
The Design of a Supporting Environment for
On-Line Parallel Debugging�

Zhou B. B., Brent R. P. and Qu X.
E-mail: bing,rpb,quxun@cslab.anu.edu.au

Computer Sciences Laboratory
The Australian National University

Canberra, ACT 0200, Australia
Phone: +61-6-2798644

Fax: +61-6-2798645

Abstract

On-line parallel debugging can provide very ac-
curate and reliable information in diagnosis of
parallel programs. Unfortunately, commercially
available tools for on-line parallel debugging are
hardly seen. This is mainly due to the lack
of a suitable environment for multiprogramming
of mixed parallel and sequential workloads so
that the resources cannot be utilised e�ciently.
In this paper we present a two-level scheduling
scheme for mixed parallel and sequential work-
loads on parallel machines { a key step in the
establishment of a proper environment for on-
line parallel debugging.

1 Introduction

On-line parallel debugging is de�ned as debug-
ging a parallel program during its execution on
a real parallel system. It is in contrast to o�-line
parallel debugging which means the debugging of
parallel programs is done by running a simula-
tor on a sequential machine, or by accumulat-
ing trace data during the program execution and
then analysing them post-mortem.

There are several problems associated with
o�-line parallel debugging. When a simulation
is carried out on a sequential machine, paral-
lel computation is actually serialised. Then the
simulation may not exactly match the real situ-
ation. Problems caused by asynchronous events
(e.g. asynchronous messages between di�erent
� c
 1996, the authors. rpb167 typeset using LaTEX

processors on distributed memory machines and
critical sections to be updated by several pro-
cesses on shared memory machines) may not be
detected. Another example is that the transient
behavior of a parallel program may not be ob-
served when trace-based methods are applied.
With on-line parallel debugging users can con-
trol the execution of their parallel programs, for
example, users can freely set breakpoints in their
programs. On-line parallel debugging tools then
allow us to pinpoint precisely where the prob-
lems are just like sequential debugging tools.
Therefore, on-line debugging will be more accu-
rate and reliable than o�-line debugging.

On-line parallel debugging requires both par-
allel and sequential processing and is a typical
procedure consisting of computing and thinking
stages. To make on-line debugging work prop-
erly and the resources of a given parallel system
be used e�ciently, we need an interactive en-
vironment for multiprogramming of mixed par-
allel and sequential workloads. Unfortunately,
currently existing parallel systems do not pro-
vide such an environment and many only sup-
port parallel batch jobs. On-line debugging will
then be very expensive on this kind of system.

The trend of parallel computer developments
is towards networks of workstations [2], or scal-
able parallel systems [1]. In this type of system
each processor, having a high-speed processing
element, a large-size memory space and full func-
tionality of a standard operating system, can op-
erate as a stand-alone workstation for sequential
computing. Interconnected by a high-bandwidth

P1-S-1



and low-latency network, the processors can also
be used for parallel computing. With this type
of system it is thus possible for us to establish
an environment suitable for on-line parallel de-
bugging.

There are many problems associated with the
design of a user-friendly on-line parallel de-
bugger and the required supporting environ-
ments. In this paper we only discuss an e�ective
scheduling scheme for mixed parallel and sequen-
tial workloads, a key issue relating to the estab-
lishment of the required interactive environment.

To simplify the description, in this paper pro-
cesses associated with parallel jobs are called
parallel processes to distinguish them from those
sequential processes associated with sequential
jobs.

The paper is organised as follows. Section 2
brie
y discuss related work. In Section 3 we
describe the basic structure of our two-level
scheduling system. The key feature is the intro-
duction of registration o�ce. With a registration
o�ce introduced on each processor parallel work-
loads can be serviced coordinately across the
processors and parallel and sequential processes
are also allowed to time-share the resources on
each individual processor. The issue of tuning
the system to meet the needs of on-line debug-
ging is discussed in Section 4. The conclusion is
given in Section 5.

2 Related Work

Many scheduling schemes for multiprogramming
on parallel machines have been proposed in the
literature. They can roughly be classi�ed into
two di�erent types. The �rst type is called
local scheduling, or blocking. With simple lo-
cal scheduling parallel processes are not distin-
guished from sequential ones on each processor
(except higher (or lower) priorities may be given
to processes associated with parallel jobs). All
processes are scheduled locally and there is no
coordination between processors in scheduling
parallel jobs. Thus there is no guarantee that the
processes belonging to the same parallel jobs can
be executed at the same time across the proces-
sors. When many parallel programs are simulta-
neously running on a system, processes belong-
ing to di�erent jobs will compete for resources

with each other and then some processes have to
be blocked when communicating or synchronis-
ing with non-scheduled processes on other pro-
cessors. This e�ect can lead to a great degrada-
tion in overall system performance [3, 4, 6, 7, 10].
One method to alleviate this problem is to use
two-phase blocking [12] or adaptive two-phase
blocking algorithms [5]. In this method a pro-
cess waiting for communication spins for some
time, and then blocks if the response is still
not received. The reported experimental results
show that for parallel workloads this scheduling
scheme performs better than the simple local
scheduling. However, the system performance
will be degraded for �ne-grain parallel programs
and it is not clear how e�ective the method is for
scheduling mixed parallel and sequential work-
loads.

Although multiprogramming of mixed parallel
and sequential workloads is achieved by using
local scheduling, a serious problem when used
for on-line debugging is that parallel jobs can-
not be executed in a coordinated manner. It is
required in parallel computing that right data
should be obtained from the right place at the
right time. When timing is a critical issue for
e�ective debugging, coordination in scheduling
parallel workloads becomes a must. Thus local
scheduling may not well suit on-line parallel de-
bugging.

The second type of scheduling is called
Coscheduling [11] (or gang scheduling [6]). With
this type of scheduling the processes of the same
job will run simultaneously across the processors
for only certain amount of time which is called
scheduling slot. When a scheduling slot is ended,
the processors will context-switch at the same
time to give the service to processes of another
job. Parallel programs take turns to receive the
service in a coordinated manner across the pro-
cessors. However, a signi�cant drawback of the
conventional coscheduling is that it is designed
only for parallel workloads. In each schedul-
ing slot there is only one process running on
each processor and the process simply does busy-
waiting during communication/synchronisation.
This method will waste processor cycles and
greatly decrease the e�ciency of processor utili-
sation and is not suitable for on-line parallel de-
bugging.

P1-S-2



new Jps

new Jss
Qs

Qp

CPU

each scheduling slot
one Jp dispatched

Jp time-sharing
with Js

(a)

a scheduling slot

Jp runningJs runningJp running Js running Jp running

Jp dispatched
from Qp

Jp awakened
to Qs

Jp awakened
to Qs

Jp cycled
to Qp

Jp blocked Jp blocked

(b)

Figure 1: (a) A two-level scheduling scheme and (b) The normal situation in a scheduling slot.

P1-S-3



3 The Two-Level Scheduling

In this section we describe an e�ective sys-
tem for scheduling mixed parallel and sequen-
tial workloads on parallel machines. The system
design is based on two principles, that is, �rst
parallel workloads can be scheduled in a coordi-
nated way so that they will not severely interfere
with each other, and second both parallel and se-
quential workloads may time-share resources on
each processor so that the e�ciency of processor
utilisation can be enhanced. Thus parallel work-
loads need to be scheduled at two di�erent levels.
At the �rst, or global level parallel workloads are
coscheduled across the processors, while at the
second, or local level processes associated with
parallel jobs then time-share resources with se-
quential processes on each processor.

The basic structure of the two-level scheduling
scheme on each processor is depicted in Fig. 1(a).
This system consists of two queues, a queue Qp
at the �rst, or global level and a conventional,
or sequential queue Qs at the second, or local
level. Because it is used to coordinate paral-
lel workloads across the processors, Qp is then
called parallel queue in the following discussion.
While new sequential processes directly come to
the sequential queue, all parallel processes will
�rst enter the parallel queue and then be dis-
patched to the sequential queue before receiving
a service. Since coscheduling is applied, each
time only one parallel process can be dispatched
from the parallel queue and thus at any time in-
stant there may only be one parallel process in
the sequential queue. If parallel processes asso-
ciated with the same job are placed at the same
place in each parallel queue across the processors
and the same scheduling algorithm is applied,
they can then be dispatched at the same time.

After entering the sequential queue the par-
allel process on each processor will time-share
the service with sequential processes. Assum-
ing that parallel processes have higher priori-
ties than sequential ones, they can immediately
obtain the service once entering the sequential
queue. Unlike the conventional coscheduling,
parallel processes will be blocked during com-
munication/synchronisation and then sequential
processes can be serviced, as shown in Fig. 1(b).
When the parallel process is awakened, instead

of entering the parallel queue it goes to the
sequential queue so that it can continuously
be serviced within its own scheduling slot. In
each scheduling slot the parallel process may be
blocked several times. By the end of the schedul-
ing slot it will be cycled to the parallel queue
and wait there for the next service. This nor-
mal situation in a scheduling slot is depicted in
Fig. 1(b).

Since parallel processes will time-share re-
sources with sequential processes, coordination
of parallel workloads becomes more complicated.
Assume that the parallel queue is constructed
as a conventional queue, that is, parallel pro-
cesses will be detached from the queue after be-
ing dispatched. To time-share resources with se-
quential processes, parallel processes may be ei-
ther in running state, or ready and blocked states
just like sequential processes. The situation in
Fig. 1(b) only shows that the parallel process is
in running state at the end of its scheduling slot.
Then the process can easily be found and cycled
back to the parallel queue. When a parallel pro-
cess is still in either ready, or blocked state at the
end of the scheduling slot, however, the system
has to look for it from the queues for processes
in ready and blocked states.

To avoid complicated procedures for search-
ing missing processes we use a linked list which
is called a registration o�ce, as shown in Fig. 2.
When a parallel job is initiated, each associated
process will enter the conventional queueing sys-
tem the same way as sequential processes on the
corresponding processor. However, it has to be
registered in the registration o�ce, that is, on
each processor the linked list will be extended
with a new node which has a pointer pointing to
the process just being initiated. Similarly, when
a parallel job is terminated, it has to check out
from the o�ce, that is, the corresponding node
on each processor will be deleted from the linked
list. If nodes associated with the same parallel
job are always added at the same place in each
list, the linked lists on di�erent processors will at
any time remain identical in terms of the order
of parallel workloads.

There is a servant working in the o�ce. The
servant has a pointer P. When this pointer points
to a node in the linked list, the process associ-
ated with that node is said being dispatched and

P1-S-4



servant

process 2process 1 process 3 process 4

IN

algorithm timer

registration o�ce

manager

node 1 node 2 node 3 node 4H T

IN OUT IN

process dispatched

P

Figure 2: The organisation of a registration o�ce.

can then enter the sequential queue and receive
a service. (In practice there may be two point-
ers, one pointing to the process currently be-
ing served, one to a process to be served next.)
When a process is dispatched from the parallel
queue, it will be marked out. Other process not
pointed by the pointer will be marked in so that
they are kept in the parallel queue. By using the
registration o�ce dispatched processes are never
detached from the o�ce and then there are no
search procedures required.

Parallel processes in the conventional queue-
ing system also operate the same way as se-
quential processes. They are either in run-
ning state, or in ready state requesting for ser-
vice, or, in blocked state during communica-
tion/synchronisation. If a parallel process is
marked in, however, it cannot obtain the service
whether it is in ready state or not. Therefore,
the correct coscheduling is guaranteed. It may
be more e�cient in practice that all parallel pro-
cesses marked in are blocked. A parallel process
can come out of the blocked status only if it is
ready for service and marked out.

When the scheduling slot is ended for the cur-
rent process, the servant is moved to a new place,
or pointer P is shifted to point to a new node.
The associated process can then be served next.

However, the movement of the servant is to-
tally controlled by an o�ce manager which has
a timer to determine when the pointer is to move
and an algorithm to determine which node the
pointer is to point to. Thus coscheduling paral-
lel processes becomes programming the pointer
(the servant) to move around a linked list (the
registration o�ce).

The o�ce manager can be either centralised,
or distributed. The detailed description of this
and other important issues relating to the en-
hancement of e�ciency of this two-level schedul-
ing can be found in [14].

4 The Interactive Environ-
ment

The two-level scheduling described in the pre-
vious section allows us to schedule both paral-
lel and sequential workloads simultaneously. To
establish an environment which is particularly
suitable for on-line debugging, however, the sys-
tem needs to be properly adjusted.

There may be several parallel programs run-
ning simultaneously in the system. Since good
response to interactive users is the �rst priority
in on-line parallel debugging, scheduling schemes
such as round robin [9], or fair share [8] can be

P1-S-5



applied at the parallel level so that no program
will be discriminated in obtaining the service. (It
should be noted that these scheduling schemes
may not be e�cient if the target is to achieve
short turnaround time [13].)

Suppose that there are ten parallel debugging
programs running at the same time. Six of them
are at the checking stage. Even though there
is only four programs at the computing stage,
they can only obtain the service once every ten
scheduling slots if the round-robin scheduling is
applied. There is no need to allocate scheduling
slots to a program which is at the checking stage.
This problem can easily be solved. In the infor-
mation �eld of each node a one-bit information
is added to indicate checking/computing status
of the associated process. Before a scheduling
slot is allocated to a process, the o�ce manager
will �rst check this information. If the program
is at the checking stage. the servant will sim-
ply skip it and move to the next one which is at
the computing stage. The four active programs
in the above example can then obtain the ser-
vice once every four scheduling slots. Therefore,
the e�ciency for executing parallel programs is
greatly enhanced.

There coexist parallel and sequential work-
loads in the system. The local scheduler at the
second level must ensure that neither of the two
types of workloads will severely be obstructed
in execution. Usually parallel processes are as-
sumed to have higher priorities than sequential
ones because they need coordination across pro-
cessors.

Although each time there may be only one
parallel process time-sharing resources with se-
quential processes on each processor, the execu-
tion of sequential workloads can still be seriously
deteriorated when most of parallel workloads are
�ne-grained. In that case dummy parallel jobs
can be introduced. A dummy parallel job is not a
real job and the purpose is just to insert into each
linked list a dummy node which is the same type
of nodes as others in the list except its pointer
points to NULL, the constant zero, instead of a
real parallel process. When pointer P is pointer-
ing to a dummy node the whole scheduling slot
will be dedicated to sequential processes. There-
fore, the deterioration of system performance for
sequential workloads can be alleviated.

It should be noted that the registration o�ce
can easily be extended to having multiple lists.
This gives us a great 
exibility in designing a
system which can meet various needs of on-line
parallel debugging.

Multiple lists may be required for on-line par-
allel debugging. The �rst one is just a nor-
mal list described previously. Processes attached
on this list will be blocked during communica-
tion/synchronisation and coscheduling is applied
to ensure that parallel processes of the same job
will be executed at the same time across the pro-
cessors.

To detect local errors users may wish to run
the code and check information on each individ-
ual processor. Although di�erent processors are
used, the execution of a parallel job should be se-
rialised. It is known that to activate, or dispatch
a parallel process is just to mark it out using the
registration o�ce. When processes of the same
job are to be executed sequentially, They are all
marked out and given priorities which are no dif-
ference to those sequential processes. For the
same reason as to identify checking/computing
status, a one-bit information is also added in the
information �eld of each node to indicate paral-
lel/sequential status of a parallel process. When
a process is in sequential status, no scheduling
slots are allocated to it at the parallel level so
that other processes which are active and in par-
allel status can be executed more e�ciently. A
new list can be added for detection of local er-
rors without adding one-bit checking informa-
tion. All processes attached on this list will be
marked out and they can then be executed with-
out any coordination. After the sequential op-
erations, the associated processes will be placed
back to the normal list.

To detect problems caused by asynchronous
events, timing becomes a very critical issue and
then batch processing is required. Another list
can be applied to cope with this problem. When
a scheduling slot is allocated, a process attached
on this list will be given a very high priority
and busy-waiting is applied during communica-
tion/synchronisation to ensure that the whole
slot is dedicated to just that process. Coschedul-
ing is also applied so that processes of the same
job can run simultaneously across the processors.

P1-S-6



5 Conclusions

On-line parallel debugging can provide very ac-
curate and reliable information in diagnosis of
parallel programs. Unfortunately, commercially
available tools for on-line parallel debugging are
hardly seen. This is mainly due to the lack of
a suitable environment for multiprogramming of
mixed parallel and sequential workloads. With
the rapid advance of computer technology it is
now possible for us to establish such an envi-
ronment. In this paper we then presented a
two-level scheduling scheme for mixed parallel
and sequential workloads on parallel machines.
With the introduction of registration o�ce we
can have a great 
exibility in tuning the system
to meet various needs of on-line debugging.

It should be noted that there are other prob-
lems closely relating to the establishment of an
e�ective environment for multiprogramming of
mixed parallel and sequential workloads. For ex-
ample, one problem is memory management. On
conventional parallel systems parallel jobs are
not swapped because the speed of disks is rela-
tively very slow and then swapping may severely
deteriorate the performance. With multipro-
gramming, however, there may be numbers of
parallel and sequential jobs time-sharing the re-
sources at the same time. Because the memory
space on a parallel system is limited, e�ective
swapping and/or paging techniques need to be
studied. Data produced by the same job may
be distributed to di�erent disks. Then another
problem is how to store data so that they can
easily be accessed and displayed to users in a
proper manner at the run time.

To make the system work e�ectively in prac-
tice, extensive experiments are required. That
will be our future work.

References

[1] T. Agerwala, J. L. Martin, J. H. Mirza, D.
C. Sadler, D. M. Dias and M. Snir, SP2
system architecture, IBM Systems Journal,
34(2), 1995.

[2] T. E. Anderson, D. E. Culler, D. A. Patter-
son and the NOW team, A case for NOW

(networks of workstations), IEEE Micro,
15(1), Feb. 1995, pp.54-64.

[3] R. H. Arpaci, A. C. Dusseau, A. M. Vah-
dat, L. T. Liu, T. E. Anderson and D. A.
Patterson, The interaction of parallel and
sequential workloads on a network of work-
stations, Proceedings of ACM SIGMET-
RICS'95/PERFORMANCE'95 Joint Inter-
national Conference on Measurement and
Modeling of Computer Systems, May 1995,
pp.267-278.

[4] M. Crovella, P. Das, C. Dubnicki, T.
LeBlanc and E. Markatos, Multiprogram-
ming on multiprocessors, Proceedings of the
Third IEEE Symposium on Parallel and
Distributed Processing, Dec. 1991, pp.590-
597.

[5] A. C. Dusseau, R. H. Arpaci and D.
E. Culler, E�ective distributed schedul-
ing of parallel workloads, Proceedings of
ACM SIGMETRICS'96 International Con-
ference, 1996.

[6] D. G. Feitelson and L. Rudolph, Gang
scheduling performance bene�ts for �ne-
grained synchronisation, Journal of Paral-
lel and Distributed Computing, 16(4), Dec.
1992, pp.306-318.

[7] A. Gupta, A. Tucker and S Urushibara, The
impact of operating system scheduling poli-
cies and synchronisation methods on the
performance of parallel applications. Pro-
ceedings of the 1991 ACM SIGMETRICS
Conference on Measurement and Modeling
of Computer Systems, May 1991, pp.120-
131.

[8] G. J. Henry, The fair share scheduler, AT
& T Bell Laboratories Technical Journal,
63(8), Oct. 1984, pp.1845-1858.

[9] L. Kleinrock, Queueing Systems, Volume II:
Computer Applications, Wiley-Interscience,
New York, 1976.

[10] S.-P. Lo and V. D. Gligor, A comparative
analysis of multiprocessor scheduling algo-
rithms, Proceedings of the 7th International
Conference on Distributed Computing Sys-
tems, Sept. 1987, pp.205-222.

P1-S-7



[11] J. K. Ousterhout, Scheduling techniques for
concurrent systems, Proceedings of Third
International Conference on Distributed
Computing Systems, May 1982, pp.20-30.

[12] J. Zahorjan and E. D. Lazowska, Spinning
versus blocking in parallel systems with un-
certainty, Proceedings of the IFIP Inter-
national Seminar on Performance of Dis-
tributed and Parallel Systems, Dec. 1988,
pp.455-472.

[13] B. B. Zhou, R. P. Brent and X. Qu, An
e�cient scheduling algorithm for multipro-
gramming on parallel computing systems,
submitted to 20th Australasian Computer
Science Conference, Sydney, Feb. 1997.

[14] B. B. Zhou, X. Qu and R. P. Brent, Ef-
fective scheduling in a mixed parallel and
sequential computing environment, submit-
ted to The 11th International Parallel Pro-
cessing Symposium, Geneva, Switzerland,
April 1997.

P1-S-8


