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Abstract

This talk gives a brief historical summary of
attempts to factor Fermat numbers, and
describes the complete factorization of the tenth
Fermat number, 21924 4 1. This number is a
product of four prime factors with 8, 10, 40 and
252 decimal digits. The 40-digit factor was
found by the elliptic curve method after about
140 Mflop-years of computation.

Outline
e Some history.
e The elliptic curve method (ECM).

e Factorization of Fig.

Notation

prn, denotes a prime number with n decimal
digits, e.g. p3 = 163. Similarly, c¢,, denotes a
composite number with n decimal digits,
e.g. cqg = 1729.

Testing Compositeness

To show that N is composite, it is sufficient to
find a “witness” a € (1, N) such that

a¥ ' #£1mod N .

Then Fermat’s “little” theorem says that N is
composite, although we may not know a
nontrivial factor of N.



Some History

For a nonnegative integer n, the n-th Fermat
number is F,, = 22" + 1. Tt is known that F, is
prime for 0 < n < 4, and composite for

5 <n < 23. Also, for n > 2, the factors of F,
are of the form

k2nt? 41,

In 1732 Euler found that 641 =5-27 4+ 1is a
factor of Fy, thus disproving Fermat’s belief
that all F,, are prime. Euler apparently used
trial division by primes of the form 64k + 1 (not
just 128k + 1).

The complete factorization of the Fermat
numbers Fg, F7, ... has been a challenge since
Euler’s time. Because the F,, grow rapidly in
size, a method which factors F,, may be
inadequate for Fj,41.

No Fermat primes larger than F, are known,
and a probabilistic argument makes it plausible
that only a finite number of F,, (perhaps only
Fy,..., Fy) are prime. It is known that F,, is
composite for 5 < n < 23.

Fe

In 1880, Landry factored Fg = 274177 - p14 .
Landry’s method was never published in full,
but Williams has attempted to reconstruct it.

Hand Computations

In the period 1877-1970, several small factors of
F, for various n > 9 were found by taking
advantage of the special form of these factors.
For example, in 1903 Western found the factor
p7 = 2424833 = 37 - 216 1 1 of Fy.

Significant further progress was only possible
with the development of the digital computer
and more efficient algorithms.

F;
In 1970, Morrison and Brillhart factored

F; = 59649589127497217 - pog

by the continued fraction method. This method
has now been superseded by the
multiple-polynomial quadratic sieve (MPQS)
method which, surprisingly, has never been the
first to factor a Fermat number.

F
In 1980, Brent and Pollard factored

Fg = 1238926361552897 - pgy

by a modification of Pollard’s “rho” method.
The “rho” method is now largely superseded by
Lenstra’s elliptic curve method (ECM), of
which more later.

The larger factor pge of Fg was first proved
prime by Williams using the method of
Williams and Judd. Later, I provided a simpler
proof by factoring pgo — 1.

Nowadays, Fr and Fg are “easy” to factor by
ECM or MPQS.



Fy

Logically, the next step after the factorization of
Fg was the factorization of Fy. It was known
that

Fg = 2424833 - C148

The 148-digit composite number resisted attack
by methods such as Pollard rho, Pollard p £+ 1,
and the elliptic curve method (ECM), which
would have found “small” factors. It was too
large to factor by the continued fraction method
or even by MPQS.

The difficulty was finally overcome by the
invention of the (special) number field sieve
(SNFS), based on a new idea of Pollard.

In 1990, Lenstra, Lenstra, Manasse and Pollard,
with the assistance of many collaborators and
approximately 700 workstations scattered
around the world (including Australia)
completely factored Fy by SNFS.

F10

Fip has been a “most wanted” number in
various lists of composite numbers since the
factorization of Fy in 1990.

Fyp was proved composite in 1952 by Robinson,
using Pépin’s test on the SWAC. A small factor,
45592577, was found by Selfridge in 1953 (also
on the SWAC). Another small factor,
6487031809, was found by Brillhart in 1962 on
an IBM 704. Brillhart later found that the
cofactor was a 291-digit composite.

Using ECM we found a 40-digit factor of Fjp on
October 20, 1995. The 252-digit cofactor
C291/Pao Passed a probabilistic primality test
and was soon proved to be prime using the
method of Atkin and Morain (based,
appropriately, on elliptic curves). Thus, the
complete factorization of Fig is

oL e Fio = 45592577 - 6487031809 - pao - pass

pes = TAB5602820047864208337305736200454918783366342657 pag = 4659775785220018543264560743076778192897
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Fi Summary

Fy1 was completely factored in 1988, before the
factorization of Fy and Fyp. In fact,

Fy; = 319489 -974849 -
167988556341760475137 -
3560841906445833920513 - psea

The two 6-digit factors were found by
Cunningham in 1899, and I found the remaining
factors in May 1988, using ECM on a Fujitsu
VP100. The 564-digit factor passed a
probabilistic primality test, and a rigorous proof
of primality was provided by Morain.

The reason why Fy; could be completely
factored before Fy and Fjg is that the difficulty
of completely factoring numbers by ECM is
determined mainly by the size of the
second-largest prime factor of the number.

The second-largest prime factor of Fj; has 22
digits and is much easier to find by ECM than
the 40-digit factor of Fyp or the 49-digit factor
of Fg.
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A brief summary of the history of factorization
of Fs,..., F11 is given in the Table.

Table 1: Complete factorization of Fy,, n = 5,...,11

n Factorization Date Comments
5 P3 - PT 1732 | Buler
6 Pe - P1a 1880 | Landry
7 P17 - P22 1970 | Morrison and Brillhart
8 P16 ' P62 1980 | Brent and Pollard (p1e, pez2)
1980 | Williams (primality of pez)
9 P7 " Pas - Pog 1903 | Western (p7)
1990 | Lenstra et al (pag,pss)
10 Ps * P10 " P40 " P252 1953 Selfridge (psg)
1962 | Brillhart (p1o)
1995 Brent (pao,p2s2)
11 | pe - Pg P21 P2z Psesa | 1899 | Cunningham (ps,pg)
1988 Brent (p21,p22,Ps64)
1988 Morain (primality of psea)
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F12

The smallest Fermat number which is not yet
completely factored is Fig. It is known that

F1p = 114689 -26017793 -
63766529 - 190274191361 -
1256132134125569 - c1187 ,

where the 16-digit factor was found by Baillie in
1986, using the Pollard p — 1 method (and
rediscovered in 1988 using ECM).

Fi9 has at least seven prime factors, spoiling a
“conjecture” based on the observation that F},
has exactly n — 6 prime factors for 8 <n < 11.
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Fi3
It is known that

Fi3 = 2710954639361 -
2663848877152141313 -
3603109844542291969 -
319546020820551643220672513 - co391 ,

where the 13-digit factor was found by
Hallyburton and Brillhart (1975), the two
19-digit factors were found by Crandall (1991).

I found the 27-digit factor in June 1995, using
ECM on an IBM PC equipped with a Dubner
Cruncher board.

F14

F14 = cq933 is composite, but no nontrivial
factors are known.
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A Brief Description of ECM

The elliptic curve method (ECM) was
discovered by H. W. Lenstra, Jr. in 1985.
Various practical refinements were suggested by
Montgomery, Suyama, and others. References
can be found in my report [4].

Lenstra’s key idea was to apply Pollard’s

“p —1” method but to work over a different
group G. If the method fails, another group can
be tried. This is not possible for the p — 1
method, because it uses a fixed group.

ECM uses groups defined by pseudo-random
elliptic curves over Fy,, where p > 3 is the prime
factor we hope to find. (Fortunately, we don’t
need to know p in advance.) By a theorem of
Hasse (1934), the group order g for an elliptic
curve over F), satisfies

lg—p—1] <2\p.

By a result of Deuring, all g satisfying this
inequality are possible.
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Lenstra’s Analysis of ECM

Consider applying ECM to a composite integer
N with smallest prime factor p. Modulo an
unproved but plausible assumption regarding
the distribution of prime factors of random
integers in “short” intervals, Lenstra showed
that ECM will find p in an expected number

W(p) = exp (\/(2 +0(1))log plog lng>

of multiplications (mod N), where the “o(1)”
term tends to zero as p — oo.

ECM can “routinely” find factor up to about 30
decimal digits, and it has successfully found
factors p as large as 47 decimal digits. Details
can be found in [3].
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Choice of Parameters

ECM has several parameters. The most
important is the first-phase limit B;. The
optimal choice of the parameters depends on
the size of the factor p. Since p is unknown, we
have to guess or use some sort of adaptive
strategy. Fortunately, the expected performance
of ECM is not very sensitive to the choice of
parameters.
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Expected Performance of ECM

In Table 2 we give a small table of log;y W for
factors of D decimal digits. The precise figures
depend on assumptions about the
implementation, see [4].

Table 2: Expected work for ECM

digits D | log;o W
20 7.35
30 9.57
40 11.49
50 13.22
60 14.80
18

Factorization of Fj

ECM was implemented on a Fujitsu VP100 in
March 1988. The program was soon successful
in completing the factorisation of Fy1, but had
no success with other Fermat numbers, apart
from rediscovering known factors. The VP100
was upgraded to a VP2200 in 1991.

In September 1994 we started running a similar
program on one or two 60 Mhz SuperSparc
processors. In July 1995 six more 60 Mhz
SuperSparc processors became available for a
limited period. We attempted to factor Fig on
all eight SuperSparcs.

The py4o factor of Fig was found by a run which
started on Oct 14 and finished on Oct 20, 1995.
The run tried 10 curves with By = 2000000 in
about 114 hours of CPU time.
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Summary of Fj, runs

In Table 3, F is an estimate of the expected
number of times that the factor pg should be
found with the given B; and number of curves.
FE is an estimate of the efficiency compared to
the optimal choice of B; ~ 3400000.

The last row of the table gives totals (for
number of curves and F') and weighted means
(for By and F).

Table 3: ECM runs on Fjg

B, curves I 12 machine(s) and dates
6 x 10* 2000 | 0.0010 | 0.14 VP100, Mar 1988 — Nov 1990
2 x 10° 17360 | 0.0910 | 0.42 | VP2200, Aug 1991 — Aug 1995
5 x 105 700 0.0152 | 0.69 | Sparc X 2, Sep 1994 — Jul 1995
108 480 0.0262 | 0.87 | Sparc x 8, Jul 1995 — Aug 1995
2 x 108 900 0.1100 | 0.98 | Sparc X 8, Aug 1995 — Oct 1995
2.9 x 10° | 21440 | 0.2434 | 0.63
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The Computational Work

Each curve on a 60 Mhz SuperSparc takes
about 5.7 x 10~ By hours of CPU time. If a
60 Mhz SuperSparc is counted as a 60-Mips
machine, then our computation took about 240
Mips-years. This is comparable to the 340
Mips-years estimated for sieving to factor Fy by
SNFS. (SNFS has since been improved, so the
340 Mips-years could now be reduced by an
order of magnitude.) A 130-digit number,
RSA130, took 500 Mips-years by GNFS (May
1996).

Since the inner loops of our programs use
floating-point arithmetic, Mflops are a more
appropriate measure than Mips. The
VP2200/10 is rated at 1250 Mflop (peak
performance). If our factorization of Fj¢ had
been performed entirely on the VP2200, it
would have taken about 6 weeks of machine
time, or 140 Mflop-years. Cryptographers
should note that this amounts to about

75 minutes on a 1 Teraflop machine.
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Multiplications

The number of multiplications (mod N) is a
machine-independent measure of the work to
factor N. Each curve takes about 22.9 B; such
multiplications.

Overall, our factorization of Fio took 1.4 x 101!
multiplications (mod N), where N = ca9;.
Table 2 predicts 3.3 x 10! with the optimal
choice of parameters.

Numbers mod cz9;1 were represented with

38 digits and base 226 (on the VP100/VP2200)
or with 41 digits and base 224 (on the Sparc), so
each multiplication (mod N) took more than
10* floating-point operations.
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The Group Order

The successful elliptic curve leading to the
factorization of Fig had order

pao + 1 — 3674872259129499038
= 22.32.5.149-163 - 197 - 7187 -

g

18311 - 123677 - 226133 - 314263 - 4677853 .

The probability that a random integer near
9/12 has largest prime factor at most 4677853
and second-largest prime factor at most 314263
is about 5.8 x 1076, The phase 1 limit for the
successful run was By = 2 x 10°, but our
program finds psp with By as small as 314263 if
the same curve and starting point are used.
(The largest factor 4677853 of g is caught by
“phase 2” of ECM.)
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