algorithm for sorting the elements within each cell is perhaps the
simplest part of the process. As the results will show, however, it is critical to
the overall performance of the algorithm.

A simple demonstration of the importance of the serial sorting phase can be
made by calculating its expected contribution to the total time for the parallel
sorting algorithm under some simple assumptions.

If we assume that the serial sorting algorithm takes time N log N then we
would expect an ideal parallel sorting algorithm to take w. The local
sorting portion of the algorithm (executed in parallel) would take & log &. This
means we would expect the serial sorting phase of the algorithm to take 1— 1%05%
of the total time.

If we assume we have 27 processors and elements then we would ex-
pect the serial sorting phase to take more than 75% of the total sorting time.
Obviously the choice of serial sorting algorithm is critical.

230

2.3.1 Quicksort

A very commonly used serial sorting algorithm is quicksort. Quicksort is a
comparison based in-place serial sorting algorithm based around partitioning.
It is often included (in a slightly modified form) in a standard C library function
gsort(). The problem is that the C library implementations are typically very
slow.

The main problem is that they call a user defined function for each com-
parison. A huge speed improvement can often be had by inlining the compari-
son function. Further improvements can be made by tuning the insertion sort
threshold, which is the point at which the algorithm switches to a fast insertion
sort for small numbers of elements.

For this paper the GNU quicksort implementation was investigated, using
inlined comparisons. It was found to be much faster than the standard library
routines.

2.3.2 Radix sort

When sorting integers or integer-like quantities a considerable advantage can be
gained from the bitwise ordering of the elements. The best known algorithm to
take advantage of this is radix sort. In its simplest form a radix sort is a bucket
sort which first partitions using the least significant bits then progressively par-
titions for the more significant bits of the data.

Typically 8 bits are considered at one time for convenience of programming.
This means that for 128 bit integers the algorithm requires 16 passes through the
data, with each pass doing essentially random accesses. This leads to very poor
performance. Radix sorts perform very well for small integers (up to around 32
bits or so) but degrade rapidly beyond that.

Radix sorts also typically require temporary storage of approximately equal
size to the input data. As will become plain later, this is unacceptable for
parallel sorting in many cases, especially for external parallel sorting.

2.3.3 American flag sort

Another class of radix sorting algorithms are the forward radix sorts. These
examine the most significant bits first and do a successive partitioning moving
towards the less significant bits. This has the big advantage that the sort can
stop when enough bits have been examined to sort the data (for N elements this
will typically be around logN bits for random data). This makes it much more
attractive for sorting 128 bit elements.

The problem with forward radix sorts is that they commonly produce lots
of empty buckets in the later passes of the sort which leads to large overheads
in bucket management.

The American flag sort[12] is a fine tuned forward radix sort. It uses algorith-
mic and programming tricks to largely avoid the problems of empty buckets, and
also manages to produce a in-place radix sort using a sophisticated tail-chasing
algorithm. It performs very well over a very wide range of parameters.

The standard American flag sort is designed for NULL terminated, variable
length strings, and uses an array of pointers to the strings as the “elements”.
For this paper the algorithm was modified to sort fixed length integers without

the use of an array of pointers. The changes required to do this were quite
small.

The American flag sort was chosen as the principle serial sorting algorithm
for the results later in this paper.

2.4 Merge exchange operation

The aim of the merge-exchange operation is to exchange elements between two
processors so that we end up with one processor containing elements which are
all smaller than all the elements in the other processor, while maintaining the
order of the elements in the processors. In our implementation of parallel sorting
we always require the processor with the smaller processor number to receive
the smaller elements. !

Secondary aims of the merge-exchange operation are that it should be very
fast for data that is almost sorted already, and that the memory overhead should
be minimised. 2

Suppose that a merge operation is needed between two processors, 1 and 2,
which initially contain N1 and N, elements respectively. We assume that the
smaller elements are required in processor 1 after the merge.

In principle, merging two already sorted lists of elements to obtain a new
sorted list is a very simple process. The pseudo-code for the most natural
implementation is shown in Figure 1

This algorithm completes in [Ny + N> steps, with each step requiring one copy
and one comparison operation. The problem with this algorithm is the storage
requirements implied by the presence of the destination array. This means that
the use of this algorithm as part of a parallel sorting algorithm would restrict
the number of elements that can be sorted to the number that can fit in half
the available memory of the machine. The question then arises as to whether
an algorithm can be developed that does not require this destination array.

In order to achieve this, it is clear that the algorithm must re-use the space
that is freed by moving elements from the two source lists. We now describe how
this can be done. The algorithm has several parts, each of which is described
separately.

2.4.1 The Find-Exact Algorithm

When a processor takes part in a merge-exchange with another processor, it will
need to be able to access the other processors elements as well as its own. The

1This would not be possible if we used Batcher’s bitonic algorithm instead of his merge-
exchange algorithm for the cleanup phase. The bitonic algorithm is not a unidirectional
algorithm, it requires elements to be moved away from their final destination at some stages.

2The minimisation of the memory overhead becomes important when the internal parallel
sorting algorithm is later used as a subroutine for the external algorithm, where memory is
at a premium

procedure merge(list dest, list sourcel, list source2)
while (sourcel not empty) and (source2 not empty)
if (top_of_sourcel < top_of_source_2)
put top_of_sourcel into dest
else
put top_of_source2 into dest
endif
endwhile
while (sourcel not empty)
put top_of_sourcel into dest
endwhile
while (source2 not empty)
put top_of_source2 into dest
endwhile
end

Figure 1: Pseudo-code for a simple merge

simplest method for doing this is for each processor to receive a copy of all of
the other processors elements before the merge begins.

A much better approach is to first determine exactly how many elements
from each processor will be required to complete the merge, and to transfer
only those elements. This reduces the communications cost by minimising the
number of elements transferred, and at the same time reduces the memory
overhead of the merge.

The find-exact algorithm allows each processor to determine exactly how
many elements are required from another processor in order to produce the
correct number of elements in a merged list.

Say we have two processors, called processor 1 and processor 2, which each
have N elements.®> We want to find which of these 2N elements will need to
end up in the first cell and which in the second.

If we label the two lists of elements E; ; and E,; then when a comparison
is made between element F; 4_1 and E5 ny_ 4 then the result of the comparison
determines whether processor 1 will require more or less than A of its own
elements in the merge. If Ey 4_; is greater than E» y_a then the maximum
number of elements that could be required to be kept by processor 1 is A — 1,
otherwise the minimum number of elements that could be required to be kept
by processor 1 is A.

The proof that this is correct relies on counting the number of elements that

3 A generalisation to the case where the number of elements in each cell is not the same is
given in [11]

could be less than Fy a_q. If By _4_ is greater than Ey ny_ 4 then we know that
there are at least N — A + 1 elements in processor 2 that are less than Fy 4_;.
If these are combined with the A — 1 elements in processor 1 that are less than
Ei,4—1, then we have at least N elements less than Ey 4—;. This means that
the number of elements that must be kept by processor 1 must be at most A—1.

A similar argument can be used to show that if Fy 4—1 < E» ny—4 then the
number of elements to be kept by processor 1 must be at least A. Combin-
ing these two results leads to an algorithm that can find the exact number of
elements required in at most log IV steps by successively halving the range of
possible values for the number of elements required to be kept by processor 1.

Once this result is determined it is a simple matter to derive from this the
number of elements that must be sent from processor 1 to processor 2 and from
processor 2 to processor 1.

On a machine with a high message latency, this algorithm could be costly, as
a relatively large number (ie. up to logN) of small messages are transferred. The
cost of the algorithm can be reduced, but with a penalty of increased message
size and algorithm complexity. To do this the processors must exchange more
than a single element at each step, sending a tree of elements with each leaf
of the tree corresponding to a result of the next several possible comparison
operations. This method has not been implemented as the practical cost of the
find-exact algorithm was found to be very small on the target machine.

We assume for the remainder of the discussion on the merge-exchange algo-
rithm that after the find exact algorithm has completed it has been determined
that processor 1 must retain L elements and must transfer N — L elements from
processor 2.

2.4.2 Unbalanced Merging

Before considering the algorithm that has been devised for minimum memory
merging, it is worth considering a special case where the result of the find-exact
algorithm determines that the number of elements to be kept on processor 1 is
much larger than the number of elements to be transferred from processor 2.

In this case the task which processor 1 must undertake is to merge two lists
of very different sizes. There is a very efficient algorithm for this special case.

Suppose that L is much greater than N — L. This may occur if the data is
almost sorted, for example, near the end of the cleanup phase.* We proceed as
follows.

First we determine, for each of the N — L elements that have been transferred
from 1, where it belongs in the list of length L. This can be done with at most
(N — L)log L comparisons using a method similar to the find-exact algorithm.

4Experiments have shown that this is a very common occurrence, and the implementation
of this as a special case improves the overall performance of the parallel sorting algorithm
significantly

As N — L is small, this number of comparisons is small, and the results take
only O(N — L) storage.

Once this is done we can copy all the elements in list 2 to a temporary storage
area and begin the process of slotting elements from list 1 and list 2 into their
proper destinations. This takes at most IV element copies, but in practice it
often takes only about 2(IN — L) copies. This is explained by the fact that when
only a small number of elements are transferred between processors there is often
only a small overlap between the ranges of elements in the two processors, and
only the elements in the overlap region have to be moved. Thus the unbalanced
merge performs very quickly in practice, and the overall performance of the
sorting procedure is significantly better than it would be if we did not take
advantage of this special case.

2.4.3 Blockwise Merging

The blockwise merge is a solution to the problem of merging two sorted lists of
elements into one, while using only a small amount of additional storage. The
first phase in the operation is to break the two lists into blocks of an equal size
B. The exact size of B is unimportant for the functioning of the algorithm and
only makes a difference to the efficiency and memory usage of the algorithm.
We assume that B is O(v/N), which is small relative to the memory available on
each processor. To simplify the exposition we also assume, for the time being,
that L and N — L are multiples of B.

The merge takes place by merging from the two blocked lists of elements
into a destination list of blocks. The destination list is initially primed with
two empty blocks which comprise a temporary storage area. As each block in
the destination list becomes full the algorithm moves on to a new, empty block,
choosing the next one in the destination list. As each block in either of the two
source lists becomes empty they are added to the destination list.

As the merge proceeds there are always exactly 2B free spaces in the three
lists. This means that there must always be at least one free block for the
algorithm to have on the destination list, whenever a new destination block is
required. Thus the elements are merged completely with them ending up in a
blocked list format controlled by the destination list.

The algorithm actually takes no more steps than the simple merge outlined
earlier. Each element moves only once. The drawback, however, is that the
algorithm results in the elements ending up in a blocked list structure rather
than in a simple linear array.

The simplest method for resolving this problem is to go through a re-
arrangement phase of the blocks to put them back in the standard form. This is
what has been done in the implementation of our parallel sorting algorithm. It
would be possible, however, to modify the whole algorithm so that all references
to elements are performed with the elements in this block list format. At this
stage the gain from doing this has not warranted the additional complexity, but

10

procedure primary_merge(integer base, integer num)
if num = 1 return
for all i in [0..num/2)

merge_exchange (base+i, base+i+(num+1)/2)
primary_merge (base+num/2, (num+1)/2)
primary_merge (base, num - (num+1)/2)
end

Figure 2: Pseudo-code for primary merge

if the sorting algorithm is to attain its true potential then this would become
necessary.

As mentioned earlier, it was assumed that L and N — L were both multiples
of B. In general this is not the case. If L is not a multiple of B then this
introduces the problem that the initial breakdown of list 2 into blocks of size
B will not produce blocks that are aligned on multiples of B relative to the
first element in list 1. To overcome this problem we must make a copy of the
L mod B elements on the tail of list 1 and use this copy as a final source block.
Then we must offset the blocks when transferring them from source list 2 to the
destination list so that they end up aligned on the proper boundaries. Finally we
must increase the amount of temporary storage to 3B and prime the destination
list with three blocks to account for the fact that we cannot use the partial block
from the tail of list 1 as a destination block.

Consideration must finally be given to the fact that infinity padding may
result in a gap between the elements in list 1 and list 2. This can come about
if a processor is keeping the larger elements and needs to send more elements
than it receives. Handling of this gap turns out to be a trivial extension of the
method for handling the fact that L may not be a multiple of B. We just add an
additional offset to the destination blocks equal to the gap size and the problem
is solved.

2.5 Primary merge

The aim of the primary merge phase of the algorithm is to almost sort the
data in minimum time. For this purpose an algorithm with a very high parallel
efficiency was chosen to control merge-exchange operations between the nodes.
This led to significant performance improvements over the use of an algorithm
with lower parallel efficiency that is guaranteed to completely sort the data (for
example, Batcher’s algorithm as used in the cleanup phase).

The pattern of merge-exchange operations in the primary merge consists of
merge-exchange operations along the edges of a hyper-cube. The pseudo-code
for the algorithm is given in Figure 2. When the algorithm is called the base is

11

P
o~
e
~
P
o~
< < < <
~ ~ ~ ~

Figure 3: The parallelisation of the primary merge for P = 8

initially set to the index of the smallest node in the system and num is set to
the number of nodes, P.

Note that the algorithm is only a true hyper-cube algorithm for when P is
a power of 2. In other cases the algorithm can be thought of as a incomplete
hyper-cube, and will lead to less parallel efficiency than can be achieved with a
power of 2.

This algorithm completes in log P steps per node, with each step consisting
of a merge-exchange operation between two processors as described above. If
P is not a power of 2 then a single node may be left idle at each step of the
algorithm, with the same node never being left idle twice in a row.

If P is a power of 2 and the initial distribution of the elements is random, then
at each step of the algorithm each node has about the same amount of work to
perform as the other nodes. In other words, the load balance between the nodes
is very good. The symmetry is only broken due to an unusual distribution of the
original data, or if P is not a power of 2. In both these cases load imbalances
may occur.

Figure3 shows the parallelisation of the primary merge for P = 8. The figure
is layed out with time on the vertical axis. On the horizontal axis are evenly
spaced points for each processor. An arrow going from processor 4 to processor
0 means that a merge exchange takes place between those two processors with
the smaller elements ending up in processor 0.

The dashed line separates stages of the sort which can be completed com-
pletely in parallel. Thus the primary merge for P = 8 takes 3 parallel steps to
complete. In fact, this algorithm will always take [log, P] parallel steps.

12

2.6 Cleanup

The cleanup phase of the algorithm is similar to the primary merge phase, but it
must be guaranteed to complete the sorting process. The method that has been
chosen to achieve this is Batcher’s merge-exchange algorithm. This algorithm
has some useful properties which make it ideal for a cleanup operation.

The pseudo-code for Batcher’s merge-exchange algorithm is given in [6]. The
algorithm defines a pattern of comparison-exchange operations which will sort
a list of elements of any length. The way the algorithm is normally described,
the comparison-exchange operation operates on two elements and exchanges the
elements if the first element is greater than the second. In the application of
the algorithm to the cleanup operation we generalise the notion of an element
to include all elements in a node. This means that the comparison-exchange
operation must make all elements in the first node greater than all elements in
the second. This is identical to the operation of the merge-exchange algorithm.
A proof that it is possible to make this generalisation while maintaining the
correctness of the algorithm is given in [7].

Batcher’s merge-exchange algorithm is ideal for the cleanup phase because
it is very fast for almost sorted data. This is a consequence of a unidirectional
merging property: the merge operations always operate in a direction so that
the lower numbered node receives the smaller elements. This is not the case for
some other fixed sorting networks, such as the bitonic algorithm [4]. Algorithms
that do not have the unidirectional merging property are a poor choice for the
cleanup phase as they tend to unsort the data (undoing the work done by the
primary merge phase), before sorting it. In practice the cleanup time is of
the order of 1 or 2 percent of the total sort time if Batcher’s merge-exchange
algorithm is used and the merge-exchange operation is implemented efficiently.

Figure4 shows the parallelisation of the cleanup operation for P = 8. It
clearly has a much lower parallel efficiency than the primary merge phase for
the same P, taking 6 parallel steps instead of 3, and leaving many processors
idle at some steps. Each step will, however, be much cheaper than the steps of
the primary merge as most of the work will have already been done.

13

= e—
-
D
- =
-

Figure 4: The parallelisation of the cleanup for P = 8

3 [External sorting

External sorting involves sorting more data than can fit in the combined memory
of all the processors on the machine. The sorting algorithm needs to make
extensive use of secondary memory (disk in our case). For this paper we will
characterise the external sorting using a parameter £ where k = [%] This
means that k equal to 1 implies internal sorting (as the data can fit in memory)
and any value of k greater than 1 implies external sorting.

3.1 Lower Limits on I/0

Lower limits on the computational requirements for parallel external sorting are
the same as those for internal sorting. It is, however, instructive to look at the
lower limits on I/O operations required for external sorting as quite clearly the
number of I/O operations required will impact significantly on the performance
of the algorithm.

If we assume that we have a I/O device which supports read/write operations
in a similar fashion to todays file systems, then we can argue for at least 2 read
operations on each element and two write operations on each element for large
values of k. The argument to support this assertion is not a strict lower bound,
but is based on practical arguments. The argument also relies on not having an
insert operation on files.

The first read operation would be needed to completely characterise the dis-
tribution of the elements. Say we were to read only N — 1 elements and attempt
to place a single element into its correct position in the final sorted ordering,

14

then the unknown value of the Nth element would prevent this placement with
any certainty. This means we cannot place any elements into sorted order (with
any certainty) until we have read all elements.

The first write operation is required to store the characterisation of the
distribution of the elements. As argued above we need this characterisation of
the distribution before we can write any elements in their final position. For
uncompressible data we will require storage of the order of N to hold a precise
characterisation of the input distribution. This must be placed in secondary
storage as N > M. °

The second read operation is required to load elements before the final write
and the second write operation is required to write the elements into their final
positions.

The algorithm presented below comes close to this limit on average for prac-
tical values of k, M and N.

3.2 Overview of the algorithm

The external sorting algorithm works by mapping the file onto a 2 dimensional
k x k grid in a snake like fashion. The columns and rows of the grid are then al-
ternatively sorted using the internal parallel sorting algorithm described above.
It can be demonstrated that the upper limit on the number of column and row
sorts required is [log k] + 1[13].

This basic algorithm is augmented with a number of optimisations which
greatly improve the efficiency of the algorithm in the average case. In particular
the grid squares are further divided into slices which contain enough elements to
fill one processor. The top and bottom element in each slice is kept in memory
allowing the efficient detection of slices for which all elements are in their correct
final position. In practice this means that most slices are completely sorted
after just one column and row sort, and they can be ignored in the following
operations.

The algorithm also uses a dynamic allocation of processors to slices, allowing
for an even distribution of work to processors as the number of unfinished slices
decreases.

The proof that the algorithm does indeed sort and the upper limit on the
number of column and row sorts comes from the shear-sort algorithm[13].

3.3 Partitioning

The external sorting algorithm starts off by partitioning the file to be sorted
into a two dimensional grid of size k x k. Each grid square is further subdivided

5Strictly we would only require log N! bits of storage for this distribution, but in practice
this limits us to approximately N as computing permutations would be impractical for large
N

15

(0,0) (0,0)[(01) | (0,1)|(0,2) | (0,2

10 | 11 8 9 6 7
(1,0 (1L09((1D | (LY (12 (1,2

12 | 13| 14 | 15| 16 | 17
20 (20 (21| (21|22 (22

Figure 5: Partitioning with k =3 and P =6

into a number of slices, so that the number of elements in a slice does not exceed
the number that can be held in one processors memory.

A example of this partitioning is shown in Figure 5 for k = 3 and P = 6. Each
slice in the figure is labeled with two sets of coordinates. One is its slice number
and the other is its (row,column) coordinates. The slice number uniquely defines
the slice whereas the (row,column) coordinates are shared between all slices in
a grid square.

The snake like ordering of the slice numbers on the grid squares is essential to
the sorting process. Note that in the diagram the slices are labeled in snake-like
fashion between the grid squares but are labeled left-right within a grid square.
The ordering within a grid square is not essential to the sorting process but is
for convenience and code simplicity.

One difficulty in the partitioning is achieving some particular restrictions for
on the numbers of slices, elements, processors and grid squares. The restrictions
are:

e The number of slices in a row or column must be less than or equal to the
number of processors P

e The number of elements in a slice must be less than the amount of available
memory in a processor M ©

8Here and elsewhere in this paper we measure memory in units of elements, so one memory
unit is assumed to hold one element

16

These restrictions arise from the need to load all of a slice into a single
processor and the need to be able to load a complete row or column into the
total internal memory. To achieve these requirements a iterative procedure is
used which first estimates k and assigns slices then increases k if the restrictions
are not met.

The file itself is mapped onto the slices in slice order. This means that each
slice represents a particular static region of the file. Whenever a slice is loaded
or saved the offset into the file is calculated from the slice number and the block
of elements at that offset is loaded or saved to a single processors memory.

Note that the mapping of slices to file position is static, but the mapping of
slices to processors is dynamic. This is discussed further in section 3.6.

3.4 Column and row sorting

The heart of the external sorting algorithm is the alternate column and row
sorting. To sort a row or column all slices with the required row or column
number are loaded into memory, with one slice per processor, then the internal
sorting algorithm described previously is used to sort the row or column into
slice order.

The algorithm cycles through all columns on the grid, sorting each column
in turn, then cycles through each row in a similar fashion. This continues until
the sort is complete. The detection of completion is discussed below.

The only change to the internal sorting algorithm previously presented is to
eliminate the local sorting phase except the first time a slice is used. Once a
slice has taken part in one row or column sort its elements will be internally
sorted and thus will not need to be sorted in later passes.

3.5 Completion

An important part of the algorithm is the detection of completion of the sort.
Although it would be possible to use the known properties of shear-sort to
guarantee completion by just running the algorithm for [logk + 17 passes, it is
possible to improve the average case enormously by looking for early completion.

Early completion detection is performed on a slice by slice basis, rather than
on the whole grid. Completion of the overall sorting algorithm is then defined
to occur when all slices have completed.

The completion of a slice is detected by first augmenting each slice number
with a copy of the highest and lowest element in the slice. The last processor
to write the slice holds these elements.

At the end of each set of column or row sorts these sentinel elements are then
gathered in one processor using a simple tree based gathering algorithm. This
processor then check to see if the following two conditions are true to determine
if the slice has completed

17

o the smallest element in the slice is larger than or equal to the largest
element in all preceding slices.

o the largest element in each slice is smaller than or equal to the smallest
element in each of the following slices

If these two conditions are true then all elements in the slice must be in their
correct final positions. In this case the elements need never be read or written
again and the slice is marked as finished. When all slices are marked as finished
the sort is complete. 7

3.6 Processor allocation

As slices are marked complete the number of slices in a row or column will
drop below the number of processors P. This means that if a strictly sequential
sorting of the rows or columns was made then processors would be left idle in
rows or columns which have less than P slices remaining.

To take advantage of these additional processors the allocation of slices to
processors is made dynamically. Thus while one row is being sorted additional
processors can begin the task of sorting the next row. Even if not enough
additional processors are available to sort the next row a significant saving
can be made because the data for the slices in the next row can be loaded,
overlapping I/O with computation.

This dynamical allocation of processors can be done without additional com-
munication costs because the result of the slice completion code is made avail-
able to all processors through a broadcast from one cell. This means that all
processors know what slices are not completed and can separately calculate the
allocation of processors to slices.

3.7 Large k

The algorithm described above has a limit of £ = P. Above this point the
allocation of slices to processors becomes much trickier. The simplest way of
addressing this problem is to allocate multiple grid squares to a processor. A
more complex alternative would be to sort recursively, so that rows and columns
are further subdivided into sections that can be handled by the available pro-
cessors and memory.

A further problem that comes with very large values of & is that the worst
case of [logk + 1] passes becomes a more significant burden. To overcome this
problem alternative grid sorting algorithms to shear-sort may be used which
work well for much larger values of k. For example, reverse-sort[14] has a worst

"The determination of the two conditions can be accomplished in linear time by first
calculating the cumulative largest and cumulative smallest elements for each slice.

18

case of [loglog k] for large k. For smaller k, however, it has no advantage over
shear-sort.

It is difficult to properly investigate these large k parameter ranges as avail-
able hardware (disk sizes) limits the available range of k to much less than P
for current super-computer configurations. Values of k larger than P were not
attempted in this paper.

3.8 Other partitionings

It may not be obvious from the above why a 2 dimensional partitioning was cho-
sen. Other partitionings were considered as they lacked essential requirements
or were slower.

In particular many of the obvious one-dimensional sorting algorithms would
require that either far fewer or far more than 1/k of the elements be in memory
at any one time. To have more than 1/k in memory would be impossible, and
to have fewer would be inefficient as the obviously valuable resource of memory
would be wasted.

Higher dimensional partitionings were also rejected after consideration. One
that particularly appealed was a k dimensional hyper-cube, but it was simple to
prove that its average case would be equal to the worst case of the 2 dimensional
partitioning. It could not take advantage of the shortcuts which are so easy to
produce in the 2 dimensional case.

This is not to say that there isn’t a better partitioning than the 2 dimensional
one proposed here. There may well be, but we haven’t come up with one.

It should also be noted that if you were to choose k such that k¥ = v N and
also assume that the serial sorting algorithm scales as N log N then one pass of
the algorithm would take N log N time. The problem, however, is that k = VN
would provide a much too fine grained algorithm, which would suffer badly from
overheads and latencies. The use of kK = N/M is the best that can be done in
terms of the granularity of the algorithm.

19

4 Performance

The “proof of the pudding” is the speed. It is quite easy to create a parallel
sorting algorithm that is asymptotically optimal, but it is much harder to create
one which is fast over realistic data sizes.

In this section the performance of the above algorithms is examined for a
range of data sizes and machine configurations.

4.1 The test environment

The principle test environment was a 128 processor Fujitsu AP1000 [5]. This
machine contains 128 Sparc scalar processors connected on an 8 by 16 torus.
Inter-processor communication is performed by hardware, using wormhole rout-
ing. Each processor has 16Mb of local memory and all are connected to a host
workstation via a relatively slow connection.

A 0.5GB SCSI disk is attached to 32 of the processors. Each disk is capable
of a maximum transfer rate of 2MB/sec under ideal conditions. More typi-
cal throughput for large transfers is 1.5MB/sec when the filesystem overheads
are taken into account. The filesystem used on the AP1000 was the HiDIOS
filesystem[15]. This gives a single filesystem view across all the processors rather
than each processor seeing only its own files.

The AP1000 was programmed in C, using the MPI libraries for communica-
tions. The code should be portable to other MPI implementations. The GNU
C compiler version 2.6.3 was used.

The serial sorting routines were also tested on a Intel Pentium 90 PC running
Linux.

4.2 Serial sorting

As was pointed out earlier the algorithm used for the serial sorting components
of the parallel sorting algorithm can have a very large impact on the overall
performance. It is important to choose a serial sorting algorithm which is well
suited to the architecture of the target machine and to the distribution proper-
ties of the data.

Figure 6 shows the speed in elements per second of sorting 64-bit integers
on the Intel CPU as the number of elements to be sorted is varied. Two sorting
algorithms are shown, the top one is the American flag sort, modified for inplace
integer sorting. The bottom one is the GNU quicksort routine with inlined
comparison function.

The graph clearly shows the speed advantage of the forward radix sorting
used by the American flag sort. A speed difference of up to a factor or 5 is
shown. The American flag sort also varies in speed much more across the range
tested. It is quite feasible that the quicksort will come close to the American

20

600000

500000 American Flag sort B

400000 B
he)
j=
o
o
(7]
12}
& 300000 - E
[2]
€
Q
£
ko)
w

200000 B

. .
e Quicksort
100000 .
e e .
0 Il Il
1000 10000 100000 1e+06

Number of elements

Figure 6: Serial sorting 64 bit integers on a Pentium 90

flag sort for data sizes beyond what was tested here.®

Figure 7 shows the same graph for a AP1000 processor. In this case the
speed difference between the American flag sort and the quicksort is not nearly
as large. This reflects the different processor architecture of the Sparcl+ and
clearly demonstrates the importance of selecting a sorting algorithm that is
appropriate for the target architecture.’

Figure 8 shows the speed of sorting 128 bit elements on the Intel CPU. It is
interesting to note that the speed has dropped by a factor much less than 2. If
the sorting algorithm was “ideal” then a factor of 2 decrease would be expected
as data movement costs would dominate. This suggests that there is room for
further optimisation of these routines to reduce overheads.

Figure 9 shows the same graph for a AP1000 processor. Again the speed
has dropped by a factor much less than 2, and the difference between the two
algorithms is not nearly as large as it is for the Intel CPU.

For the remainder of the testing in this paper the American flag sort is used
for serial sorting components.

8The amount of memory available on the machine severely limits the range of data sizes
that can be tested

9Tt should be noted that the Sparc14+ CPUs in the AP1000 are quite old technology. More
recent machines in the same line use SuperSparc CPUs which have much better performance

21

Elements per second

Elements per second

120000

1e+06

100000 X 9
American flag sort
80000 B
60000 k. _ R
- —_
e
40000 T . 7
T Quicksort
e
S
e
20000 9
0 L !
1000 10000 100000
Number of elements
Figure 7: Serial sorting 64 bit integers on a AP1000 processor
600000
500000 | 9
400000 9
American Flag sort
300000 9
200000 t__ 1
e Quicksort
100000 e b
e —
0 L I
1000 10000 100000

Number of elements

Figure 8: Serial sorting 128 bit integers on a Pentium 90

22

1le+06

120000

100000 1

80000 1

American flag sort

60000 1

Elements per second

40000 - e .

*——\\ Quicksort

20000 | o+ E

0 Il
1000 10000 100000 1e+06
Number of elements

Figure 9: Serial sorting 128 bit integers on a AP1000 processor

4.3 Internal parallel sorting

Figure 10 shows the speed of the internal sorting algorithm as the data size is
varied. The two graphs show the speed for 64 bit and 128 bit integers.

It is difficult to extract from these results a accurate speedup (parallel effi-
ciency) figure. The problem is that the serial sorting algorithm results shown
in Figure 7 and Figure 9 have no obviously good extrapolation. If, however, we
use a very simple extrapolation then we might estimate the serial sorting rate
for large data sizes would be 50000 elements per second for 64 bit integers and
40000 elements per second for 128 bit integers.

Given these estimates we get an approximate speedup of 50 and 38 respec-
tively. This is much less than the ideal 128 times speedup for this machine.
The reason for this less than ideal speedup comes from the extremely optimised
nature of the american flag sort. In a previous paper[11] a much higher speedup
was found for the same algorithm when using the GNU quicksort algorithm for
serial sorting.

A breakdown by time of the internal sorting algorithm is shown in Figure 11
for 64 bit integers and Figure 12 for 128 bit integers. These graphs show that
the time is dominated by the primary merge phase of the algorithm.

The cleanup phase becomes insignificant as the data size rises, showing that
the primary merge is doing its job of almost sorting the data.

23

Elements per second

Time (seconds)

3e+06

2.5e+06 |- B
64 bit integers
2e+06 ,
4o I
1.5+06 - B . |
R S -+
128 bit integers
1le+06 - B
500000 | B
0 Il
1e+06 1le+07 1e+08
Number of elements
Figure 10: Internal sorting 64 and 128 bit integers
100

local -—

primary —+--

cleanup -8--

total -x
0.001 L L
100000 1e+06 le+07 1le+08

Number of elements

Figure 11: Internal sorting breakdown for 64 bit integers

24

100
local <—
primary —+-
cleanup -8--
total -
e X
e

Time (seconds)
=
T

01 |

0.01
100000 1e+06 1le+07 1le+08
Number of elements

Figure 12: Internal sorting breakdown for 128 bit integers

4.4 External sorting

The problem with measuring the speed of external sorting is finding enough disk
space. The AP1000 has 2GB of internal memory, which means you need to sort
considerably more than 2GB of data to reach reasonable values of k. Unfortu-
nately only 10GB (of a possible 16GB) is allocated to the HiDIOS filesystem,
so a k above 5 is not really possible. In practice a k of above 2 is difficult to
achieve as the disks are invariably quite full.

To overcome this problem the following experiments limit the amount of ram
available to the program to much less than the full 2GB. This allows a much
wider range of external sorting parameters to be explored.

Figure 13 shows the speed in elements per second of a external sort where
the available memory per processor has been fixed at 1IMB (excluding operating
system overheads). This means that k increases with the number of elements to
be sorted. The left most point on the graph is in fact an internal sort as there
is sufficient memory available for ¥ = 1, meaning the data can fit in internal
memory. This graph includes the I/O overhead of loading and saving the data,
which is why the internal point is considerably slower than the previous internal
results.

The alternate high-low structure of the graph is due to the number of ele-
ments not being close to a multiple of k2 for the lower results. This means that
many grid squares on the k x k grid are a long way from being completely filled,

25

1.2e+06

1le+06 - B

800000 - 1

600000 [~ 1

Elements per second

400000 [1

200000 - 1

0 Il Il Il Il
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08
Elements

Figure 13: External sorting of 64 bit integers with fixed memory

which leads to load imbalance.

Figure 14 shows the speed of sorting a fixed set of 50 million 64 bit integers
while the amount of available memory on each processor is changed. The graph
shows clearly the degradation of the speed of the sort for small memory sizes '°

This degradation arises from several causes. One cause is the inefficiency of
disk reads/writes for small I/O sizes. A more significant cause is the overheads
for each of the internal parallel sorts, with the number of internal sorts required
increasing as k (which increases as the inverse of the available memory).

Figure 15 gives a breakdown of the costs associated with the previous figure.
It demonstrates that the overheads of the sorting process increase greatly for
small memory sizes, while the serial sorting component stays roughly static.

4.4.1 IO Efficiency

It is interesting to see how close the algorithm comes to the practical limit of 2
reads and writes per element for external sorting. The worst case is 2(log k+ 1)
reads and writes per element but the early completion detection in the algorithm
allows much smaller values to be reached.

Figure 16 shows the number of reads and writes required per element for

107t should be noted that the smaller values on the graph do represent extremely small
amounts of available memory. 50kB is about 0.3% of the memory normally available to each
processor!

26

le+06

800000 - 1

600000 - 1

400000 [1

Elements per second

200000 B

0 Il Il
10 100 1000 10000
Memory per processor (kB)

Figure 14: External sorting of 50 million 64 bit integers with varying amounts
of available memory

100 . R et . L . R B

10 -—

X Cleanup —+--

: Local sort -5--

Primary -x
80 Bl
60 Bl
40 Bl
20 Bl
10 10000

Figure 15: Breakdown of cost of external sorting as amount of available memory
varies

27

2.25

22 | 1

215 4

21 B

Reads and Writes per element

2.05 B

Figure 16: Number of reads and writes per element for a range of k values

random 64 bit integers. Note the narrow y scale. The graph shows that the
algorithm achieves close to the ideal 2 reads and writes per element over a wide
range of k, with a slight increase for larger k. This demonstrates that the early
completion detection part of the algorithm is functioning well.

4.4.2 Worst case

An important property of a sorting algorithm is the worst case performance.
Ideally the worst case is not much worse than the average case, but this is hard
to achieve.

For the internal sorting the worst case is achieved when the data has a
distribution which gives the worst case for the American flag sort. This means
the distribution must be such that all bytes are required to sort the data, so
that the early completion detection cannot be used. The worst histogram for
the American flag sort is one which covers a wide range of byte values, as it
uses an optimisation which relies on the byte values covering less than the full
range. This means the worst case is when each byte of the data is randomly 0
or 255 with equal probability.

A experiment with 10 million 64 bit elements and a k of 1 (internal sorting)
gave a slowdown for the worst case compared to random data of about a factor
of 2.

The worst case for the external sorting algorithm is when the data starts

28

out sorted by the column number that is assigned after the partitioning stage.
This will mean that the initial column sort will not achieve anything. The worst
case of log k+ 1 passes can then be achieved. Additionally the data distribution
required for the worst case of the internal sorting algorithm should be used.

A experiment with 10 million 64 bit elements and a k of 7 gave a slowdown
for the worst case compared to random data of about a factor of 4.

29

5 Conclusions

This paper has presented algorithms for internal and external parallel integer
sorting. The algorithms have a high parallel efficiency and are well suited to
massively parallel machines such as the AP1000.

The in-core sorting experiments demonstrated a sorting speed of over 2 mil-
lion elements per second for sorting more than 1 million 64 bit integers on a
128 processor AP1000. For 128 bit integers 1.5 million elements per second was
achieved for more than 50 million elements.

The secondary memory sorting experiments demonstrated a speed of 7 hun-
dred thousand elements per second for 64 bit integers with a limited amount
of memory available per processor. The strong dependence on the amount of
available memory was also demonstrated.

| Parameters | Millions of elements per second |
in core, 64 bit, 1M elements 2
in core, 128 bit, 50M elements 1.5
external, 64 bit, 50M elements 0.7

There is probably still considerable room for improvement in the detailed
implementation of the algorithms, in particular the reduction of overheads as-
sociated with each internal sort in the external sorting algorithm. A much finer
grained profiling will be needed to identify the bottlenecks.

6 Source code

The full source code (using C and MPI) is available from the authors. It should
be easily portable to other systems which support the MPI interface. It consists
of a bit under 3000 lines of code.

The main program in main.c is merely a convenient test harness. It can
be used to generate and sort data under a variety of conditions, controlled
by command line options. For a real application it is likely that the code in
par_sort.c would be used as the basis for a library routine.

6.1 Using the test program

The test program can generate and sort data under a wide variety of conditions.
On the AP1000 it would be used like this:

mpirun -nohost capsort [options] infile outfile

If the input and output files are the same then the file is sorted in place. If
two files are specified then the input file is first copied to the output file then
the data is again sorted in place in the output file.

30

There are a large number of options that can be applied. Here is a brief
summary:

-p causes the data to be printed to standard output before and after sorting.
This is useful for debugging.

-v causes the main program to verify the sort by calling gsort() within one
processor and comparing the result. This will only work if the data fits in
one processors memory and the input and output files are not the same
file.

-D causes the main program to delete the file after sorting. This is useful for
cleaning up after a test run.

-1 NUM causes the main program to loop, calling the sort routine NUM times.
At the end of each loop the parameters are changed. How they are changed
is currently controlled by code changes in the main loop. This is useful
for generating graphs.

-w causes the code to try to produce the worst case.

-g NUM causes the main program to generate NUM items of random data in
the input file.

-s NUM seeds the random number generator with NUM.

-m NUM sets the memory limit per processor to NUM kB.

More detailed information on running the program can be obtained by read-
ing the source code.

31

References

[1] M. Ajtai, J. Kolmos and E. Szermeredi, “Sorting in clogn parallel steps”,
Combinatorica 3, 1983, 1-19.

[2] S. G. AKl, Parallel Sorting Algorithms, Academic Press, Toronto, 1985.

[3] G.E.Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith and
M. Zagha, “A comparison of sorting algorithms for the Connection Machine
CM-2”, Proc. Symposium on Parallel Algorithms and Architectures, Hilton
Head, South Carolina, July 1991.

[4] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon
and D. W. Walker, Solving Problems on Concurrent Processors, Volume 1,
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[5] H. Ishihata, T. Horie, S. Inano, T. Shimizu and S. Kato, “CAP-II Ar-
chitecture”, Proceedings of the First Fujitsu-ANU CAP Workshop, Fujitsu
Research Laboratories, Kawasaki, Japan, November 1990.

[6] D. E. Knuth, The Art of Computer Programming, Volume 8: Sorting and
Searching (second edition), Addison-Wesley, Menlo Park, 1981, 112-113.

[7] ibid, solution to problem 5.3.4 (38).

[8] L. Natvig, “Logarithmic Time Cost Optimal Parallel Sorting is Not Yet
Fast in Practice!”, Proc Supercomputing 90, IEEE Press, 1990, 486-494.

[9] H. H. Reif and L. G. Valiant, “A logarithmic time sort for linear size net-
works”, J. ACM 34, 1987, 60-76.

[10] K. Thearling and S. Smith, “An Improved Supercomputing Sorting Bench-
mark”, Proc Supercomputing 92, IEEE Press, 1992, 14-19.

[11] A. Tridgell and R. P. Brent, An Implementation of a General-Purpose Par-
allel Sorting Algorithm, Report TR-CS-93-01, Computer Sciences Labora-
tory, Australian National University, February 1993, 24 pp.

[12] D. MclIlroy, P. Mcllroy and K. Bosti, Engineering radiz sort Computing
systems, vol 6, no 1, winter 1993

[13] Scherson, Sen and Shamir, Shear sort: A True Two Dimensional Sorting
Technique for VLSI Networks, Tech report, Dept of Electrical and Com-
puter Engineering, University of California, 1985

[14] C. P. Schnorr, An optimal Sorting Algorithm For Mesh Connected Com-
puters, Proc. ACM Synmposium on the Theory of Computation, 1986

[15] A. Tridgell and D. Walsh , The HiDIOS Filesystem, Proceedings of the
Fujitsu CAP Workshop, Imperial College, London, October 1995.

32

