Published in the Proceedings of ACSC’96, pp.

291--300 1

Concurrent Programming in T-Cham

Wanli Ma

Computer Sciences Laboratory

ANU, ACT 0200, Australia

ma@cslab.anu.edu.au

Abstract

style
T-Cham, is proposed. It is based on the paradigm
of the chemical abstract machine (Cham) and
transaction programming paradigm. Hierarchical
tuple spaces, where the “molecules” of the Cham
reside, are used to coordinate the concurrent
transactions, which could be written wn any
language, such as C, Pascal, or Fortran etc., even
T-Cham itself, as long as they satisfy their pre-
conditions and post-conditions. A transaction can

A coordination programming language,

begin its execution whenever its execution condition
1s met. T-Cham has an intuitive presentation and
yet a formal background. A T-Cham program can
be executed in a parallel, distributed, or sequential
manner based on the available resources.

Keywords concurrent programming, parallel
and distributed programming, coordination,
chemical abstract machine, transaction, tuple

space

1 Introduction

T-Cham (Transactions on CHemical Abstract
Machine) is a coordination style programming
language obtained by extending the chemical
abstract machine (Cham) [7] with transactions.
It is a successor of the programming language
Multran [22]. A T-Cham program is composed of
concurrent transactions, which have the properties
of ACID (Atomicity, Consistency, Isolation, and
Durability) [1], as fundamental actions and tuple
spaces, on which the actions take place, and can
be executed in a parallel, distributed, or sequential
manner based on the available resources, while the
execution mode is transparent to programmers.
The tuple spaces can be taken as chemical solutions
where the floating molecules reside and interact.
The elements of a tuple space, i.e., the molecules,
are called tuples. An action may happen whenever
its execution condition is satisfied. Tt will consume
certain tuples from a tuple space, perform its task,
and generate new tuples and inject them back into

Proceedings of the 19th Australasian Computer
Science Conference, Melbourne, Australia, Jan-
uary 31 February 2 1996.

Christopher W. Johnson

Department of Computer Science

ANU, ACT 0200, Australia

Chris.Johnson@cs.anu.edu.au

Richard P. Brent

Computer Sciences Laboratory

ANU, ACT 0200, Australia

rpb@cslab.anu.edu.au

the tuple space for future processing. The Cham
computational model resembles a succession of
chemical reactions in which the elements of a tuple
space are consumed and generated.

The T-Cham approach is inspired by the coor-
dination idea [15] of Linda and hence belongs to
the dichotomous paradigms. On the one hand, the
control part, which is responsible for coordinating
concurrence actions and communications, is based
on tuple spaces. Reaction rules are used to specify
when and which actions (transactions) can happen.
On the other hand, the “computational part” could
be written in any programming language, even T-
Cham itself; thus, transactions can be nested, or
are hierarchical. The execution of a T-Cham pro-
gram starts from a special transaction called root
— the main transaction of the program. It is the
only one which could be exempt from termination
(not really atomic). The transactions referred to by
the reaction rules in a transaction are called sub-
transactions of it. From the point of view of any
transaction, its sub-transactions are atomic oper-
ators. A T-Cham program is the specification of
its transactions. A transaction, which is written in
the language other than T-Cham and hence does
not spawn any sub-transactions in the sense of T-
Cham, is called a leaf transaction; otherwise, a
non-leaf transaction. A leaf transaction could be
a Fortran subroutine or subfunction, a C function,
or a Pascal procedure or function with the proper-
ties of ACID. A non-leaf transaction is composed
of (i) the specification of its tuple space, includ-
ing the types of tuples and the initial state, (ii)
reaction rules, and (iii) sub-transaction interfaces
— pre-conditions and post-conditions of its sub-
transactions.

There are quite a few high-level concurrent (par-
allel or distributed) programming languages and/or
paradigms, for example, Linda [2, 8], GAMMA [5]
and Cham [7], Unity [9], PVM [26], Occam [20] and
CSP [16], CCS [24], and Petri Nets [25]. As a new-
comer, T-Cham emphasizes simplicity, abstraction,
efficiency, and a sound theoretical background. The
chemical reaction model makes it easy to express
concurrent or parallel tasks in T-Cham; the hier-
archical transaction structure is good for program
abstraction and refinement; the explicit declaration

of tuple space will help the optimization of data
(tuples) and task distribution, and hence the effi-
cient execution of T-Cham programs; finally, reac-
tion rules, with their temporal logic interpretation,
make it easy for program verification. Although
we do not discuss the formal semantics of T-Cham
in this paper, we would like to point out that T-
Cham has a formal temporal logic background for
program verification [21, 23].

The rest of the paper is organised as follows: a
brief introduction of related work is given in Sec-
tion 2. The basic T-Cham notations are explained
in Section 3. Section 4 gives two examples, one for
computational and one for reactive programming,
of T-Cham programs, and Section 5 focuses on the
T-Cham implementation issues, mainly in C-Linda
on the AP1000 parallel computer. Section 6 consid-
ers the mappings of tuples (data) and hierarchical
tuple spaces, i.e., the advanced features of T-Cham.
We conclude in Section 7.

2 Related Work

T-Cham is an example multi-lingual
programming paradigm. By multi-lingual, we
mean more than one programming language or
paradigm symbiosis in one program. The key idea

of a

to glue them together is coordination. In addition
to Linda, Strand [14] (later PCN [13]) and GLU
[18] are also multi-lingual programming languages.
Strand uses a simplified Prolog programming
language as the coordinator; its computational
part, so-called foreign data and foreign code,
are written in C and/or Fortran. GLU is based
on an intensional programming language Lucid
to coordinate a group of C and/or Fortran
procedures.

The idea of using (nested) transactions for gen-
eral purpose programming, in contrast to the tra-
ditional roles of transactions in database systems,
is not new. Argus [19] is one such example.

Linda [2] is a well-known coordination parallel
programming paradigm based on a global tuple
space. There are four tuple space operators: in,
rd, out, and eval. The main idea of Linda is
uncoupling, including both space-wise uncoupling
and time-wise uncoupling. Linda itself is not a full-
fledged programming language but coordinates the
activities written in ordinary (sequential) computa-
tional languages. Taking C-Linda as an example,
the activities, or the chunks of computation, are
written in the C programming language. They
interact and communicate with each other on the
tuple space by the four Linda operators.

The elegant idea of coordination and uncoupling
becomes awkward when the four tuple space
operators reside in a sequential host language.
The sequential skeleton, i.e., the host language,
forces programmers to consider its sequential

control structures first instead of the concurrently
accessible tuple space. In addition, the syntax
structure of an existing host language also blurs
the globality of the tuple space. A better way to
realize the idea of coordination and uncoupling
is to view the tuple space operation as skeleton,
and the computational chunks as pieces of flesh,
which are fitted into the skeleton. In short,
rather than extending a sequential computational
programming language with a parallel tuple
space, we would like to attach the sequential
computational chunk to a concurrent accessible
tuple space.

A Cham (chemical abstract machine) [7] is
an abstract machine for concurrent computations
based on a chemical reaction metaphor, which
was first expressed in the GAMMA model [5]. Tt
consists of a multiset, which is a set except that
it may have multiple occurrences of its elements,
of molecules and a group of rewriting rules. The
molecules are algebraic terms built on a given
syntax, and the rewriting rules, known as reaction
rules, transform one state of the Cham to another
until no further reaction rule can be applied. A
state of Cham is a finite multiset of molecules. Tt
is also known as a solution, where the molecules
are floating and interact with each other according
to the reaction rules. This interaction changes
one solution to another. When no interaction
can happen any more, i.e., no reaction rule can
be applied, a stable solution — the result —
is arrived. Cham has no explicit termination
condition and the operations behind the chemical
reactions are also not specified. Its expressibility
is equivalent to that of CCS process calculi [24]. Tt
has been also used to specify a simple multiphase
compiler by P. Inverardi and A. L. Wolf [17].

Unity [9] is based on Dijkstra’s do structure
[11]. Tt retains the assignment statements of the im-
perative programming paradigm but abandons its
control parts. A Unity program consists of a group
of assignment statements, which are executed in-
finitely and fairly. A statement can assign different
values to different variables in one step. Unity
also develops an axiomatic proof system for pro-
gram verification. Tt is a fragment of propositional
temporal logic with the fundamental operators of
unless and ensure. New operators, such as stable,
invariant, and leadsto(—), can be defined by the
two operators. Although a fix point operator, F'P,
is suggested to decide the termination point of a
terminating program, the termination condition is
not easy to a programmer either. One of the major
contributions of Unity is separating the program-
ming notation from its formal specification symbols
(for program verification purposes), although there
are one-to-one relationships between them, so that
the verification is transparent to the programmers

who do not like mathematical reasonings, but the
correctness of the program can still be proved by
some other people who like the symbolic games.
T-Cham is deeply rooted in Linda, Cham, and
Unity. In particular, (i) T-Cham inherits the idea
of coordination and tuple space from Linda, (ii)
the chemical reaction metaphor comes from Cham,
which is used to control the process of a computa-
tion, and (iii) the separation of formal verification
from program presentation, while keeping one-to-
one correspondence between them as in Unity, will
benefit both program verification and development.

3 The T-Cham Programming Lan-
guage: Basic Notations

Every T-Cham transaction has its own tuple space,
which is created when the transaction becomes ac-
tive and revoked after the execution of the trans-
action, to store its tuples (molecules), where the
“chemical reactions” take place. The tuple space
to a T-Cham transaction is the run time environ-
ment to a function or a procedure in an impera-
tive programming language. Informally, a T-Cham
transaction (recall that a program is a collection
of transactions with a special one named root)
consists of a name and a body, i.e.,

transaction my_name
my_body
endtrans,

where my_name 1s the transaction name and
my_body is the transaction body, which is

composed of the following five sections’:

1. Tuples section declares all possible tuple
types which may appear in the tuple space.
We use a type system and syntax similar to
those of C programming language (without
pointer types) for tuple declarations. The
declaration only specifies possible tuple types.
How many of the declared tuples, when, and
where they enter the tuple space depend on a
particular execution, and cannot be predicted
in advance. Tuple names are valid to the
transaction and its sub-transactions. A tuple
in T-Cham is something like a struct in C
or a record in Pascal, but in T-Cham, the
keyword tuple is used instead, for example,

tuples
tuple { int A[100]; int gridsieved;
} num;
int token;
fifo char msg[256];

1From now on, a sub-transaction is called a transaction
for brevity if there is no confusion.

The keyword tuple can be omitted if the tuple
has only one field. A leading keyword of fifo,
filo, or random can be used to specify the
consumption order of the tuples. The default
value is random. The above declaration defines
three tuple names, num, token, and msg. num
has two fields; msgs are consumed in first-in-
first-out (fifo) order.

. Initialization section sets up the initial state

of a tuple space. The initialization could be
passive, assigning values to tuples, or active,
calling one or more leaf-transactions, where
there could be some input operations to get
data from an input device or a file, for exam-

ple,

initialization
[i:0..9]::token={i*2}; init_num();

The initialization of token is passive, while
the call to init_num(), which is a leaf-
transaction, to initialize tuple num is active.
“[i:0..9]::token={i*2}” means that for
every i from 0 to 9, token={i*2}, i.e., there
are ten tokens in the initial tuple space and
they are even numbers from 0 to 18. 1i is
called an index variable.

A third initialization method is the mapping
of tuples to the tuples in the tuple space of its
parent transaction or one of its child’s, possi-
bly under some required masks. See Section 6
for more details.

. Reaction rules section consists of a number

of reaction rules, beginning with the key word
reactionrules. The rules operate on the tu-
ple space of the transaction and coordinate its
computational chunks — sub-transactions. A
reaction rule takes the form of

Z1,%a, -+, Ly, leadsto y1,¥2, -, Ym
by T when f(z1,z9,---,2,),

where z1, ®9, -+, Tp, Y1, Y2, -, and y,, are
tuples whose types are declared in the tuples
section, 7" is the name of a transaction (known
as a sub-transaction to this transaction), and
f(z1,2a, -+, &) is a boolean expression. The
rule means whenever the tuples zq, x2, -,
and x, are all currently in the tuple space
and the function f(x1, 22, - x,) evaluates to
TRUE, (i) the tuples z;, z3, ---, and z, are
selected and consumed, (ii) the transaction T
is executed, and (iii) new tuples yi, ya, -
and y,, are generated and injected back into
the tuple space. From the point of view of the
transaction which contains the reaction rule,
these three actions are indivisible. Both by

and when qualifiers of a reaction rule can be
omitted if the transaction used is null and/or
the condition is trivially TRUE.

There may be some common tuples among 1,
X, ', Tny, Y1, Y2, +++, and Ym. This means
that more than one tuple of a certain type is
needed for the reaction or some selected tuples
are sent back to the tuple space (possibly with-
out any change), for example, “x,x leadsto
x,y” To distinguish different appearances of
tuples, in the when condition and the body of
sub-transaction T, the $ operator is used, e.g.,
“when (x$1==x$2-10)” Note that the num-
bers here are only syntactic markers and do
not imply any dynamic ordering. A curly-
brace on a tuple name means all tuples of this
type together, 1.e., selecting them all.

A transaction need not consume all the tuples
on the left-hand-side of its reaction rule. We
use operator “!” to denote that the tuple is
just read by the rule but not consumed, i.e., it
is still available in the tuple space. Similarly, a
tuple which may conditionally be generated by
a transaction is preceded by a “?” operator,
e.g., “Ix,y leadsto 7z7

4. Termination conditions give conditions such
that whenever any of them is satisfied, the
corresponding final action will be taken and
the transaction then terminates:

termination
on (|token|==0) do output();

For an interactive program, which does not
terminate, there is no termination section in
the root transaction. The test of termination
conditions, if they exist, takes priority over
that of reaction rule conditions.

5. Sub-transactions specify the pre-conditions
and the post-conditions of the sub-
transactions referred to by the reaction
rules defined in the reactionrules section,
for example,

subtransactions
prod: |token|>0//|token| ’=|token|-1;

where prod is the name of the transaction
referred to by a reaction rule, “|token|>0”
is the pre-condition of the transaction, and
“|token|’=|token|-1" the post-condition.
The ’ operator means the values after the
execution of the transaction.

The execution of a T-Cham transaction pro-
ceeds as follows: unless a termination condition is
satisfied, all of its reaction rules are fairly tested.

Whenever the reaction condition of a reaction rule
holds, i.e., the tuples needed by the reaction rule
are currently in the tuple space and the boolean
function of its when qualifier, if it exists, evaluates
to TRUE, the corresponding sub-transaction is in-
voked. By fairness, we mean that any reaction will
eventually happen if its reaction condition is con-
tinuously satisfied. It is a weak fairness condition.
The test of a reaction condition is atomic, which
means it will lock all tuples needed before a real
test begins. If locking fails, the test is suspended
and retried later. Of course, a T-Cham implemen-
tation could use different approaches for the test
to achieve a better performance as long as they
preserve the semantics.

If a sub-transaction to be executed is written
in T-Cham, meaning that a new tuple space is
needed to support the execution, a new tuple space
is established according to the specification of the
sub-transaction. The relations on the tuples of the
two level tuple spaces are also established. All
the actions of the sub-transaction operate on the
new tuple place, which will be revoked after the
execution. Section 6 gives the details of a sub-
transaction’s execution. From the point of view
of a transaction, any of its sub-transactions is an
“operator” and is executed in exactly “one step?”

The number of operators in a transaction
reflects its granularity. Different granularities,
from fine-grain to coarse-grain, can be obtained
by adjusting the granularity of each transaction;
in addition, with the transaction concept, the
fault-tolerance property of T-Cham programs is
straightforward.

4 Programming in T-Cham

Two examples in this section cover both computa-
tional and wnteractive programs. The former gets
a result from input data and then terminates, e.g.,
the nth The latter does not
terminate: different parts of a program interact
with each other in response to stimuli from the
outside world, e.g., Sleeping Barber.

Fibonacci Number.

Fibonacci numbers are not a commonly used
example for concurrent programming, especially in
parallel situation, for the definition of the nth Fi-
bonacci number,

ifn>2
ifn=1o0rn=2,

fln=1)+f(n-2)

sy ={ 1

suggests a very limited degree of concurrency. We
choose the example because (i) an alternative defi-
nition of the formula exposes a high degree of con-
currency, (ii) it is useful in the explanation of im-
plementation techniques, and (iii) it is neither very
complex nor trivial and is short.

Example 1 (Fibonacci Number) The nth and
the (n —])th Fibonacci numbers can be defined by
the (n— l)th and the (n—?)th numbers, and so on:

(i) = (03) (%z3) =
- (1a) ()

11 . 1
1 0) and £ib be(o),then

the nth and (n —
the matriz product of (n — 1) coefs and one £ib.

The T-Cham program is in Figure 1. [|

—_

Let coef be <

])th Fibonacci numbers will be

transaction root
tuples
tuple {int a,b,c,d;} coef;
tuple {int x,y;} fib;
initialization
init_coef(); fib={{1,1}};
reactionrules
coef,coef leadsto coef by mc;
coef,fib leadsto fib by mf;
termination
on (|coef|==0) do output_fib();
subtransactions
init_coef:p0//q0; mc:pl//ql; mf:p2//q2;
endtrans

transaction init_coef
#language C
#tuple {int a, b, c, d} coef;
void init_coef()
{int i,n;
scanf ("%d", &n);
for (i=0; i++; i<n)
coef.a=coef.b=coef.c=1, coef.d=0;
}

endtrans

transaction mf

#language C

#tuple {int a, b,

#tuple {int x, y}

void mf()

{fib$2.x=coef.a*fib$1.x,coef.b*fib$l.y;
fib$2.y=coef.c*fib$1l.x,coef.d*fib$1l.y;
}

endtrans

¢, d} coef;
fib;

-- mc is omitted to save space

Figure 1:
Number

The T-Cham Program of Fibonacci

The tuple coef and tuple £ib correspond to the
two matrices. At first, i.e., the initial tuple space
state of transaction root, there are (n — 1) copies
of tuple coefs and one fib. The reaction rules
of root say that two copy of coefs can be used
to produce one coef by the transaction mc, which
calculates the product of the two coef matrices,
and one coef and one fib can be made to one new
£ib, the product of the two tuples (matrices) by
mf. Whenever there is no coef left, the program
can terminate and output the result — the nth and

the (n — 1)th Fibonacci numbers, contained in the
remaining £ib tuple.

The
are written in the C programming language
(“#language C” in the transactions). The former
reads the number n from keyboard and then
generates n copies of coef tuples to the root’s
tuple space; and the latter calculates the matrix
product of a coef and a fib. The coef and
the fib in the transaction mf are not taken as
arguments. They are the resources prepared for
the transaction before its execution and consumed
by it after the execution. We avoid to view
them as ordinary arguments because different
programming language has different argument

leaf transactions init_coef and mf

passing rules, which make the “argument passing”
to a transaction very confusing. Similarly, the
tuples generated by a transaction are not the
function value returned but the new resources
Some extra efforts are needed to achieve the
mechanism in addition to a normal C compiler.
Finally, “#language” specifies the language used
to write the transaction (default is T-Cham itself)
and the “#tuple” line is used to provide the type
information of a tuple to the enhanced compiler.

PO, pl, p2, 90, q1, and g2 are the pre-conditions
and post-conditions of the three transactions of
init_coef, mc, and mf. They are

al b1

pO = TRUE,
a2 b2
pl = coef$l = < el dl) A coef$2 = < P

a b >/\fib$1:<x>,
y

pQEcoef:(C d
1

Q0 = |coef| = n A Vcoef € T : coef = < 1 (1))

/\|fib|:]/\fib: (1) ;
1= coef$s — ala2 +blc2 alb2 + b1d2)
&= T\ cla2+4dic2 clb2 +d1d2)
. _ ar + by
q2 = fib$2 = < co + dy),
where 7 denotes the tuple space. These pre-
conditions and post-conditions are wused for

program verification purposes. If a programmer
finds it is difficult to provide them for every
transaction or is unwilling to do so, just simply
have the conditions be trivially true.

Example 2 (Sleeping Barber) % A barber pro-
vides hair-cutting service in his shop, where there
are two doors — one for entrance and the other
for exit — and N chairs for waiting customers.
Only one customer can receive the service on the
barber’s chair at a time. When there are no cus-
tomers in the shop, the barber will fall asleep on
his chair; otherwise, he continuously provides hair-
cutting service until no customers are left. The bar-
ber spends all his life serving customers or sleeping.

When a customer arrives and finds the barber
sleeping, he wakes up the barber and has his hair
cut on the barber’s chair. After the service, the
customer gets out of the shop by the exit door. If
the barber is busy when a customer comes, the cus-
tomer will take a seat provided that there is an
empty chair and wait for the barber. If all chairs
are occupied, the new customer has to wait until a
chair 1s available. The T-Cham program is given
in Figure 2. [|

transaction root
tuples
fifo boolean pin, pwt, pcut, pout;
boolean bsp, bwk, bfin, chair;
initialization
[i:1..N]::chair=TRUE; bsp=TRUE;
reactionrules
nil leadsto pin;
pin, bsp leadsto pcut, bwk;
pin, chair leadsto pwt when (“bsp);
pcut, bwk leadsto pout, bfin;
pwt, bfin leadsto pcut, chair, bwk;
bfin leadsto bsp when (|pwt|==0);
pout leadsto nil;
endtrans

Figure 2: The T-Cham Program of the Sleeping
Barber Problem

The tuple space of this program simulates the
barber’s shop. The tuples in the tuple space denote
the states of each customer, each chair, and the
barber. A pin in the tuple space means that a
new customer is coming, pwt a customer is waiting
on a chair, pcut a customer is sitting down on the
barber’s chair and having his hair cut, and pout
means a customer leaving the barber’s shop. bsp
denotes that the barber is sleeping, bwk the barber
is working, and bfin the barber has just finished
cutting the hair of a customer. chair in the tuple
space means a chair is available for a new customer.

The tuple nil is a special symbol of T-Cham.
There is no real tuple called nil in a tuple space

2We simply assume that the barber and all his customers
are male.

at all. It means a condition which is satisfied au-
tomatically. Thus “nil leadsto pin” generates
a new customer, and “pout leadsto nil” means
a customer is leaving — vanishing from the tuple
space.

Initially, there are N chairs available in the tu-
ple space (barber’s shop) and the barber is sleeping.

The first

customer, and the second, if a customer (not

reaction rule generates a new
necessarily the one just generated) finds the
barber sleeping, he wakes him up and has his hair
cut, 1.e., makes the barber busy. The third reaction
rule says that if a new coming customer finds that
the barber is busy (or not sleeping) and a chair is
available, he will sit down on the chair and wait
for the barber. By the reaction rule four, the busy
barber will finish his service to the customer who
is having his hair cut so that the customer is ready
to go. A waiting customer is asked to sit down on
the barber’s chair to have his hair cut according to
reaction rule five; as the consequence, an occupied
chair is available again. By the reaction rule six,
when there are no waiting customers, the barber
is going to sleep on his chair. The last reaction
rule makes a customer who has had his hair cut
disappear from the tuple space.

As there are no sub-transactions in the program,
the subtransactions section is omitted. Other
solutions of the problem can be found in Bacon [4,
pp 266 — 267] and Andrews [3, pp 290 — 294]. We
believe readers will find the T-Cham program given
here has a more natural and intuitive presentation.

5 T-Cham Implementation

Data (tuple) distribution and task balance are the
main problems of a T-Cham implementation. Hier-
archical transaction structure and its correspond-
ing hierarchical tuple spaces make it even more
difficult. To avoid attacking all the difficulties in
one step, our first T-Cham implementation is built
on C-Linda, where there is a logical shared tuple
space and the task distribution is also taken care
by a Linda implementation. Although Linda uses
a monolithic tuple space, the nested T-Cham tuple
space structure can be fitted in by rewriting it to a
flat one. We only discus the implementation of flat
T-Cham programs, i.e., a root transaction with a
number of leaf transactions, in this section.

The execution model of T-Cham on Linda com-
prises three independent parts: a tester, a group
of task generators, and a number of task executors,
Figure 3.

Supposing we have a group of reaction rules.
One of them is R_s:

Z1,%g, -, Ly leadsto Y1, Y2, -, Ym byTWhenf;

The tester continuously withdraws, or reads, tuples
from the Linda tuple space. Whenever a group of

task
executor

tester

Figure 3: T-Cham Execution Model on Linda

tuples, say z1, 24, ..., and z,, makes the left-hand-
side (LHS) of the reaction rule R_s, and its when
condition is also satisfied by the tuples, an encap-
sulated tuple, (“R_s”, 21,29, -+, Z,), is generated.
For every reaction rule, there 1s a task gener-
ator, which inputs the encapsulated tuple of its
form from the tuple space and generates a task
tuple. Taking the task generator of reaction rule
R_s for example, it repeatedly inputs the tuple
of (“Rs”,7argy, ?args, - - -, 7arg,) and generates a
task 7' for the tuple, i.e., T'(arg1, args, -, argn).
Task executors are actually the processors,
which execute the transactions, of a computer
system. A task executor gets the active tuples
from the tuple space, executes their function, and
generates new tuples — for example, y1,y2 -+, ym
after task 7' — and injects them back to the tuple
space.
quite code.

Task generators are easy to

Every generator consists of a permanent

loop, within which there are only two ac-

tions: withdrawing a correspondent encap-
tuple from the tuple space, e.g.,
in(” R.s”,%arg1, Targs, -+, Targy), and then out-
put an active tuple, eval(T'(argi, args, -, argn)).
A task executor is exactly Linda’s mechanism of
transforming an active tuple to passive one, i.e.,
task execution.

The tester uses a Rete-like network [12] for the
many-object/many-pattern matching. The LHSs
and conditions of every reaction rule are compiled
into a testing net, and then translated to C-Linda
code. Figure 4(a) gives an example of compiling a
reaction rule to part of a test net. It is a straight-
forward rewriting of reaction rules to a graph form.
Figure 4(b) is the test net of Fibonacci number
(Example 1).

sulated

The tester continuously transverses the test net
so that groups of tuples can be transformed to
corresponding encapsulated tuples. In every node
of the net reside some tokens, which decide the
state transition and the next action of the tester.
In Figure 4(a), node 1 to node n are input nodes.
A u token will be added to node u if a tuple z,
(I € u < n) is input (withdrawn or read). The

middle level node i, if approached, will test the
when condition, f(zy,--,z,), of the reaction rule.
If the value of the test is TRUE, a token will be
passed to node j, which is a leaf node; otherwise,
the tester will try other branches. If all branches
fail, the tester will input more tuples to make a
transition possible. Every arrow of a test net has
its own weight, for example, w1y, ws, - -+, and wy, in
Figure 4(a). The default value is 1, which can be
omitted. The weight wy means that the transition
from node 1 to 7 needs at least w; tokens in node
1. Only after it has received tokens from its all
predecessors can node i test the condition of f and
then generate a token for node j. If a token reaches
a termination node, e.g., node 4 in Figure 4(b), the
tester will try to terminate the execution of the
program.

It is worthwhile to pay a special attention to the
test of termination conditions, if they exist. As T-
Cham has no central control, there is no way to take
a “snapshot” of the global state of an execution
at a time instance. For example, the condition of
“| coef |==0", if evaluated to TRUE by the tester at
some time, could be falsified later by a currently
executing task mc. It suggests that the test of ter-
mination condition can only be taken under the sta-
ble state of an execution. By stable, we mean that
there is no communication traffic among computa-
tion nodes and all the nodes are waiting for message
or have finished their executions. The tester can
suggest that a termination point has come, but an
independent arbiter will check if the global state is
stable. If yes, it terminates; otherwise, the tester
will continue its execution and the suggestion until
a real termination point comes. For more general
discussion of distributed termination problem, we
refer readers to [6, pp125-138].

The prototype execution model is conducted
on an AP1000, which is a distributed memory
MIMD parallel computer developed by Fujitsu.
The AP1000 C-Linda was implemented by Robert
Cohen for the CAP project [10]. Fortunately,
AP1000 has a “waitstable()” system call. It
helps to check the global stable state efficiently.

6 Tuple Mappings and Hierarchical
Tuple Spaces: The Advanced Fea-
tures

There are some very large tuples which may include
natural substructures, such as a large matrices with
their row, column, or sub-matrice structures. T-
Cham provides the concept of tuple mapping to
decompose a large tuple to a number of smaller
pieces or wvice versa.

The mapping from one tuple to another (or
others) provides different views on a large tuple.
The view can be achieved by a special data type
— mask, which is a kind of template, or window

input
xn

R B I

test

f(x1,x1,...x1,x2...)
i
output
("R_s",x1,x1...x1,x2....)
Rs: wlx1, w2x2, W3x3, ..., wnxn | eadsto ...

by T when f;
(a) A Reaction Rule and Its Branches in a Testing Net

input input
fib coef
2

®)
4

6
termination output
("R_1", coef, coef)
5
output

("R 2", coef,fib)

R1: coef, coef |eadsto coef by nt;
R2: coef,fib leadto fib by nf;

(b) The Testing Net of Fibonacci Number

Figure 4: The Testing Nets of T-Cham

(i.e. view), from which part of original data can
be seen, or by which the original data can be
transformed. In an implementation, masks may be
kept as “bitmap” to save computer memory, but
for programmers, a mask can be treated the same
as an ordinary data tuple. A value 0 means the
underlying data can not be seen, while a non-zero
value is a hole on the mask so that the underlying
data can be read out through it.

A tuple is a sequence of memory cells on which
each field of the tuple is stored, and a mask is a
window through which a part of these cells can be
seen. A mask has no knowledge of the underlying
tuple, and can be applied to any kind of tuples. It is
the programmer’s responsibility to guarantee that
the data read out through the mask make sense.
Two special values related to the data under masks
are “dontcare” and “undefined”, which are used
for the sake of semantic completeness. Suppose we
have a tuple x and a mask m,

tuple {

char name[]="data";

int i=15;

float a[20]={76.8,3.5,4,...};
} ox;

mask {
{0,0,1,1}*char,
1*int,
{0,1,18%0}*float
} m;

anew tuple, ("ta",15,3.5), can be got by viewing
the tuple x through the mask m, i.e. x\m, read as
“tuple x under mask m”

The mappings among tuples are classified into
two categories: the tuples on the same tuple space
or on the different levels of tuple spaces. The
former is called horizontal mapping, the latter
vertical mapping. Two horizontal mappings are
decomposition, or heating, which breaks down a
large data tuple to smaller pieces, and aggregate,
or cooling, which assembles a group of small pieces

of data to make a large one. Both of the mappings
are guided by some masks. For example, consider
tuples x, x1, x2, and x3, and masks m1, m2, and m3
on x. We can get x1, x2, and x3 by decomposing
x, written as “<<x: x1\mi,x2\m2,x3\m3>>". x1,
x2, and x3 are read out from x through the
windows of m1, m2, and m3 respectively. With
aggregate, we can build x from x1, x2, and x3,
“>>x: x1\m1,x2\m2,x3\m3<<”. Similarly, x1, x2,
and x3 are filled into x through the windows of m1,
m2, and m3 respectively.

The vertical mappings establish the relations
between the tuples on a tuple space and its par-
ent’s or child’s tuple space, Figure 5. They can
be used to initialize the child’s tuple space, the
down mapping, and return the result tuples to the
parent’s tuple space, the up mapping. Supposing
in a transaction T, we have a reaction rule:

X,Y leadsto Z by t.

To execute the action, a T-Cham sub-transaction
t is invoked, and X and Y are mapped (also decom-
posed) into x1, x2, x3, y1, and y3 on a new tuple
space correspondingly according to the specified
relations between X, Y and x1, x2, x3, y1, and y3.
After the execution of t, i.e., the reactions on x1,
x2, x3, y1, and y3 yielding z1 and z2, which make
a Z, a new Z is generated. Transaction T’s tuple

Trans. T

Trans t x1,x2,yl | eadsto z1
by’ t1

~. x3,y2 |l eadsto z2
~EDN by 12

&2/

R

Figure 5: The Vertical Mappings of Tuples

space could have other tuples than X, Y, and Z, but
in t, only the three of that tuple space can be seen.
Of course, t may have its own private tuples on its
tuple space. Similarly, they can not be seen from
outside either.

x1, x2, x3, y1, and y3 can be considered as a
detailed view on X and Y. In transaction T, the
tuples of X and Y are indivisible and one of each
together can produce an indivisible tuple Z by an
atomic transaction t; but from the point of view
of t, the structures of X, ¥, and Z are revealed,
and the indivisible action of “X,Y leadsto Z by
t” is executed by some concurrent executed re-
actions, i.e., t1 and t2, which in turn could also
have their own sub-transactions, on the different
parts of the three original tuples. Just imaging a
chemical reaction, on molecular level, we can have
“two hydrogen molecules and one oxygen molecule
make two water molecules (2Hs + O2 = 2H50)”,
but different actions can also be reported if we
are from different points of views, such as these
of atom, electron, and so on.

The mapping among tuples and hierarchical tu-
ple spaces provide T-Cham with program abstract
and refinement. They are very useful and also
very nice properties for a practical programming
language, both in program development and verifi-
cation.

7 Conclusion and Future Work

The new coordination style programming language
T-Cham is proposed and tested by our prototype
implementation. It is based on the metaphor of
chemical reactions, which are inherently concur-
rent and localized. We avoid raising the issues of
sequential, parallel, or distributed in the program-
ming language level because we think they belong
to the issues of a program execution on different
computation resources. From the point of view
of a T-Cham program, only reactions exist. The
realization of these reactions leads to a sequential,
parallel; or distributed execution of the program.
In contrast to other approaches, T-Cham has the
following features:

1. T-Cham uses tuple space to coordinate a num-
ber of transactions. Programmers should con-
sider parallel structures first and then sequen-
tial tasks instead of adding parallel facilities to
a sequential program;

2. Hierarchical transaction and tuple space struc-
tures provide dynamic and abstract views to
transactions and their tuple spaces, and also
the means for program refinement; besides, it
is a high-level portable language: a program-
mer need not know the structure of the un-
derlying machine: parallel, sequential, or net-
worked,

3. Multi-lingual T-Cham
multi-paradigm. A programmer can take the
advantages of different program languages
without worrying about their interferences as

transactions make

they are integrated orthogonally by the tuple
spaces;

4. Transaction granularity can be easily adjusted
by changing the operators contained in the
transactions, for example, a transaction can
do a very complex function (coarse-grain),
or only a simple summation operation (fine-
grain). The changing of one transaction has
nothing to do with the others;

5. Formal temporal logic semantic enables the
correctness proofs for T-Cham programs. The
proofs are separated from programming. A
programmer need not to touch this notoriously
hard aspect if he/she does not want to do;

6. Using the transaction as the fundamental com-
putational unit introduces fault-tolerance and
recovery to T-Cham programs naturally.

Our implementation of T-Cham is somewhat
preliminary: it mainly depends on Linda’s tuple
space, even the tuple mappings and hierarchical
tuple spaces, which are implemented by simulation
(rewriting the hierarchical tuple space structure to
a flat one), and the Tester will become a bottle-
neck when a program scales up. However, our
results obtained so far have already demonstrated
the effectiveness of T-Cham and its great potential-
ity. Our future work includes two main streams:
implementation and proof system development.

A new execution model will be carried out di-
rectly on an MIMD computer, e.g., AP1000, where
the Tester will be decomposed, so that we have
more opportunities to optimize the data and task
distribution and also a good scalability. Dynamic
load balancing is also needed if the depth of non-
leaf transaction calls can not be predicted stati-
cally. A more sophisticated mask mechanism will
be introduced to provide T-Cham a natural way of
handling irregular data structures, such as multi-
dense grid.

Finally, we expect that T-Cham can lead us to
a new way of separating (i) the logic of a program
from its implementation, (ii) correctness from effi-
ciency, and (iii) the rigid formal reasoning aspect
from a comfortable intuitive presentation, without
heavy penalties on execution efficiency.

Acknowledgements

Wanli Ma thanks the Australian Government for
an Overseas Postgraduate Research Scholarship
(OPRS) and the Australian National University
for a PhD scholarship. The authors thank the
ANU-Fujitsu CAP Research Project for the use of
the AP1000 multicomputer system.

References

(1]

[9]

[10]

[13]

D. Agrawal and A. El Abbadi. Transac-
tion management in database systems. In
Ahmed K. Elmagarmid (editor), Database
Transaction Models: For Advanced Applica-
tions, pages 1-32. Morgan Kaufmann Publish-
ers, San Mateo, California, USA, 1992.

S. Ahuja, N. Carriero and D. Gelernter. Linda
and friends. [EEE Computer, pages 26-34,
August 1986.

G. R. Andrews. Concurrent Program-
ming: Principles and Practice. 'The Ben-
jamin/Cummings Publishing Company, Inc.,

1991.

J. Bacon. Concurrent Systems: An Integrated
Approach to Operating Systems, Database,
and Distributed Systems. Addison-Wesley,
1993.

J.-P. Banatre and D. Le Métayer. Program-
ming by multiset transformation. Comm.
ACM, Volume 36, Number 1, pages 98-111,
January 1993.

M. Ben-Ari. Principles of Concurrent and
Distributed Programming. Prentice-Hall, 1990.

G. Berry and G. Boudol. The chemical ab-
stract machine. Theoretical Computer Science,

Volume 96, pages 217-248, 1992.

N. Carriero and D. Gelernter. Linda in con-
text. Comm. ACM, Volume 32, Number 4,
pages 444-458, 1989.

K. M. Chandy and J. Misra. Parallel Program
Design: A Foundation. Addison-Wesley, 1988.

R. Cohen and B. Molinari. Implementation of
C-Linda for the AP1000. In The Proceedings
of the Second ANU/Fujitsu CAP Workshop.
1991.

E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

C. L. Forgy. Rete: A fast algorithm for
the many pattern/many object pattern match
problem. Artificial Intelligence, Volume 19,
pages 17-37, 1982.

I. Foster, R. Olson and S. Tuecke. Productive
parallel programming: the PCN approach.
Scientific Programming, Volume 1, Number 1,

pages 51-66, 1992.

I. Foster and S. Taylor. Strand: New Concepts
tn Parallel Programming. Prentice-Hall, 1990.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

D. Gelernter and N. Carriero. Coordination
languages and their significance. Comm.

ACM, Volume 35, pages 96-107, 1992.

C. Hoare. Communicating sequential pro-
cesses. Comm. ACM, Volume 21, Number 8,
pages 666—677, August 1978.

P. Inverardi and A. L. Wolf. Formal specifi-
cation and analysis of software architectures
using the chemical abstract machine model.
IEEE Transactions on Software Engineering,
Volume 21, Number 4, pages 373-386, April
1995.

R. Jagannathan and A. A. Faustini. The GLU
programming language. Technical Report
SRI-CSL-90-11, SRI International, Menlo
Park, CA, USA, 1990.

B. Liskov. Distributed programming in Argus.
Comm. the ACM, Volume 31, Number 3,
pages 300-312, March 1988.

Inmos Ltd. Occam 2 Reference Manual.
Prentice-Hall, 1988.

W. Ma, E. V. Krishnamurthy and M. A.
Orgun. On providing temporal semantics
for the GAMMA programming model. 1In
C. Barry Jay (editor), CATS: Proceedings of
Computing: the Australian Theory Seminar,
pages 121-132. University of Technology, Syd-
ney, Australia, 1994.

W. Ma, V. K. Murthy and E. V. Krish-
namurthy. Multran — A coordination pro-
gramming language using multiset and trans-
actions. In S. K. Aityan, L. T. Hathaway
et al. (editors), Proceedings of the First In-
ternational Conference on Neural, Parallel,
and Scientific Computations, pages 301-304.
Dynamic Publishers, Inc., Atlanta, Georgia,
USA, 1995.

W. Ma and M. Orgun. Verifying Multran
programs with temporal logic. In M. Orgun
and E. Ashcroft (editors), The Proceedings of
the Eighth International Symposium on Lan-
guages for Intensional Programming, pages

120-134. World-Scientific (in process), 1995.

R. Milner. Communication and Concurrency.
Prentice Hall, 1989.

W. Reisig. Petri Nets. Springer-Verlag, 1985.
V. S. Sunderam. PVM: A framework for

parallel distributed computing. Concurrency:
Practice & Fzperience, Volume 2, Number 4,

pages 315-339, December 1990.

