A Novel Parallel Algorithm for Enumerating Combinations*

Zhou B. B., Brent R. P. and Qu X.

Computer Sciences Laboratory
The Australian National University
Canberra, ACT 0200, Australia

Abstract In this paper we propose a new algorithm
for parallel enumeration of combinations. This algo-
rithm uses N processing elements (or PEs). We prove
that, if N and M are relatively prime, each PE will
do the same operations and generate the same num-
ber of distinct combinations so that the computational
load is well balanced. The algorithm has an important
application in solving the problem of fault tolerance in
replicated file systems.

1 Introduction

A number of parallel algorithms for generating com-
binations and permutations has been introduced in lit-
erature (e.g., those in [1, 2, 3, 4]). Those algorithms
may be classified into two types. The first type of
algorithms, for enumerating combinations (or permu-
tations) of M out of N elements, uses M processing
elements (or PEs). These PEs work cooperatively to
generate one combination at a time, that is, the t?
PE only generates the it elements of each subset (as-
suming PEs are numbered).

Using K PEs for K a positive integer, the second
type of algorithms can generate combinations in lexi-
cographic order and each PE may produce an interval
of % (Aj\g) subsets. The best algorithm for this type is
described in [1]. In that algorithm each combination
is associated with a unique integer. By using those
integers, a PE can easily determine the first combi-
nation in the interval. After the first combination is
generated, the rest combinations in that interval can
easily be obtained.

In this paper we present a new parallel algorithm.
This algorithm uses N PEs, each of which generates
%(AA;) distinct combinations. Assume that there are
N locations which are indexed, say, from 0 to N — 1
and that each location is equipped with a PE. A spe-

*Appeared in Proc. ICPP, 1996, Vol. 11, 70-73.
Copyright © 1996 the authors. rpb168 typeset using IATEX

Liang W. F

Department of Computer Science
The Australian National University
Canberra, ACT 0200, Australia

cial feature of this algorithm is that regular commu-
nication patterns can be obtained if each location re-
quires information from different locations associated
with the elements in a generated combination. This
requirement may be found in the problem of fault tol-
erance in replicated file systems [5].

2 The Algorithm

Assume that N PEs are in different locations which
are numbered from 0 to N — 1. The basic idea of our
algorithm is that at each step a primitive pattern of M
integers (out of N consecutive integers starting from
zero) is first chosen as

P:{TOaTla"'aﬂv"'aTM—l} (1)

where Tp = 0,7} < N and T; < T} if ¢ < j. Location i
then generates a combination P; of size M according
to this primitive pattern, that is,

P, = {(i+To)modN, (i +Ti)modN, (2)
5(Z+1—‘l)m0dNa7(7’+TM—1)m0dN}

where 0 < 4 < N — 1. If a set of primitive patterns
is chosen properly, all (;7) combinations can be gen-
erated in parallel at N locations.

To obtain those proper primitive patterns, we must
solve the following two problems. Consider an exam-
ple of N =8 and M = 4. It is easy to see that com-
bination {0, 3, 4, 7} will be generated at locations 0
and 4 and that combination {1, 4, 5, 0} be generated
at locations 1 and 5 when {0, 3, 4, 7} is used as a
primitive pattern. Thus the first problem is how to
obtain a primitive pattern which generates only dis-
tinct combinations.

Primitive patterns are defined as dependent prim-
itive patterns if a combination can be generated by
either of those patterns. Otherwise they are called in-
dependent primitive patterns. The second problem to

be solved is how to avoid using dependent primitive
patterns. In the following we prove that, if N and
M are relatively prime, (i.e., (N, M) = 1) the combi-
nations generated by the same primitive pattern are
all distinct and dependent primitive patterns can only
generate the same set of combinations. If N and M
are chosen to be relatively prime, therefore, we can
find a fixed number of independent primitive patterns
for generating all distinct combinations exactly only
once. With these independent patterns each location
will produce the same number of distinct combina-
tions. The computational load is thus well balanced.

The following two lemmas show that the combina-
tions generated by the same primitive pattern are all
distinct if (N, M) = 1.

Lemma 1 Assume that the greatest common divisor
of b and d is e, that is, (b,d) = e for 0 < d < b and
e > 1. If the elements in a given primitive pattern
satisfy the equations

Tori =Ty + T (3)

and

Tavj =Ta +T; (4)
where 0 <i < M—1-b,0<j<b—1, thenT, divides
both T, and Ty, or written as T, | Ty and T, | Ty.

Proof. Setting b = d * ¢V + () for ¢ > 0 and
0 < r(M < d—1 and applying it to (3), we have

Targw 400 pi = Tgug g + T,

or
Tayan@—1)+r0+i = Tapasg—1)+rm + Tie (5)

If0<i<d-—1,thendx (¢ —1)+rM +i<b—1.
Applying (4) to (5), we have

To+ Tgu(q—1)4r0 45 = Ta + Ty (g —1)4p00 + 1,
or

Td*(q(l)—1)+r(1)+i = Td*(q(l)—1)+r(1) + T;.

Continuing the above process, we can obtain
Tr(1)+i =T.0) +T; (6)

where 0 < i <d-— 1.

Let d = rMg® 4+ for ¢ > 0and 0 < r® <
r() — 1. Using (4) and (6), for the same reason we
may have

Ty =Th +T; (7)

where 0 < i < r() — 1. By continuously using the
Euclidean algorithm (for finding the greatest common
divisor of b and d) and applying the same procedure
as above, we eventually obtain

r(n73) _ T(n72)q(n73) +e,

r(772) = g2 e (8)
and
Te+i =T, +T; (9)

where 0 < i < r(n=2) — 1,
Now the process goes backward, that is, we first
calculate T,(n—2 . From (8), we have

Trn-2 = Tym-2),
= Toy(gr-2_1)e- (10)
Since e > 1, then
@D T = ¢ De—e
(=2 e
< =21

Applying (9) to (10), we thus obtain
Toon-2 =Te + Tiyn-2_1)e

and further
T (noo = q(n72)Te.

”

Similarly, we can have

T3 = Tyn-s)pn-24¢
4" Tnn + T,
(q(n73)q(n72) + 1)Te-

Thus T, also divides T,.(»-3). Continuing to trace back,
we can finally obtain that T, divides both T; and T}.
Ifb=fxeand d=gx*efor f >0 and g > 0, in
particular, we have Ty, = f * T, and T; = g * T.. The
proof for this is easy, but tedious and thus omitted. []

Lemma 2 If (N,M) = 1, all the combinations gen-
erated by the same primitive pattern at different loca-
tions will be distinct.

Proof. We prove this lemma by showing that differ-
ent locations may generate the same combination by
the same primitive pattern only if N and M have a
common divisor greater than one.

Without loss of generality, we assume that Fy and
P, for a > 0 are the same combination and have the
forms

Py ={Ty, Ty, -, T, Tas_1}

P, = {(a+To)modN,(a+ Ty)modN,
-, (@a+Ty)modN,---,(a+Tp—1)modN}.

Assume (a + To)modN = Ty, or a = Tp for 0 < b <
M —1. For 0 <l < M — 1 we have

To+1ymodns = (a +Ty)mod N.
Ifl<M—1-b, then
Tortymoant = Tyt < Tnr—1-

We know that (a + 7;)mod N must increase to reach
Trr—1 before it becomes Ty as | increases. For [<
M —1—b, then

(a+T;)modN =a+T, =Ty, + Tj.
Thus we obtain
Tpyy =Ty + Ty (].].)

where 0 <[< M —1-b.
Let M = hb+dfor h > 0and 0 < d <b. If
l=(h—1)b+d—1=M—-1-0, from (11) we have

Ty +Th1)pra—1 =Trm-1-

The next immediate element in P, must be equal to
To = 0. Otherwise, the two combinations will not be
the same. Thus we have

(Tb + T(h_l)b_,_d)modN = TO = 0,

or
Ty + Tih—1)p+a = N. (12)

For 0 <i<b-1, then
(Ty + T(h—1)p4-a+i)modN = T;,

or
Ty + Tihe1yppari = N+ T; (13)

JFrom equations in (12) and (13), we obtain
Th—1yptrari = Th—1ypra + Li (14)

where 0 <7 <b—1.
From (11) we can have

Trori = Toy(k—1)p+i
= Ty+Tih-1)p4i

= kL +T;

for kb+1i < M —1.
Since (h —1)b+d+1i < M — 1 for i < b—1, the
equation in (14) can then be rewritten as

(h—1DTy+Ty; = (h— DTy + Ty + T3,
or
Tori =Ty +T; (15)

for0<i<b-—1.

We see from the above discussion that T; (for 0 <
i < M — 1) must satisfy the two equations in (11)
and (15) if Py = P,. Let the greatest common divisor
of b and d be (b,d) =e,or b= fxeand d=g=xe
fore > 1, f > 0and g > 0. ;jFrom Lemma 1 we
have Ty, = fT, and T; = gT,.. Therefore, from (12) we
obtain

N = Ty +Th-1)p+a
= th + Td
= hx fTe + gTe
= (hxf+9)T.
= I,

where ¢ = h * f + g. We also have
M = hxb+d

hxfxe+gxe
(h*f+g)e

= C*xe.

Since h, f and g are all greater than zero, then ¢ =
hxf+g > 1. Therefore, N and M must have a
common divisor greater than one. []

We now prove that dependent primitive patterns
can only generate the same set of combinations.

Lemma 3 If two combinations generated by different
primitive patterns are the same, then any combination
generated by one of these primitive patterns can also
be generated by the other.

Proof. Let P and P’ be two distinct primitive pat-
terns
P = {TO;Tla"'aI‘la"'vTMfl}

and

P' = {TolaTlla'"711lla"'7TlM—1}-

Without loss of generality, we assume that P, and P,’
are the same combination generated by P and P’ re-
spectively for a — b = e and e > 0. Then

a=b+e=0b+T.

] \ o 1 2 3 4 5 6 7 8\
[group1 [0 1 2 3 4 \
group2 | 0 1 2 3)
0o 1 2 3 6
0o 1 2 3 7
group3 | 0 1 2 4 5
0o 1 2 4 6
0o 1 2 4 7
0o 1 2 5 6
0o 1 2 5 7
0o 1 2 6 7
group4 | 0 1 3 4 6
0 1 3 4 7
0 1 3 5 7
0 1 4 5 7

Figure 1: A number of % (AA/;) = 14 independent prim-
itive patterns for N =9, M = 5.

where 0 < ¢ < M — 1. We thus have
(b+ Tict1ymoars)modN = (a + T;")mod N,

or
T(chl)modM = (6 + Tkl)mOdN

and

(k + T(ct1ymoansr) mod N
= (k+ (e + Ty")mod N)mod N
= (k+e+T)YmodN
= ((k + e)modN + T} ymod N

where 0 << M —-1land 0<k<N -1

Since modular arithmetic is applied in our compu-
tation, (k+e)modN for 0 < k < N —1 has N distinct
values which correspond to the N locations and simi-
larly (¢ + l)modM for 0 <1 < M — 1 has M distinct
values which associate with the M indices of T;. It is
easy to see from the above equation that every combi-
nation generated by P can also be generated by P’ and
vice versa. We thus conclude that dependent primitive
patterns only generate the same set of combinations.

O

3 Discussions

In the previous section we have proved that, if NV
and M are chosen relatively prime, there exists a set of

independent primitive patterns. Using these patterns,
all (Aj\/}) combinations can be generated in parallel at
N locations. Now the problem is how to construct
these independent primitive patterns in a reasonable
and systematic way. We have a very simple method
to do that. Here we only present an example of N =9
and M =5, as shown in Fig. 1. (For details see [6].)
Because of the simplicity and regularity, the method
can easily be implemented.

Our algorithm can also be extended to the case
when N and M are not relatively prime. Because
Lemma 2 cannot be applied, however, some special
care has to be taken into consideration. It is easy to
prove that N may not divide (Aj\;) if N and M are not
relatively prime. The computational load may then
not be well balanced. This imbalance of computa-
tional load occurs only in certain steps in which each of
the given primitive patterns generates the same com-
bination at different locations. When our method for
generating independent primitive patterns is applied,
those patterns can easily be identified and a simple
technique may be applied to ensure that each combi-
nation is generated exactly once only.

In this paper we only discussed how to use N PEs
to enumerate (AA/;) combinations. Another interesting
problem is how to generate those combinations by us-
ing only P PEs for P < N. One solution to this
problem can be found in [6].

References

[1] S. G. Akl, “Adaptive and optimal parallel algo-
rithms for enumerating permutations and combi-
nations”, The Computer Journal, Vol. 30, No. 5,
1987, pp. 433-436.

[2] G.H. Chen and M. S. Chern, “Parallel generation
of permutations and combinations”, BIT, Vol. 26,
1986, pp. 277-283.

[3] C. J. Lin and J. C. Tsay, “A systolic generation
of combinations”, BIT, Vol. 29, 1989, pp. 23-36.

4] 1. Stojmenovic, “An optimal algorithm for gen-
8 8
erating equivalence relations on a linear array of
processors”, BIT, Vol. 30, 1990, pp. 424-436.

[5] B. B. Zhou, R. P. Brent, X. Qu and W. F. Liang,
“A method for solving the problem of fault toler-
ance in replicated file systems”, in preparation.

[6] B. B. Zhou, R. P. Brent, X. Qu and W. F. Liang,
“A New Method for Parallel Generation of Com-
binations”, in preparation.

