Programming with Transactions and Chemical Abstract Machine

Wanli Ma Christopher W. Johnson Richard P. Brent
Comp. Sci. Lab. Dept. of Comp. Sci. Comp. Sci. Lab.
The Australian National University
Canberra, ACT 0200, Australia

Abstract

The coordination style programming language T-
Cham extends chemical abstract machine (Cham) with
transactions. The Cham s an interactive computa-
tional model based on chemical reaction metaphor,
where a computation proceeds as a succession of chem-
tcal reactions. A transaction is a piece of sequentially
executed codes and could be written in any language,
such as C, Pascal, or Fortran etc., as long as it satis-
fies its pre-condition and post-condition. Every trans-
action begins its execution whenever its execution con-
dition 1s satisfied. A T-Cham program can be executed
i a parallel, distributed, or sequential manner based
on the available computer resources.

1 Introduction

A plethora of concurrent (including parallel and dis-
tributed) programming languages has been proposed,
yet concurrent programming is still far more difficult
than sequential one. The differences between them are
not lying in the single thread versus the multi-thread
with communications, but a functional program ver-
sus a reactive one [4]. A functional program is the
one which maps an input into an output, while a re-
active one highlights the interactions among the com-
ponents of the program. Accordingly, a concurrent
programming language should not be judged only by
its abilities of thread control and communications, but
also the abilities to express the interactions. In other
words, a concurrent programming language should not
be just an extension to an existed sequential program-
ming language with some thread control and commu-
nication facilities, but a new one based on an interac-
tive computation model.

T-Cham (Transactions on Chemical Abstract
Machine) is a coordination style programming lan-
guage obtained by extending chemical abstract ma-
chine (Cham) [3] with transactions and hierarchical
tuple spaces. It is a successor of our earlier program-
ming language Multran [6]. A Cham is an abstract

model for concurrent computations. It is based on the
chemical reaction metaphor, which was first put out
in GAMMA model [2]. A T-Cham program is com-
posed of concurrent transactions and hierarchical tuple
spaces, where the actions take place, and can be exe-
cuted in a parallel, distributed, or sequential manner
based on the available computer resources. Its exe-
cution mode is transparent to programmers. Trans-
actions (more precisely, leaf transactions) are the se-
quentially executed tasks with the properties of ACID
(Atomicity, Consistency, Isolation, and Durability) [1].
The tuple spaces can be taken as chemical solutions
where the floating molecules reside and interact. The
elements of a tuple space, 1.e., the molecules, are called
tuples. An action may happen whenever its execution
condition is satisfied. It will consume certain tuples
from a tuple space, perform its task, and generate
new tuples and inject them back into the tuple space
for future processing. The computational model, i.e.,
Cham, resembles a succession of chemical reactions in
which the elements of a tuple space are consumed and
generated.

2 The
guage

The execution of a T-Cham program starts from
a special transaction called root—the main transac-
tion of the program. The transactions referred to
by the reaction rules in a transaction are called sub-
transactions of it. A transaction, which 1s written in
the language other than T-Cham and hence does not
spawn any sub-transactions in the sense of T-Cham, is
called a leaf transaction; otherwise, a non-leaf trans-
action.

A non-leaf transaction (recall that a program is a
collection of transactions with a special one named
root) consists of a name and a body:

T-Cham Programming Lan-

transaction my_name
my_body
endtrans,

reactionrules. The rules operate on the tuple
space of a transaction and coordinate its com-
putational actions—sub-transactions. A reaction
rule takes the form of

where my_name is the transaction name and my_body
is the transaction body, which is composed of the fol-
lowing five sections':

1. Tuples section declares all possible tuple types
which may appear in the tuple space. We use a T1,%2,--, %y leadsto y1,Y2, -, Ym

type system and syntax similar to those of C pro- by T when f(z1, 29, -, Zn),

gramming language (without pointer types) for
tuple declarations. The declaration only speci-
fies possible tuple types. How many of the de-
clared tuples, when, and where they enter the tu-
ple space depend on a particular execution, and
cannot be predicted in advance.

tuples
tuple {
int A[100]; int gridsieved;
} num;
boolean token;
fifo char msg[256];

The keyword tuple can be omitted if the tu-
ple has only one field. A leading keyword of
fifo, filo, or random can be used to specify
the consumption order of the tuples. The default
value is random. The above declaration defines
three tuple names, num, token, and msg. num has
two fields; msgs are consumed in first-in-first-out
(fifo) order.

. Initialization section sets up the initial state of
a tuple space. The initialization could be passive
(assigning values to tuples) or active (calling one
or more leaf-transactions, where there could be
some input operations to get data from an input
device or a file), for example,

initialization
[i:0..9]::token={i*2}; init_num();

The initialization of token is passive, while
the call to initnum(), which is a leaf-
transaction, to initialize tuple num is active.
“[i:0..9]::token={i*2}” means that for every
i from 0 to 9, token={i*2}, i.e., there are ten
tokens in the initial tuple space and they are even
numbers from 0 to 18 respectively. i is called an
indez variable.

3. Reactlonrules section consists of a number of

reaction rules, beginning with the key word

From now on, a sub-transaction is called a transaction for

brevity if there is no confusion.

where z1, 3, -+, Zn, Y1, Y2, * -, and y,, are
tuples whose types are declared in the tuples
section, T is the name of a transaction (known
as a sub-transaction to this transaction), and
f(x1,22,--,2,) is a boolean expression. The
rule means whenever the tuples z1, x4, ---, and
r, are all currently in the tuple space and the
function f(z1, 22, - -,) evaluates to TRUE, (i) the

tuples xq, s, -+, and z, are selected and con-
sumed, (ii) the transaction 7" is executed, and (iii)
new tuples y1, y2, - -+, and y,, are generated and

injected back into the tuple space. From the point
of view of the transaction which contains the reac-
tion rule, these three actions are indivisible. Both
by and when qualifiers of a reaction rule can be
omitted if the transaction used is null and/or the
condition is trivially TRUE.

There may be some common tuples among z1,
ZTg, " Tn, Y1, Y2, -+, and Y. This means
that more than one tuple of a certain type is
needed for the reaction or some selected tuples
are sent back to the tuple space (with or with-
out changes), for example, “x,x leadsto x,y”
To distinguish the different appearances of tu-
ples, in the when condition and the body of a
sub-transaction, the “$” operator is used, e.g.,
“when (x$1==x$2-10)” Note that the numbers
here never mean the order of the tuples.

A pair of curly-braces on a tuple name, say {x},
means all tuples of this type together, i.e., select-
ing them all, and a pair of |’s, | x|, means the pop-
ulation of this kind of tuples currently in the tuple
space. A transaction need not consume all the
tuples on the left-hand-side of its reaction rule.
We use operator “!” to denote that the tuple is
just read by the rule but not consumed, i.e., it
is still available in the tuple space. Similarly, a
tuple which could or could not be generated by a
transaction will be preceded by a “?” operator,
e.g., “!x,y leadsto 7z”

. Termination section gives conditions such that

whenever any of them is satisfied, the correspond-
ing final action is committed and the transaction
then terminates:

termination
on (|token|==0) do output();

For an interactive program, which does not termi-
nate, there is no termination section in the root
transaction. The test of termination conditions,
if they exist, takes priority over that of reaction
rule conditions.

5. Sub-transactions section specifies the pre-
conditions and the post-conditions of the sub-
transactions referred to by the reaction rules de-
fined in the reactionrules section, for example,

subtransactions
prod: |token|>0//|token|’=|token|-1;

where prod is the name of the transaction
referred to by a reaction rule, “|token|>0"
is the pre-condition of the transaction, and
“|token|’=|token|-1" the post-condition. The
’ operator means the values after the execution
of the transaction.

A leaf transaction looks like this:

transaction my_name
#language my_language
#tuple tuple_desp

my_code
endtrans,

where my_language, known as a guest language, is the
programming language used to code this transaction,
tuple_desp provides the type information of a tuple to
the transaction, and my_code is a programming unit
written in “my_language”. There could be no or many
“#tuple” lines. The tuples described in the line(s) are
resources passed to the transaction before its execu-
tion and consumed by it after the execution.

The execution of a T-Cham transaction proceeds
as follows: before a termination condition is satisfied,
all of its reaction rules are fairly chosen and tested.
Whenever the reaction condition of a reaction rule
holds, 1.e., the tuples needed by the reaction rule are
currently in the tuple space and the boolean function
of its when qualifier—if it exists—evaluates to TRUE,
the corresponding sub-transaction is invoked. By fair-
ness, we mean that any reaction will eventually hap-
pen if its reaction condition is continuously satisfied.
It is a weak fairness condition. The test of a reaction
condition is atomic, which means it will lock all tuples
needed before a real test begins. If locking fails, the
test is suspended and retried later. Of course, a T-
Cham implementation could use different approaches

for the test to achieve a better performance as long as
they preserve the semantics.

If a sub-transaction to be executed is written in T-
Cham, a new tuple space is established according to
the specification of the sub-transaction. The relations
on the tuples of the two level tuple spaces are also es-
tablished. All the actions of the sub-transaction oper-
ate on the new tuple place, which will be revoked after
the execution. The tuple space to a T-Cham trans-
action is the run time environment to a function or
a procedure in an imperative programming language.
From the point of view of a transaction, any of its
sub-transactions i1s an “operator” and is executed in
exactly “one step”

3 Conclusions

The T-Cham programming language is introduced.
For more details about the language and the related
examples, we refer reads to our paper [5].

References

[1] D. Agrawal and A. El Abbadi. Transaction man-
agement in database systems. In Ahmed K. Elma-
garmid, editor, Database Transaction Models: For
Advanced Applications, pages 1-32. Morgan Kauf-
mann Publishers, San Mateo, California, USA,
1992.

[2] J.-P.Banatre and D. Le Métayer. Programming by
multiset transformation. Comm. ACM, 36(1):98-
111, January 1993.

[3] G. Berry and G. Boudol. The chemical abstract
machine. Theoretical Computer Science, 96:217—

248, 1992.

[4] L. Lamport. Verification and specification of con-
current programs. In J. W. de Bakker, W. P.
de Rover, and G. Rozenberg, editors, A Decade of
Concurrency: Reflections and Perspectives, LNCS
803, pages 347-374. Springer-Verlag, 1993.

[5] W. Ma, C. W. Johnson, and R. P. Brent. Con-
current programming in T-Cham. In Kotagiri
Ramamohanarao, editor, The Proceedings of the
19th Australasian Computer Science Conference

(ACSC’96), pages 291-300. 1996.
[6] W. Ma, V. K. Murthy, and E. V. Krishnamurthy.

Multran — A coordination programming language
using multiset and transactions. In S. K. Aityan,
L. T. Hathaway, et al., editors, Proceedings of the
First International Conference on Neural, Paral-
lel, and Scientific Computations, pages 301-304.
Dynamic Publishers, Inc., Atlanta, Georgia, USA,
1995.

