Constructing the Spanners of Graphs in Parallel

Weifa Liang

Department of Computer Science
Australian National University
Canberra, ACT 0200, Australia

Email:wliang@cs.anu.edu.au

Abstract

Given a connected grap# = (V, E) with n vertices, a sub-
graph G’ is an approximateg-spanner ofG if, for every u, v
€ V, the distance betweanandv in G' is at mostf(t) times
longer than the distance i@, wheref(t) is a polynomial func-
tion oft andt < f(t) < n. Inthis paper parallel algorithms for
finding approximate-spanners on both unweighted graphs and
weighted graphs withf (t) = O(t**1) and f(t) = O(Dt++1)
respectively are given, whei® is the maximum edge weight
of a minimum spanning tree 6f, k is a fixed constant integer,
andl < k < log, n. Also, an NC algorithm for finding at-
spanner on a weighted graph is presented. The algorithms
are fora CRCW PRAM model.

1 Introduction

Given a connected gragh = (V, E) with n vertices, a sub-
graphG’ is at-spannei(an approximate t-spanngof G if, for
everyu, v € V, the distance betweanandv in G’ is at most
t (f(t)) times longer than the distance @, wheref(t) is a
polynomial function oft and1 < ¢ < f(t) < n. The value of
t and f(t) are called théactorsof G. There are two criteria to
measure the sparseness of a spanner, that isizbelefined as
the number of edges in the spanner, andwheght defined as
the sum of the edge weights in the spanner. The minimum span-
ning tree (MST) of is obviously the sparsest spanner in terms
of both size and weight, but its factor can be as bad as1
[1]. For convenience, we denote ly; (M ST'), the sum of the

edge weight of the MST. Usually the sparseness of a spanner isweight of ()

judged by comparing it to the size and the weight of the MST.

Much effort has been made in recent several papers graphG with size O(min{m, =~ “log,, . (
[1,6,9,12] regarding spanners on some special graphs such agjuires O(log nloglJre(Wmaw

Richard P. Brent

Computer Sciences Lab.
Australian National University
Canberra, ACT 0200, Australia

Email:rpb@cslab.anu.edu.au

weighted graph which needs({;=2= 3% log” n) expected time
with O(n'/?mpBlog®n) work on an EREW PRAM, where
B8 =t/(2+€/2), wherewt(e) is the weight of edge, W4, =
maz{wt(e) | e € E}, Wp,in = min{wt(e) | e € E}, ande is
a small constant.

Despite the existence of several efficient sequential and dis-
tributed algorithms for finding a sparsepanner of graphs, we
have not seen any deterministic parallel algorithm for this prob-
lem. In this paper, we first relax the restriction of the prob-
lem by introducing ampproximate-spanneiconcept, and then
present simple parallel algorithms for finding approximate
spanners on both unweighted graphs and weighted graphs ir
terms of both size and weight. The algorithms exhibit a trade-
off between the running time and the factor of the spanner. Fi-
nally we present an NC algorithm for findin&-spanner on a
weighted grapild-.

The remaining parts of this paper are organized as fol-
lows. In Section 2 we introduce the tree decomposition con-
cept. The algorithms for finding an approximdtspanner
for both unweighted graphs and weighted graphs with fac-
torsO(t*+1) andO(Dt**1) respectively are presented in Sec-
tion 3, whereD = maz{wt(e) | e € MST}. If G is un-
weighted, the algorithm require3(;i logn) time andM (n)
processors, wheré/(n) is the number of processors needed
to find a Breadth-First Search tree in a graph withertices in
time O(log n). The approximatée-spanner delivered has size of

£)1+1/t 4). Otherwise, the algorithm requiré€X (%) +
(t—k,)“Z/(t*l) logn) time andO(n?) processors. The approx-
imate t-spanner delivered has size Of(2)*+%/("1) + n),

+ Dwt(MST). In Section 4, we suggest
an NC algorithm for constructing 2¢-spanner on a weighted
e) }) which re-

)) time andél(m) processors,

2+e
—1

W

Euclidean graphs, geometry graphs and chordal graphs. Thewheree is a constant and < ¢ < 1/2. All proposed paral-

spanner concept has a number of applications. For exam-

lel algorithms run on a CRCW PRAM in which simultaneous

ple, the sparse spanner of unweighted graphs is used in dis-access by more than one processor to the same memory locatio
tributed computing and communication network design [2- for both read and write is allowed. In case several processors
5,13-14]. Cohen [7] once suggested a randomized parallel al- attempt to write in the same memory location simultaneously,
gorithm for finding at-spanner with sizeD(n 1Jf—) on a an arbitrary one succeeds in doing the write.

IPPS '96
ISSN 1063-7133/96 $5.00 C 1996 IEEE.

2 Preliminaries

LetA; C Vandui_&; =V,1 <i <s <n. The set
H ={X;|1<i<s}is called thecoarse vertex covan V' if
there existst; andX; such thatt; N X; # 0,7 # j. Otherwise
‘H is called theexact vertex covesn V. If # is an exact vertex
cover onV, thenX’ € H is called avertex cluster Otherwise
X is simply called gpartial cover. For a vertexu, X is called
u'shome coveif u € X. Obviously, for an exact vertex cover
‘H, every vertexu € V' has only one home cover. Anverted
treeis a directed tree with the edges directed towards the root,
and the root has a directed self-cycle.

LetT'(V, Er) be an inverted tree with vertices, we define
the following restricted decomposition #se tree decomposi-
tion in which 7" is divided into a forest ofi’ inverted subtrees,
and every inverted subtree has no more tiwamlevels (the root
of a tree is defined as tHiest level) wheren' < [n/2].

The tree decomposition can be easily implemented in paral-
lel. We calculate the level number for every vertexiin As
a result,V is divided into two disjoint subsets, consisting of
all vertices withoddlevel numbers anil; consisting of all ver-
tices withevenlevel numbers. IfV;| < |V then all vertices
in V; are selected as the roots of inverted subtreesuletl;
be such a vertex, a vertexe V5 belongs to the inverted sub-
tree rooted at: iff the level number of is larger than that ofi
by oneandu is the parent ob in 7". Otherwise the vertices in

logarithmof its cardinality. This guarantees that the total num-

ber of the neighboring cluster pairs is linear, and the maximum
cluster diameter is logarithmic in the number of the vertices of
the graph. The following is a parallel version of his algorithm.

Algorithm 1

1. |Initialization. A(¢) := 0; B(4) := 0; count := 0.
* A(i) = 0 means vertexis not in any cluster yet.*/
/* B(i) means vertexis explored by clusteB(i),*/

* and countis the number of clusters. */

2. while there exists a vertexwith A(i) = 0 do

2.1. count := count + 1; select a vertex such that
A(i) =0andB(i) = maz{B(j) : j=1,...,n};
A(7) := 1 andB(i) := count.

2.2. generate a BFS subtrégrooted ati such that
T;'s diameter doesn't exceed the logarithm of its cardinality.
2.3. for every vertex in T;, A(v) := 1.

for eachu in the rejected level df;, B(u) := count.
endwhile

Lemma 3.1. Let G(V,E) be an unweighted graph. A
2t-spanner ofG with size O(n'*t'/t) can be generated in
O(nlogn) time with M (n) processors.

Proof. By Algorithm 1, generating a cluster and labeling this
cluster can be done i®(logn) time with M (n) processors,
currently the best result af/ (n) = n?-37¢ [9]. Selecting the
center for a new cluster need¥log n) time andO(n/ logn)

V5 are selected as the roots of these inverted subtrees. For thisprocessors by prefix computation. While the number of itera-

case, we assign the rootof T' to one of the inverted subtrees
in which the root is one of's children in7".

Lemma 2.1Let F be a forest of inverted trees such that the
number of vertices is and each tree has two vertices at least.
Then the tree decompositionsfcan be finished it (log n)
time usingO(n) processors.

Proof. For every inverted tre€ in F, we first calculate its ver-
tex level numbers angd’;|, i = 1, 2. All of these operations can
be done i (log n) time with O(n) processors. Then for every
tree with|V1| < |V4|, we apply the tree decomposition on it
which can be done if(1) time with O(n) processors. Finally
we apply the tree decomposition to those trees With < |17].
Therefore the restricted tree decompositioffinan be finished

in O(logn) time with O(n) processors

3 Finding An Approximate t-spanner
3.1 Unweighted Graphs

3.1.1 Finding a2t-spanner

Awerbuch presented a distributed algorithm for constructing an
optimal~y synchronizer in [2]. In the following we show that
a 2t-spanner with siz€&(n'*+'/t) can be achieved by the algo-
rithm of Awerbuch. The basic idea of his algorithm is described
as follows. The vertex sét is partitioned into maximum sub-
sets of vertices calledlusterssuch that every cluster is con-

tions of thewhile loop is at mosiO(n). Obviously the total
number of edges in all BFS trees is at most 1. By the step

2.2, for a cluster witm/' vertices, there are at mogt’ edges
connected with other clusters. Therefore the resulting spanner
hasO(n — 1 4+ pn) = O(n't1/?) edges.

The factor of this spann&¥' is considered as follows. For an
edge(u,v) € EisnotinG’, if uw andv are in the some cluster
centered atv, C,,, then the distance betweerandv in G’ is at
most the distance betwearandw plus the distance between
andw. So, the distance betwearandv in G' is no more than
2log, n = 2t. Otherwiseu € C, andv € C,, then the distance
between: andv is one, andu, v) € G' by the algorithmO

3.1.2 Finding an approximatet-spanner

Our algorithm consists of several phases. The basic idea behinc
our algorithmis that, in each phase, we compress those vertices
whose distances are not far away from each other irstaper-
vertex(also called a cluster), formsupergraptg (V, £) where

Y consists of all supervertices, and there is an edgédfinthere

is at least one edge i@ between two supervertices. So, the
approximate spanner, denote$¥(G), of G can be expressed
asSP(G) U {the tree edges in clusters} recursively. In the
following we give the detailed algorithm. The functiéhon V
defines a forest of inverted trees in whitt{v) is the parent of

nected, and the diameter of every cluster does not exceed theAlgorithm 2

=1,V .=V.

while s < k do
for j :=1to |log, t] do
1. for each vertex in V, setD(v) := v;
2. for each vertex, find a neighbog with
the smallest index (v) := u;
if D(D(v)) = vandD(v) # v then

if D(v) > vthenD(v) := v elseD(D(v)) :

This leads to a foresF of inverted trees in
which each tree has at ledsto vertices.
3. generate another forest of inverted trees
by applying the tree decomposition fa
Denote byE; ; the edge set itF’.
4. construct a supergraghtV, £) such that
each inverted tree iff’ is a supervertex and

D(v).

an edge ir€ exists if there is an edge @
between vertices in these two supervertices.
endfor

1:=14+1

endwhile

5. Find a2t-spanneg’ of G(V, &) by Algorithm 1.
6. The approximate-spannerSP(G), of G is
Gv,ulz sl g yug,

Theorem 3.1.Given an unweighted, connected grapti/, E),

an approximate--spanner with factolO(t**!) can be con-
structed inO(% logn) time usingM (n) processors, and the
spanner has size @¥((Z%)'*'/t + n), and factor ofO(tk*1),
wherek is a fixed constant, < k < clog, n andc < 1.

Proof. By Algorithm 2, thewhile loop can be finished in
O(klogs tlogn) time using at mos®(m + n) processors. The
step 5 can be done iA(; logn) time usingM (n) processors
by Lemma 3.1 which is also the dominant step of the entire
algorithm.

By Lemma 2.1, the number of supervertices in a super-
graph is at moshalf of the number of supervertices of its im-
mediately precedent supergraph, assun@inig the initial su-
pergraph. Let the number of supervertices of current super-
graph ben; (n; = n). Then the number of supervertices of
the resulting supergraph after finishing tloe loop is at most
O(%t). Therefore the final supergraph has;;) supervertices
after finishing thewhile loop. Following Lemma 3.1, thet-
spanner of the final supergraph has si2g 2)!*1/t). Note
that, for fixedi, |E; ;| < |E;;—1|/2 and|Ey ;| < n — 1 be-
cause eaclk; ; is the edge set of a forest of inverted trees. So
Z]Ll;’? g |E; ;| < O(3). Therefore the size of the resulting
approximate spanner &((4)'*'/t + n).

Now we calculate the factor. L&y be the maximum diam-
eter of a cluster in théth iteration of variablej for fixed i in
the algorithm above. Initially every vertex {# is a supervertex
and the diameter of every supervertexjs(= 0) wheni = 0.
The equation is described as follows.

di =3d;_1 +2,1<1< |logst].

Thendj,e, ¢y = t — 1 by the equation above. Therefore the
maximum distance between two adjacent vertices ipelong-
ing to the same supervertex is at mext*), and the factor of
the resulting spanner 8(2t(c't* + 1)) = O(tk*1), wherec’

is a constantd

3.2 Weighted Graphs

3.2.1 Finding at-spanner

Assume thatl; (z, y) is the weight of the shortest path between
verticesz andy in graphG. Althdfer et al. [1] first consid-
ered the problem of finding a sparsepanneG’(V, E') in an
non-negative weighted gragh(V, E), and presented a simple
greedy algorithm for this problem described as follows.

Algorithm 3

1. Initialization
1.1. sortE by non-decreasing weight;
1.2.G":=(V,0);

2. for every edge: = (u, v) from the sorted listlo
2.1. computelg (u, v) between andv in G;
2.2.if dg (u,v) >t x da(u,v)

then E' := E' U {(u,v)}; G’ :=
endfor

3. OutputG’

(V. E')

If we use the fastest algorithm for finding the shortest path
between two vertices [12], Algorithm 3 can be implemented
in O(mm + mnlogn) O(n') time. The size ofG’ is
O(n**2/(t=1)), and the weight s less thdn®; + 1)wt(M ST)
[1]. By a considerably improved analysis of this algorithm,
Chandra et al. [7] show that the running time of this algo-
rithm is O(n?+%/(¢=1)) and the weight of3’ is no more than
O(n%wt(MST)), wheree > 0 is an any arbitrarily small
constant.

The naive parallel version of Algorithm 3 requirégm +
Rnlogn) time if O(n?) processors are available, wheeis
the size ofG'. Here we observe tha&t’ is such an augmented
graph, each time we just put a new edge into it and re-calculate
the shortest path between a pair of vertices on the augmentec
graph. Therefore, we can use the partially dynamic parallel al-
gorithm for finding all pairs shortest paths, developed by Liang
et al. [13], which claims that maintaining all pairs shortest paths
can be done M0 (logn) time usingO(n?/logn) processors
when inserting an edge to a graph. Hence we have
Lemma 3.2 Given a weighted, connected grapiV, E),
finding a sparset-spanner ofG can be done inO(m +
n'+2/(t=1)1ogn) time usingO(n?) processors. The size and
the weight of the spanner generated &rg:'+2/(:-1)) and
O(n%wt(MST)) respectively, where > 0 is an any arbi-
trarily small constant.
Proof. Initially we compute the distance matrix &f. It can be
easily done inD(n logn) time usingO(n?) processors. Then
we construch single source shortest path trees@r(see [13]

for details). When a new edge is inserted iGtg we update
the distance matrix o’ which can be done i¥(1) time using

vertices first. We then put them back to the resultirgpanner
of the graph formed by the remaining vertices. We construct a

O(n?) processors, then the maintenance of the data structuresnew graph@;(V, E;) from the graphG(V, E) such that an edge

for n single source shortest path treesd@8rrequiresO(log n)

time andO(n?/logn) processors. There are at mdsedges

to be inserted intae’ and R = O(n'*t?/(t=1) [1]. While
deciding whether an edge 6f belongs toG’ can be done in
O(1) time by checking the corresponding entries in the distance
matrices of bothG andG’. Therefore this algorithm requires
O(m + n'+2/(t=1) logn) time provided tha®(n?) processors
are availabled

3.2.2 Finding an approximatet-spanner

The idea for finding an approximatespanner on weighted
graphs is similar to that for unweighted graphs. The algorithm
is same as the Algorithm 2 except the following steps.

Algorithm 4

2. for each vertex, find a neighbow
with the minimum weight, and sé?(v) := w.

4. Construct a weighted supergrapfV/, £)

such that each tree is a supervertex and)) € E
is selected as an edge®ff (i) u € C, andv € C,;
(i) the weight of the edgéu, v) is minimum
among all such edges betwe@nand(C,;

5. Find at-spannef;’ on the resulting supergraph
G(vV,€) by Lemma 3.2.

Theorem 3.2. Given a weighted grapt¥(V, E) with a fixed

k, let D be the maximum edge weight of the MST 6f
Then finding an approximatespanner with facto©(Dtk+1)
requiresO(%)? + (&)**2/(t=Ylogn) time andO(n?) pro-
cessors. The approximatespanner generated has size of
O((2)1+2/ (1) 4), weight of O(((2) 77 + 1)wt(MST)),
wheree > 0 is an any arbitrarily small constant.

Proof. Similar to Theorem 3.1, omitted

4 NC Algorithms for 2t-spanners
4.1 Unweighted graphs

In the following we present an NC algorithm for findingia
spanner of unweighted grap&iswith size O (max{m,n?/t}).
The motivation that we develop this algorithm is to use it as a
subroutine to devise an NC algorithm for findin@#aspanner
on weighted graphs.

Let G(V, E) be an unweighted graph anmlfu, v) the dis-
tance between verticasandv in G. Assuming thaG does

(u,v) € E; ifand only if d(u, v) < 2¢,0 < i < logn.

Denote byU; a maximal independent set of vertices on
G(V, E;), andT (u,i) a Breadth-First Search tree rooteduat
with height2! in G(V, E).

Lemma 4.1.Given the grapld/(V, E), the graptG;(V, E;) can
be constructed i) (i) time usingO(n?) processors) < i <
log n.

Lemma 4.2. For any two non-adjacent verticesandv in the
grathUog tJ—l(Vv EUog tJ—l)! d(uv U) > gllogt] =1 > t/4
Lemma 4.3. xmori=rry < [Ulogt)—1] < in,

Algorithm 5

1. Construct the grap@¥ |15+ —1(V; E|10g ¢]—1)-

2. Find aUUOgtJ_l in GUogtJ—l-

3. Foreveryu € Uiz ¢|—1, construct the(u, [logt]).
4. The2t-spanner ot is Uyeu . ,,_, I (u, [logt]).

Let Cover(u, [logt]) be a set consisting of all vertices in
T(u, |logt]), andu be defined as theenterof this set. By
the definition in Section 2 over(u, |logt]) is a partial cover
andH = {Cover(u, [logt]) | u € Ujiog¢]—1} is @ coarse ver-
tex cover onl/.

Theorem 4.1.The spanner generated by Algorithm 5 has size
of O(min{m,n?/t}), and factor of2t.

Proof. By Lemma 4.3|U 105 ¢)—1| < 4n/t,and avertex € V'
belongs to at mostn/t home covers, and therefore the size of
the resulting spanner @(min{m, ”72}).

Now we show that the factor of the resulting spannéttis
To achieve this bound, we only show that for every two vertices
u andv such thatd(u,v) < 2l°stl=1 there exists at least a
home covert € # including these two vertices. That means,
the distance betweet andv in the spanner is no more than
2t. The proofis as follows. By Lemma 4.2, it is impossible that
bothu andv are inU| 44—, - S0 we discuss it by four cases. (i)
If either one of them is i 1o5)1, SAYU € U|1o5¢)—1, then
v is in the home cover of, becausel(u,v) < 2U°stl, As a
result, the distance between these two vertices in the spanner is
no more tharel'et) < ¢. (ii) If neitherw norv is in U1 ¢)—1
but their common neighbas of |14 4|1 ISIN U105)1, then
w is the center of their home cover becadée, w) < 2ol -1
andd(u,w) < 2Uestl=1 the theorem follows. (iii) Ifw is a
neighboring vertex of butv in G104 ;1. We claim thaw also
belongs to the home cover centereduatbecausel(v, w) <
d(w,u) + d(u,v) < 2llostl=1 4 ollogt|=1 < ollegt] = (jv)
Otherwise, the distance between a verteX/if,, ;) andu
(orv) in Giog¢)—1 is at least larger than 2. Then eitheror
v must belong toU| 54 ¢|—1 beCaUSE|1oq¢|—1 IS @ maximal

not contain degree-one vertices. Otherwise we can delete these@ndependent set of gragh ;o ;|- Contradiction 3.

4.2 Weighted graphs

Cohen [7] introduced thpairwise coverconcept, and pre-

sented an efficient sequential algorithm and a randomized paral-

lel algorithm for finding a sparsespanner in weighted graphs.
The basic idea of Cohen's algorithm is to employ a logarithmic
number of pairwise covers for different valuesidf to con-
struct spanners. Define tmadii of a partial coverX by the
distance from the center df to the farthest vertex in it. Lef

be any constant bounded by< ¢’ < 1/2. Cohen's algorithm

is described as follows.

Algorithm 6
1. Initialization.
1.1. Winas := maz{wt(e) | e € E};
Wnin := min{wt(e) | e € E};
R:= |—10g1+e’(%)];
1.2.for i:=0to Rdoin parallel
Wi = Wiin(1+€')?
endfor
for ¢ := 0 to R doin parallel
Construct a coarse vertex covkf such that
the radii of every partial covet € H; is
no more thargles tlyy;.
endfor
3. The spanner generated is
UI_ {T;(u, |logt]) | uis the center of X and X € H;}.

The key part of this algorithm is how to efficiently construct
a coarse vertex cover dni (called pairwise cover in Cohen's
algorithm) in parallel. As for this, Cohen [8] introduces ran-

Lemma 4.7. Given a weighted graply(V, E) with respect

to parameters and1V;, it can be done irO(log® n) time us-

ing O(n?) processors for constructing a coarse vertex céger
such that two vertices andu are included in one home cover
X at least ifd(u,v) < 2llegt]=11y; for fixed i, whereX € H,;.
Proof. By Algorithm 7, the step 1 can be finished in
O(lognlogt) time usingO(n?) processors. The details are
as follows. First compute the matrigl'°st/=1 which requires
O(lognlogt) time usingO(n?®) processors. Then construct
the graphG;(V, E*) which requiresO(1) time usingO(n?)
processors. The step 2 can be doneDifiog® 1) time us-

ing O(n?/logn) processors by the algorithm of Goldberg and
Spencer [18]. The processing of the step 3 is more involved.
For every vertexu € U(i, |logt] — 1), we build an inverted
tree rooted atu, T;(u, |logt]), initially. Then we check a
vertexv € V to see whether € T;(u, [logt]) by testing
af,) < 28w, If it does, we find the parent(u,v) of

v in this tree, where(u,v) is such a vertexw thatal('w) =
af,) + wt((w,v)). There are atmost/ (i, |logt] — 1)| < n
trees, and for each vertex finding its parentin a tree can be done
in O(logn) time usingO(n) processors. So, the step 3 requires
O(logn) time andO(n?) processors. Step 4 can be done in
O(1) time usingO(n?) processorsd.

Theorem 4.2. For a weighted connected grapi{V, E) with
non-negative weights, the spanner generated by Algorithms 6

and 7 has size @@(min{m, ”72 logHE(Vv‘Q;j:)}) and factor of

2t, wheree is a constant andl < e < 1/2.
Proof. Similar to Theorem 4.1, omitted

References

domness to chose the centers of covers. However, it seems [1] I. Alth6fer, G. Das, D. Dobkin, D. Joseph and J. Soares,

not easy to transform this randomized parallel algorithm into
a deterministic version. Here we present an efficient, deter-
ministic parallel algorithm for constructing such a coarse ver-
tex cover by extending our technique for unweighted graphs to
weighted graphs. Lefl be the adjacent weighted matrix Gf
andA? = A1 O A1, where(® operation is defined as fol-
lows: aéu,v). = minwev{af;}v), a’(;’lw) + af;}v)} and an entry
a%u’v) of A* represents the distance betweeandv with at
most2! edges. Letd® = A. Then a coarse vertex Covay; is
constructed as follows.

Algorithm 7

1. Construct an auxiliary graph;(V, E*), an edge
(u,v) is added taF* iff d(u,v) < 2llostl=11y;,

2. Find a maximal independent $éti, [log¢| — 1) of
G;(V, E*) in parallel.

3. Build a shortest path tree rooted@tl; (u, |logt])
with height2l°s ! W, in G(V, E) for each
u € U(i, |logt] — 1) such that a vertex is
included in this tree ifél(u, v) < 2t W,

4. The coarse vertex cover is built, where

H; = {Cover;(u, |logt|) | ue U, [logt] —1)}.

On sparse spanners of weighted gragbisc. and Comp.
Geometryyol. 9, 1993, 81-100.

B. Awerbuch, Complexity of network synchronizatiah,
ACM, Vol. 32, 1985, 805-823.

B. Awerbuch, A. Bar-Noy, N. Linial and D. Peleg, Com-
pact distributed data structures for adaptive routPPigc.
21st ACM Sympo. on Theory of Computii®89, 479-
489.

B. Awerbuch and D. Peleg, Routing with polynomial
communication-space trade-ofglAM J. Discrete Math.
Vol. 5, 1992, 151-162.

B. Awerbuch and D. Peleg, Sparse partitiofspc. 31st
IEEE Sympo. on Founda. of Computer S&990, 501-
513.

[6] B. Chandra, G. Das, G. Narasimhan and J. Soares, New
sparseness results on graph spannespc. 8th ACM
Sympo. on Comput. Geometiy92, 192-201.

E. Cohen, Fast algorithms for constructing t-spanners and
paths with t,Proc. 34th IEEE Sympo. on Founda. of Com-
put. Sci, 1993, 648-658.

D. Coppersmith and S. Winograd, Matrix multiplication
via arithmetic progressionsProc. 19th ACM Sympo. on
Theory Comput.1987, 1-6.

(2]
(3]

(4]

(5]

[7]

(8]

[9] G. Das and G. Narasimhan, A fast algorithm for construct-
ing sparse Euclidean spannd?spc. 10th ACM Sympo. on
Comput. Geometryl994, 132-139.

[10] M. L. Fredman and R.E. Tarjan, Fibonacci heaps and
their uses in improved network optimalization problems,
J. ACM \ol.34, 1987, 596-615.

[11] W. Liang, B. McKay and H. Shen, NC algorithms for dy-
namically solving the all pairs shortest path problem and
related problems, Unpublished manuscript, Aug., 1995.

[12] D. Peleg and A. A. Sdliffer, Graph spanners, Graph
Theory Vol. 13, 1989, 99-116.

[13] D. Peleg and J. Ullman, An optimal synchronizer for the
hypercubeSIAM J. ComputMol. 18, 1989, 740-747.

[14] D. Peleg and E. Upfal, A trade-off between space and
efficiency for routing tables). ACM Vol. 36, 1989, 510-
530.

[15] M. Goldberg and T. Spencer, Constructing a maximal in-
dependent set in paralléglAM J. Discrete MathMol. 2,
1989, 322-328.

