THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-97-06

RMSIM: a Serial Simulator for
Reconfigurable Mesh Parallel
Computers

M. Manzur Murshed and Richard P. Brent

April 1997

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering



This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports

Department of Computer Science

Faculty of Engineering and Information Technology
The Australian National University

Canberra ACT 0200

Australia

or send email to:
Techni cal . Reports@s. anu. edu. au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs. anu. edu. au/ t echreports/

Recent reports in this series:

TR-CS-97-05 Beat Fischer.  Collocation and filtering — a data smoothing
method in surveying engineering and geodesy. March 1997.

TR-CS-97-04 Stephen Fenwick and Chris Johnson.  HeROD flavoured
oct-trees: Scientific computation with a multicomputer persistent
object store. February 1997.

TR-CS-97-03 Brendan D. McKay.  Knight’s tours of an 8 x 8 chessboard.
February 1997.

TR-CS-97-02 Xun Qu and Jeffrey X. Yu.  Mobile file filtering. February
1997.

TR-CS-97-01 Peter Arbenz and Markus Hegland. The stable parallel
solution of general narrow banded linear systems. January 1997.

TR-CS-96-09 Ralph Back, Jim Grundy, and Joakim von Wright. Structured
calculational proof. November 1996.



RMSIM: a Serial Simulator for Reconfigurable Mesh
Parallel Computers

M. Manzur Murshed*
Richard P. Brent
Computer Sciences Lab, Research School of Information Science & Engg.

Australian National University, Canberra ACT 0200, Australia

e-mail: murshed@cslab.anu.edu.au

April 15, 1997

Abstract

There has recently been an interest in the in-
troduction of reconfigurable buses to exist-
ing parallel architectures. Among them Re-
configurable Mesh (RM) draws much atten-
tion because of its simplicity. This paper
presents the RMSIM (Reconfigurable Mesh
SIMulator), a serial simulator written in C,
which permits to study algorithms for re-
stricted 3-dimensional RM, known as mesh
of meshes, in a monoprocessor environment.
RMSIM is an easy-to-use simulator capable
of simulating any algorithm in different axis-
orientations within restricted regions. To
enhance the debugging facilities RMSIM is
equipped with a snapshotter to generate
ETEX pictures of any planar segment of the
simulated mesh in any step of program exe-
cution.

*Corresponding author.

1 Introduction

It is well-known that interprocessor commu-
nications and simultaneous memory accesses
often act as bottlenecks in present-day par-
allel machines. Bus systems have been intro-
duced recently to a number of parallel ma-
chines to address this problem. Examples in-
clude the Bus Automaton [6], the Reconfig-
urable Mesh (RM) [5], the content address-
able array processor [9], and the Polymorphic
torus [3]. A bus system is called reconfig-
urable if it can be dynamically changed ac-
cording to either global or local information.

We have developed a serial simulator for
reconfigurable mesh parallel computers, RM-
SIM (Reconfigurable Mesh SIMulator). This
simulator, written in ANSI C, can simulate
a subnetwork of a 3-dimensional reconfig-
urable mesh known as mesh of meshes (Sec-
tion 2). Memory management of the simu-



lator is dynamic and the achievable size of
the simulated network is dependent on the
memory available to the system. This simu-
lator has an in-built interpreter to execute
user written programs. The interpreter is
capable of executing a program in different
axis-orientations within restricted regions. In
defining the programming language we have
concentrated mainly on making the effort
of transforming the algorithms to equivalent
programs straightforward and easy. To aid in
debugging, RMSIM is capable of generating
KETEX picture of any planar segment of the
mesh in any step while executing a program.

This paper is organized as follows. In the
next section we present the basic issues of
RM. Section 3 describes the software orga-
nization of RMSIM. In Section 4 we present
the programming facilities supported by the
interpreter of RMSIM. Various facilities for
reusing programs are discussed in Section 5.
In Section 6 we describe the debugging fa-
cilities of RMSIM including the snapshot-
ter. Sections 7-9 describe future develop-
ment, conclusions, and technical reference re-
spectively.

Figure 1: A 3 x 4 reconfigurable mesh

DL

[EW.N,5] [EW.N,5] [EW,NS] [EW,NS] [WN,E,S]

LYY

[WSEN] [ENW,S| [ESW,N] [ESWN] [ENWS]

QD

[NWSE] [ENW,S] [NESW] [ESW.N] [EWNS]

Figure 2: Possible internal connections be-
tween the four I/O ports of a PE

2 Preliminaries

The reconfigurable mesh is primarily a two-
dimensional mesh of processors connected by
reconfigurable buses. In this parallel archi-
tecture, a processor element (PE) is placed at
the grid points as in the usual mesh connected
computers. Each PE is connected to at most
four neighbouring PEs through fixed bus seg-
ments connected to four I/O ports E & W
along dimension x and N & S along dimen-
sion y. These fixed bus segments are building
blocks of larger bus components which are
formed through switching, decided entirely
on local data, of the internal connectors (see
Figure 1) between the I/O ports of each PE.
The fifteen possible interconnections of 1/O

i ports through switching are shown in Fig-
ure 2. Like all bus systems, the behaviour of
. RM relies on the assumption that the trans-
mission time of a message along a bus is in-
. dependent of the length of the bus [1].

A reconfigurable mesh operates in the
single-instruction  multiple-data  (SIMD)
mode. Besides the reconfigurable switches,
each PE has a computing unit with a fixed
number of local registers. A single time step



Support planes

NSTON

X

Base plane

X—=

Figure 3: 5 x 5 x 5 mesh of meshes

of an RM is composed of the following four
substeps:

BUS substep. Every PE switches the inter-
nal connectors between 1/O ports by lo-
cal decision.

WRITE substep. Along each bus, one or
more PEs on the bus transmit a mes-
sage of length bounded by the band-
width of the fixed bus segments as well
as the switches. These PEs are called
the speakers. It is assumed that a colli-
sion between several speakers will be de-
tected by all the PEs connected to the
bus and the transmitted message will be
discarded.

READ substep. Some or all the PEs con-
nected to a bus read the message trans-
mitted by a single speaker. These PEs
are called the readers.

COMPUTE substep. A constant-time lo-
cal computation is done by each PE.

Reconfigurable meshes of higher dimension
can be constructed in a similar way. A num-

Programming
functions

Start
‘ |
Y
for
g r |
End
1]
for
ey T+

Program interpreter

User’s programs

Figure 4: RMSIM software structure

ber of interesting algorithms [1, 2, 4, 7, 8]
have appeared in the literature for these
meshes. In most of the cases [1, 2, 4, 8], 3-
dimensional RM with two additional ports U
and D along dimension z was considered be-
cause of a subnetwork of it, known as mesh
of meshes, where only planar algorithms are
applied on the planes shown in Figure 3. To
overcome the implementation issues, optimal
simulation of higher dimensional RMs by 2-
dimensional ones is given in [7].



3 Software Structure

RMSIM is primarily an ANSI C library. Al-
though written in ANSI C, the library pre-
serves object oriented programming princi-
ples by data hiding. RMSIM provides a sim-
ulator to simulate a mesh of meshes, an inter-
preter to execute programs on the simulated
RM, and a set of functions to aid in pro-
gramming. Because reconfigurable meshes
are SIMD machines, a single program is writ-
ten by the user and this program is exe-
cuted in all PEs in parallel. In RMSIM, a
user is required to write separate functions
for each step of the algorithm through the
call of specific functions from the library. In-
built functions are available for reconfiguring
local ports’ interconnections, writing along
a bus and reading from a bus. Any refer-
ence to the simulated RM is carried through
some mapping functions to enable the inter-
preter to execute programs on any possible
axis-orientations (Section 5.1). Mapping also
allows the interpreter to execute a program
within specific region rather than using the
whole area of the simulated RM. RMSIM al-
lows a user to take a snapshot of any pla-
nar segment of the simulated mesh in KTEX
picture format. Figure 4 shows the general
software structure of RMSIM.

4 Programming Facilities

As already stated in the previous section, a
user is required to write C functions for each
step of the algorithm. Conversion of an algo-
rithm to a program is an easy task in RM-

SIM. Three functions, Bus(), Write(), and
Read(), are available to the user to convert
the BUS, WRITE, and READ substeps in
the algorithm in a straight forward manner.
Functions GetReg() and SetReg() are avail-
able to manipulate any register of a PE. To
convert other elements of an algorithm like
arithmetic and logical expressions, compar-
isons etc., the user can use any constructs
available in C. Figure 5 shows an example of
the natural resemblness of the converted pro-
gram with the original algorithm.

As shown in Figure 4, the execution loop
in the interpreter invokes user defined func-
tions at the start and the end of each step
as well as the whole program. The use of
these functions is entirely dependent on the
user’s need. These functions may be suitable
for initializing, generating KTEX picture of a
plane of simulated mesh of meshes in some
specific step, gathering statistics, debugging
etc. As an example, Figure 6, 7 are generated
at the end of steps 0 and 1 respectedly while
executing the program of Figure 5 on an RM
of size 5 x 6.

5 Program Reusability

Like many other programming languages,
RMSIM is capable of using previously written
programs into a new program through sub-
routine calls. This enables the user to divide
a long algorithm into small pieces. Many RM
algorithms appeared in the literature contain-
ing references to other published algorithms.
This simplified the description of those algo-
rithms significantly. The capability of reusing



Every processor connects port N
with S;

e Every processor at row O writes reg-
ister rg to port N;

o Every processor reads port N into
register rg;

Every processor does
the following:
if register g = 0 then
connects port E with W
else
connects port W with N
and E with S;

e Only the processor P(0,0)
does the following:
if register 79 = 0 then
writes ‘#’ to port E
else
writes ‘#’ to port N;

o Every processor reads port E into
register r1;

Every processor connects port N
with S;

e Every processor P(z,y) does
the following:
if register rq = ‘#' then
writes y to port S;

e Every processor at row 0 reads port
S into register r1;

Algorithm: PrefixSum

#include (stdio.h)
#include "rm.h"

static BYTE StepO( void ) {
switch( MicroStep ) {

case BUS: if( Bus( "NS", "E", "W", "U", "D", "" ) )
return 1;
break;
case WRITE: if( y == Sy )
if( Write( N, GetReg( 0 ) ) )
return 1;
break;
case READ: if( Read( N, 0 ) ) return 1;
break;
}
return 0;

}

static BYTE Stepi( void ) {
switch( MicroStep ) {

case BUS: if( !GetReg( 0 ) ) {
lf( BUS( "EH", I|NII, Ilsll, IIUH, HDII, nn ) )
return 1;
else {
if( Bus( "WN", "ES", "U", "D, nn, nno) )
return 1;
}
break;
case WRITE: if( x == Sx && y == Sy )
if ( 'GetReg( 0 ) ) {
if( Write( E, 99 ) ) return 1;
else if( Write( N, 99 ) ) return 1;
break;
case READ: if( Read( E, 1 ) ) return 1;
break;
}
return 0;
Program: PrefixSum (partial)

Figure 5: An RM algorithm with the converted program to compute the prefix sums of a

binary sequence

programs by RMSIM enables a user to con-
vert those algorithms into programs in similar
straightforward fashion.

The capability of reusing programs is em-
bedded into RMSIM by the implementa-
tion of an internal subroutine calling sys-
tem. Besides the housekeeping of the in-
ternal stack, this system decides appropriate
mapping functions to be applied on while ac-
cessing a PE of the simulated RM. the Azxis-
ortentation mapping and the region mapping

are the two mapping classes used by RMSIM.

5.1 Axis-orientation Mapping

To locate a PE into the simulated mesh of
meshes, 3-dimensional Cartesian coordinates
are used. From now on PE,, ., will denote
the PE at the coordinate (z,y,2). The XY-
plane is assumed to be the base plane while
the planes perpendicular to it act as the sup-
porting planes. Let this axis-orientation be



N
.é.
NN
—
& o
e

ror
o
£

RO

Figure 6: PROG: PrefixSum, STEP: 0

called XY_Z. RMSIM allows an user to use
different axis-orientation while executing a
program e.g. a program can be executed con-
sidering YZ-plane be the base plane. The six
possible axis-orientations are shown in Fig-
ure 8. RMSIM automatically selects proper
mapping functions while reusing nested pro-
grams. Suppose the current and requested
axis-orientations be YZ X and XZY, RM-
SIM will then select YX_Z.

The problem of computing the ranks of N
distinct numbers on an N x N x N mesh of
meshes exemplifies the axis-orientation map-
ping. Let the number n; be stored in PE, g,
0 <17 < N. Now a row broadcast after a
column broadcast can be done to distribute
the numbers in the XY -plane so that PE; ;,,
0 < 4,5 < N, receives the pair (n;,n;) and
then produces 1, if n; > n;, or 0, other-
wise. Ranks can now be computed by exe-
cuting the program PrefizSum in YZ_X axis-
orientation in every YZ-planes to add the
comparison values along each column. A few

(7"0:_7'1)

(0,0) 4(1,0) 4(1,0) , (0,0)

Figure 7: PROG: PrefixSum, STEP: 1

steps of computing the ranks of 4 numbers on
an 4 x 4 x 4 mesh of meshes are shown in Fig-
ures 9 to 14. Figures 11 to 14 represents the
execution of program PrefixrSum in a different
axis-orientation.

5.2 Region Mapping

Enhancement in the power of program
reusability through axis-orientation mapping
cannot be realised completely if no way is al-
lowed to execute a program in a restricted
area of the mesh of meshes e.g. in the previ-

Figure 8: Six possible axis-orientations



Figure 9: PROG: Rank, STEP: 0

ous example of computing ranks each execu-
tion of the program PrefizSum uses a specific
YZ-plane rather than using the entire mesh
of meshes. Executing a program in an en-
closed area through region mapping can itself
be a very useful tool. Suppose, for example,
in solving a problem we need to compute the
prefix sums of £ segments of length m of a
sequence of mk numbers. If mk X m mesh
is available, then these k£ prefix sums can be
computed by executing the program Prefiz-
Sum in k different enclosed areas where each

(’fo,_rl)

(0,3) J(1,3) (1,3)  (0,3)
CNONON NN
FOROnere

0,5
CNIONCNY N
Jentententes

0,7
CNIONON O
&’ & )

1,0
an ---
t ¢’ &’ &
(070)m[z=0]

Figure 10: PROG: Rank, STEP: 1

Figure 11: PROG: PrefixSum, STEP: 1

y [z =1]

Figure 12: PROG: PrefixSum, STEP: 1

Figure 13: PROG: PrefixSum, STEP: 1



Figure 14: PROG: PrefixSum, STEP: 1

area consists of m consecutive columns of the
original mesh.

In RMSIM, while writing a program, a user
never assumes the length of each dimension.
So, while executing a program the user must
explicitly define the area of execution by giv-
ing the coordinates of the two PEs along the
diagonal. In the program interpreter each
step is executed in the PEs of the restricted
area in the following order starting from the
starting PE along the diagonal:

Loop along 3rd axis
Loop along 2nd axis
Loop along 1st axis

Actual axes to be considered in place of 1st,
2nd, and 3rd axes are resolved according to
the current axis-orientation. In ZXY axis-
orientation 1st, 2nd, and 3rd axes are taken
as z, x, and y axes. The step of each loop
is either 1 or -1 depending on coordinates of
the PEs along the diagonal. For example, the
region defined in Figure 15 will generate the
following loop structure if the current axis-

Diagonal

Z
(1,3,3 A
Restricted
region ™
~1 Or inal
T of
(412) 1 meshes
X —=

Figure 15: A restricted region in a 5 x 5 x 5
mesh of meshes

orientation is XY Z:

for z =2 to 3 step 1
fory=1to 3 step 1
for x = 4 to 1 step -1

Axis-orientation mapping and region map-
ping are transparent to the user. While writ-
ing a program a user should always assume
that the acting axis-orientation is XY_Z and
z, y, and z axes are the 1st, 2nd, and 3rd
axes respectively. These assumptions make
the task of programming extremely easy.
While executing a program a user should
only be careful about the mapped locations of
data/source PEs and result/destination PEs.
In a region, making any of the loop step -1
may produce interesting results. For exam-
ple, if the program PrefizSum is executed in
a region where the loop step of the 1st axis is
-1, then the program will compute the sums
in opposite direction.



6 Debugging Facilities

RMSIM generates error codes while execut-
ing a program if problem occurs. Besides
this standard technique, RMSIM is equipped
with a snapshotter. The snapshotter can be
used to generate KTEX picture of any plan-
ner portion of the simulated mesh of meshes
in any step of program execution. The gen-
erated pictures are scalable and can show the
content of at most two registers of each PE.
Figures 6, 7, 9, ..., 14 are all generated by
the snapshotter.

7 Future Development

The following extensions and enhancements
of RMSIM may be implemented in the future:

e Extension of the capability of RMSIM to
handle higher dimensional meshes. This
can be done in two ways. Either RMSIM
will simulate higher dimensional meshes
or it will resolve the extra dimensions
into the current mesh of meshes through
another layer of general purpose map-

ping.

e RMSIM should provide some self simula-
tion techniques so that a program requir-
ing mesh of meshes of size ny, x n, x n,
can be executed on a simulated mesh of
meshes of size p, X p, Xp, where p, < ng,
py < 1y, and p, < 1.

e Enhancement to the basic RM such as
nonmonotonic RM [1] should be handled
by RMSIM.

e Besides the snapshotter, RMSIM should
be equipped with a 3D-viewer.

e Finally, a library of predefined programs
from various application classes should
be added to the RMSIM.

8 Conclusion

RMSIM is an easy-to-use serial simulator
which can simulate a restricted form of 3-
dimensional reconfigurable mesh known as
mesh of meshes. Besides simulating, RM-
SIM provides a program interpreter which
can execute programs in any possible axis-
orientation within an enclosed region. RM-
SIM can generate snapshots of any planar
segment of the simulated mesh in IXTEX pic-
ture format. RMSIM is being used in the
study of algorithms for RM and is being eval-
uated and improved.

9 Technical Reference

This software is available by anonymous
ftp:  cslab.anu.edu.au in the directory
/pub/Manzur/RMSIM (free distribution).

References

[1] Y. Ben-Asher, D. Peleg, R. Ramaswami,
and A. Schuster. The power of recon-
figuration. Journal of Parallel and Dis-
tributed Computing, 13:139-153, 1991.

[2] Yen-Cheng Chen and Wen-Tsuen Chen.
Constant time sorting on reconfigurable



meshes. IEEE Transactions on Comput-
ers, 43:749-751, 1994.

Massimo Maresca. Polymorphic proces-
sor arrays. IEEE Transactions on Par-
allel and Distributed Systems, 4:490-506,
1993.

Mark S. Merry and Johnnie Baker. A con-
stant time sorting algorithm for a three
dimensional reconfigurable mesh and re-

configurable network. Parallel Processing
Letters, 5:401-412, 1995.

Russ Miller, V. K. Prasanna Kumar,
Dionisios I. Reisis, and Quentin F. Stout.
Data movement operations and applica-
tions on reconfigurable VLSI arrays. In
Proc. International Conference on Paral-
lel Processing, pages 205-208, 1988.

J. Rothstein. Bus automata, brains, and
mental models. IEEE Trans. Syst. Man
Cybern, 18:522-531, 1988.

Ramachandran Vaidyanathan and
Jerry L. Trahan. Optimal simulation of
multidimensional reconfigurable meshes
by two-dimensional reconfigurable
meshes. Information Processing Letters,
47:267-273, 1993.

Biing-Feng Wang, Gen-Huey Chen, and
Ferng-Ching Lin. Constant time sorting
on a processor array with a reconfigurable
bus system. Information Processing Let-
ters, 34:187-192, 1990.

C. C. Weems et al. The image under-
standing architecture. Internat. J. of
Comput. Vision, 2:251-282, 1989.

10



