THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-97-08
A Mobile TCP Socket

Xun Qu, Jeffrey Xu Yu and Richard P. Brent

April 1997

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports

Department of Computer Science

Faculty of Engineering and Information Technology
The Australian National University

Canberra ACT 0200

Australia

or send email to:
Techni cal . Report s@s. anu. edu. au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs. anu. edu. au/ t echreports/

Recent reports in this series:

TR-CS-97-07 Richard P. Brent. A fast vectorised implementation of Wallace’s
normal random number generator. April 1997.

TR-CS-97-06 M. Manzur Murshed and Richard P. Brent. RMSIM.: a serial
simulator for reconfigurable mesh parallel computers. April 1997.

TR-CS-97-05 Beat Fischer. Collocation and filtering — a data smoothing
method in surveying engineering and geodesy. March 1997.

TR-CS-97-04 Stephen Fenwick and Chris Johnson. HeROD flavoured
oct-trees: Scientific computation with a multicomputer persistent
object store. February 1997.

TR-CS-97-03 Brendan D. McKay. Knight’s tours of an 8 x 8 chessboard.
February 1997.

TR-CS-97-02 Xun Qu and Jeffrey X. Yu. Mobile file filtering. February
1997.

A Mobile TCP Socket

Xun Qu Jeffrey Xu Yu
Computer Sciences Laboratory, RSISE Department of Computer Science
The Australian National University The Australian National University
Canberra, ACT 0200 Australia Canberra, ACT 0200 Australia

Richard P. Brent

Computer Sciences Laboratory, RSISE
The Australian National University
Canberra, ACT 0200 Australia

Abstract

In this paper, we propose a mobile TCP socket which is the second step of our two step approach
to support mobility. The first step of our approach is to support portability as reported earlier. In
our mobile TCP socket, a mobile mapping is introduced, which maps TCP associations to underlying
TCP connections. The mobile mapping can be implemented in the socket layer and on top of TCP /IP
protocol layers. Our approach achieves high compatibility with current TCP/IP protocols, due to
the fact that neither of the two steps in our approach impose any changes on TCP/IP protocols
nor the underlying Link layer. At the same time, our approach can reduce both the propagation
cost for distributing location information of mobile hosts and the forwarding cost for forwarding IP
datagrams across the Internet. The concept of mobile mapping and its implementation details are
given in this paper.

1 Introduction

Truly ubiquitous mobile computing requires that programs on mobile computers be able to process
continuously, as in a distributed environment. However, the current TCP/IP protocols are designed for
hosts which have unique Internet-wide IP addresses and are not supposed to move from one internetwork
to another while network applications are running. In TCP/IP-based systems, the hardness of mobile
communication stems from IP routing and addressing schemes. The IP address has two related usages.
First, it is used as a unique identifier for a host. Second, it is involved in routing algorithms. If a host
moves into a new network, its old IP address can not be used for normal TCP/IP communications,
because all packets intentionally addressed to this host will be routed to its old network!. Most mobile
IP solutions[4, 5, 22, 11, 12, 14, 3] support mobility in the network layer from which the problem stems.
Therefore, the current IPv4[17] needs to be enhanced by some special routing mechanisms which have
to be supported by mobile hosts and/or routing facilities. This will be the major barrier for quick, wide
and easy deployment of the existing mobile IP solutions.

We differentiate between mobile and portable protocols. A portable protocol can provide communi-
cation services when the host stays in different networks. However, the portable communication services
are intermittent in terms of two meanings: no communication services can be provided during the period
of moving, and important system parameters may be changed, that will cause loss of communication
connections with their peer systems. A mobile protocol is a protocol that can keep all current open
connections alive and provide continuous communication services at all times.

Our previous work on portable IP communication employs the existing protocols and extends their
services to support portable communication[15]. Basically, our portable solution relies on existing pro-

1The network id in the old IP address instructs the routers to forward packets in this way.

tocols, such as DHCP and DNS, and does not need any modifications to TCP/IP protocols and routing
facilities. In this paper, we propose a mobile solution for TCP /IP-based host systems on top of our
portable support system. The core of mobile solution is mobile TCP socket which can be implemented
in the socket layer and on top of the TCP /IP layers. This approach can achieve high compatibility with
current TCP/IP systems for the following three reasons. First, we adopt the same API of standard
socket. Second, we don’t require any special functionality in the network or the transport layers to sup-
port mobility. Finally, we don’t require all networks, where mobile hosts may visit, to support special
routing mechanisms. In terms of performance, our mobile solution can reduce both the propagation
cost for distributing the location information of mobile hosts and the forwarding cost for forwarding IP
datagrams across the Internet.

The remainder of this paper is organised as follows. In Section 2, related work will be presented.
In Section 3, we discuss the main issues we are concerned with. Section 4 briefly outlines our previous
work on portable support. In Section 5, we introduce our two step approach for supporting mobility.
Preliminaries are given in Section 6. In Section 7, the concept and the issues for mobile mapping are
discussed. In Section 8, we discuss a mechanism, called virtual port, to support mobile mappings. A
detailed example using our protocol is given in Section 9. We conclude our work in Section 10.

2 Related Work

At first, we briefly describe the terms we will use in this paper regarding mobile communications. A
mobile host, is a TCP/IP-based host which can change its attach point to different internetworks and
access network services as a fixed host. Each mobile host has a home network, in which the mobile host
is assigned a permanent IP address which is used by regular TCP/IP protocols to communicate with
each others. In contrast, a network in which mobile hosts temporarily stay is called a foreign network,
or a guest network.

In TCP/IP protocol suite, as shown in Figure 1, there are four protocol layers. The ultimate goal
of mobile solutions is to provide network applications with mobile communication services in the layers
under the Application layer. Existing solutions can be distinguished based on the primary layer on which
they provide mobility.

1SO/0SI TCP/IP
Applications
Presentation Applications
Session
Transport | Transport
Nework | Network
Datalink |
Link
Physical

Figure 1: TCP/IP protocol Stack with OSI/RF

Network Layer Solutions

Recent research work on mobile TCP/IP has been conducted at the network layer from where the
key problem stems. These solutions aim at supporting mobility in the IP protocol layer. There are
four major Mobile Host Protocol (MHP) proposals, namely, Sony MHP[22], Columbia MHP[4, 5], IBM

MHP[11, 12]? and IMHP[3, 13, 14]. The IMHP proposal was derived from the others, and has now been
adopted by IETF as the Internet draft standard. All of these four MHPs share a common technology
that is to provide mobility at the network layer and keep the IP addresses of mobile hosts constant to
all the upper layers. Hence, no transport or application protocol entities will be aware of any mobile
operations. All mobile functions are completed at the network layer and mobility features are hidden
from the upper layers.

Campus Backbone Networ k

Virtual Mobile subnet
Figure 2: Columbia MHP

The Columbia MHP proposes a virtual mobile subnet which is composed of a set of mobile support
routers, denoted as MSR, scattered on a campus network. The campus network can consist of several
internetworks including some remote internetworks over the global Internet (Figure 2). All packets
destined to mobile hosts will first be routed to a nearest MSR which tunnels the IP packets to the
current MSR with which the destination mobile host is connected at the moment. When a mobile host
migrates into a different location, the mobile host will first register itself with the local MSR which
in turn informs all of other MSRs of the location of this mobile host. Mobile hosts always use their
permanent IP addresses in such a virtual mobile subnet.

virtual Network Sublayer i
aye - option of IP header

physical Network Sublayer
PIP

Guest network

v

Figure 3: SONY MHP

The Sony MHP envisages a virtual network on top of normal IP internetworks that are called physical
networks. Mobile hosts are treated as fixed hosts in a virtual network in the sense that their virtual
network addresses are constant. In each IP datagram, a new IP option is used to accommodate the
virtual network address. When mobile hosts roam into different internetworks, their physical network
addresses are changed. The location of each mobile host is kept in its home mobile router and is
propagated to all Sony routers, which will cache location information for correctly routing consequent
IP datagrams. Therefore, any of these Sony routers can map the virtual network network address to the
physical network address and forward IP datagrams to mobile hosts.

The IBM MHP[20] employs a standard IP option, loose source and record routing(LSRR), to forward
IP datagrams to mobile hosts. When a mobile host moves into a new location, it first registers itself
with a local base station and informs its home mobile router of its new location as well. The mobile
host uses its original permanent IP address in the new location. If a fixed host sends an IP datagram
to this mobile host, it sends this IP datagram to the home mobile router of this mobile host. The home
mobile router will forward the IP datagram to the current base station where the mobile host stays by

2David Johnson proposed similar MHP using IP LSRR[6, 7]

1. initial path from FH to MH
2. path from MH to FH
3. return path from FH to MH

Figure 4: IBM MHP

assigning this base station as the next router in the LSRR option (route 1, in Figure 4). Then the base
station delivers the IP datagram to the mobile host locally. The mobile host can send IP datagrams
back to the the fixed host directly. If the router at fixed host’s internetwork is LSRR enable, the data
can then be directly sent from the fixed host to the mobile host by assigning the base station as the next
router in the LSRR option.

normal routing
e

normal routing

/ TheInternet

direct route

Figure 5: IMHP

IMHP uses home agents and foreign agents to route datagrams to/from mobile hosts (Figure 5). Each
mobile host has two IP addresses: a temporary current IP address and a permanent home IP address.
The home IP address is the unique identifier of a mobile host. The current IP address is a care-of IP
address which indicates the current location of a mobile host. In a foreign internetwork, a mobile host
will register itself with a local foreign agent and in return obtain a care-of IP address. Then the mobile
host will inform its home agent of the care-of address. Afterwards, the incoming IP datagrams will first
reach its home agent, then be forwarded to mobile host’s current care-of address using IP-IP tunnelling.
The care-of IP address can be the IP address of the foreign agent, or a temporary IP address assigned to
the mobile host. In the former case, the foreign agent is responsible to strip the IP-IP tunnelling packets
and deliver the enclosed datagrams locally to the mobile host. In the latter case, the mobile host has to
do the tunnelling communication with its home agent.

| Solution || Forwarding Point(s) | Method | Location Propagation | Protocol |
Columbia || multiple MSRs IP-IP tunnelling || among MSRs MICP
Sony multiple SRs normal IP among SRs new IP option
IBM home MR normal IP between MR and BAS | LSRR
IMHP HA IP-IP tunnelling || between HA and FA new protocol

Table 1: Summary of Mobile IP Solutions: Note that MSR(Mobile Support Router; SR(Sony Router);
MR(Mobile Router); BAS(Base Station); HA(Home Agent); FA(Foreign Agent); and LSRR(Loose
Source Routing).

As a brief summary, the network layer solutions are aimed to provide a seamless mobile communi-
cation services to transport and application layer entities, hence the basic requirement is to keep the IP
address constant to the upper layers. Since the existing routing infrastructure cannot properly forward
IP datagrams to mobile hosts that are away from their home internetworks, MHPs focus on two basic
tasks: propagation of location information and forwarding IP datagrams through current IP routing

systems in the global Internet. When a mobile host moves from one internetwork to another, the MHPs
are responsible to propagate the new location information to all forwarding points. Therefore, any for-
warding point can forward IP datagrams to mobile hosts. As in Table 1, Columbia and Sony MHPs use
multiple forwarding points distributed across Internet. The location information is exchanged within
these special routers. Columbia mobile support router uses a special MICP[4] to exchange mobile hosts
location information, whereas Sony router collects and caches mapping between the virtual network
address and the physical network address from new IP option. IBM MHP and IMHP use a single for-
warding point. The location information is exchanged between a mobile host and a single forward point.
All these solution use either IP-IP encapsulation (tunnelling) or source routing to forward datagrams.

Solutions in Other Layers

The Mobile Data Link(MDL) solution[10] suggests that mobility be transparently supported at the
lowest Link layer above which all running protocol entities are not conscious of any mobile support. If
a mobile host is in its home network, all data link packets will be sent and received in a normal way.
If the mobile host moves into a guest network, as shown in Figure 6, the home access point, AP,, and
the guest access point, AP;, will cooperate with each other to forward data link packets to/from the
mobile host by encapsulating data link packets into IP datagrams. These encapsulating IP datagrams
are embedded into data link packets again to be sent to local IP routers via the local area network. In
this case, the mobile host will be treated as to reside in the home network. This architecture can span
over multiple physical networks.

Figure 6: MDL Communication

The main advantage of MDL is that any network and transport protocols can run over MDL and
obtain transparent mobile communication services. However, in the MDL systems, there must be an
access point in all participating networks to support link layer packets forwarding. All access points
have to know each others for correct forwarding. Since every forwarded packet will be encapsulated
into an IP packet, in turn it has two network and link layer headers and trailers included. The double
encapsulation reduces the percentage of payload in such link layer packets and reduces the efficiency of
data transfer. Moreover, all packets to a mobile host, which is currently not in its home network, will
be routed to its access point at its home network at first and then be forwarded to the access point in
the guest network. Access points are a potential bottleneck in addition to detour routing.

The mobile protocol can also be implemented in the transport layer. I-TCP [1] suggests that a
single TCP connection to a mobile host be separated into two connections. One is the special mobile
TCP connection between the mobile host and the mobile support router. The other is a normal TCP
connection between the mobile support router and the corresponding host, as in Figure 7. In the mobile
support router, there is a mapped socket, (IP,,, Port), which represents the socket on a mobile host.
From the viewpoint of a fixed host, this socket looks like a normal socket since it has a constant identifier
(IP,,, Port). When the mobile host moves into another internetwork, the mobile host will first set up a
mobile TCP connection with a new mobile support router and the new mobile support router will take
over the normal TCP connection from the previous mobile support router by creating the same mapped
socket. However, because a mapped socket has to have a unique IP address and port number, all mobile
support routers for a single TCP connection must act as if it were the owner of this socket. Therefore,
with this solution, all mobile hosts are limited into one internetwork.

« The Global Internet
74

FH

Figure 7: Indirect TCP Solution

3 Issues

As claimed in [4], the network layer seems to be a reasonable place to provide mobility. We focus on
the network layer solutions. Although these network layer solutions mentioned above have achieved
a degree of success, all of them face one or both of the problems of poor performance and backward
compatibility[9].

As for backward compatibility, none of the existing mobile solutions are fully compatible with existing
Internet protocols and infrastructure at the network layer where they are intended to solve the mobility
problem. The Columbia and IBM MHPs limit mobile hosts to visit such internetworks where mobile
support stations exist. Sony MHP needs more special routers in Internet for forwarding IP datagrams.
Although IMHP claims that no special requirements will be imposed on the internetworks where mobile
hosts will visit, it assumes that a mobile host can send IP datagrams using its home IP address directly
in a foreign network. Unfortunately, most of the current routing devices do not route local IP datagrams
with a foreign IP address as source address. Some networks even perform source address filtering for
security reasons. Therefore, a foreign address can not get through the firewall[2]. Hence, IMHP still
needs to impose some special support on the visiting internetwork.

The performance issues rely on the cost to propagate location information, C},, and the cost to forward
datagrams, C'y. Obviously, more forwarding points and wider propagation of location information will
achieve suboptimal routing, i.e. lower Cy. But this will result in less backward compatibility and high
Cp. On the other hand, if we employ fewer forward points, the C, will be very low but at the same
time C'y will be higher. In such a case, all traffic from fixed hosts to mobile hosts has to be forwarded
by the home networks of the mobile hosts. This indirect and triangle routing has significant impacts on
performance.

Figure 8: Mobile IP Triangle Routing

In the following we will outline the performance decreasing due to the indirect and triangle routing,
and will show the major benefits if such indirect and triangle routing can be avoided. At first, we identify

a metrics by which we can measure the performance of routing protocols. The metrics used in RIP[20]
is the number of hops. In the newer OSPF, the metric is a dimensionless cost which can be measured
in throughput, round-trip time, reliability, etc. The cost model we use here is based on the above two
metrics. Let V be the volume of data being transfered, and let ¢ be cost associated with sending a unit
of data®. Then the total cost will be as follows.

d
Cf:Zci-V

where d is the number of hops for transferring data between two ends.

As shown in Figure 8, if a mobile host is away from its home network and is communicating to a
fixed host. Although the mobile host can send IP datagrams directly to the fixed host, all packets from
the fixed host to the mobile host will be forwarded by the home agent of the mobile host. Let Cy,

— —
be the total cost of a communication session, for example, telnet, ftp or Web accesses. Let V and V be
the volume of data being transferred from/to the fixed host and to/from the mobile host, respectively.

d1 do N ds -
Climny = O i+) V+Y eV
i j k

where d; is the number of hops between the fixed host and the home agent of the mobile host, ds is the
number of hops between the home agent and the mobile host, and ds is the number of hops between the
mobile host and the fixed host. Here, we ignore the traffic overhead of IP-IP encapsulation. Without
the indirect and triangle routing, the total cost of communication will be the following;:

ds ds

— —

Clow = Y V+Y eV
1 k

Obviously, there is no indirect and triangle effectiveness when sending data from the mobile host to the
fixed host. Therefore, there is no difference in terms of communication cost for such data transmission.

— =
In addition, the ratio of ¥V / V is less than 1 and is supposed to be very small. As reported, for telnet
— =
access, the ratio of V' / V is around 1/20. The ratios for ftp and Web accesses are much less than that
“—
figure. Therefore, we ignore this cost: ZZ3 ¢+ V in our discussion. The ratio between Cippnp and Cggr
is given below.

d3
M - 1<

Cfimhp B E(Zl ci + Z?Z Cj

It is a well-understood fact that the number of hops for triangle routing will be greater than that for
direct routing. Therefore, we obtain d3 < d; + dz. If the whole network is assumed to be balanced in
terms of cost metrics of links, every ¢, will be the same for transferring a unit of data. Obviously, the
ratio between Cf, ., and Cy,, is determined by d3/(dy + dz) which is less than 1. Two common cases
are considered. First, suppose that mobile hosts and fixed hosts are located in the same network. The
ratio between Cy, .~ and Cy,, will be 0.5. Second, suppose that a mobile host is in a guest network
which is far away from the home network of the mobile host and suppose that the mobile host wants to
access data in the guest network. A larger figure can be easily expected.

Next, we assume that the whole network is unbalanced so some ¢,,, can be very high and some ¢,, can
be very low. Note that in a local network the traffic will be balanced and can be managed to be balanced.
Therefore, if both mobile host and fixed host are in the same home network, the ratio is still expected to
be about 0.5. When a mobile host moves to a foreign network, in theory, the value of Cy;ir/Cimnp can be
greater than 1. An optimal path is expected to be found on top of current routing infrastructure. In fact,
using current routing infrastructure, it would be very difficult to take every ¢, associated with every

3For simplicity, we don’t include the processing cost at routers.

link into consideration when determining an optimal path?. In addition, as indicated in [8], datagrams
to mobile hosts are often routed along paths that are significantly longer than optimal. The probability
of a router being a bottleneck in a longer path is much higher than that of a short path.

Consequently, it is highly desirable if we can avoid indirect and triangle routing in a mobile envi-
ronment and keep the communication cost as less as possible. Meanwhile, the compatibility should be
paid enough attentions to. The major contributions of our solution are a) provide high compatibility
with current TCP/IP systems, and b) keep both forwarding cost, C¢, and propagation cost, Cp, as low
as possible.

4 Previous Work on Portable System

Our mobile solution proposed in this paper is primarily based on our previous work on portable TCP /IP
solution [15] which avoids indirect and triangle routing in a portable environment. The basic idea of our
portable solution is to decouple two-tie use of IP addresses in the conventional TCP/IP environment
in which IP addresses are used to identify hosts in Internet wide and to route IP datagrams to them.
In our portable system, when a portable host arrives at a new location, the portable host will be
dynamically assigned a temporary IP address, called current IP address, which will allow the portable
host to communicate with other systems in a regular way on the condition that its DNS name and its
permanent IP address (used at its home network) are unchanged and used as the unique identifier. There
are three component systems in portable TCP/IP system:

e A portable host, has portable support functions and uses an regular TCP /IP protocol stack. The
enhanced portability can dynamically reset TCP/IP to new system parameters in a new network
environment.

e A Home Portable Support System, H-PSS, is the system residing in the network where portable
hosts have their permanent IP addresses. H-PSS receives information from portable host and
dynamically updates its database. The H-PSS serves to other host systems as a DNS server as
well.

e A Foreign Portable Support System, F-PSS, is the system working in a network where portable host
will visit. F-PSS is responsible for allocating a local IP address and assigning system parameters
including default router, MTU and other parameters to a visiting portable host. F-PSS will contact
H-PSS of the portable host to authenticate it if security is required. As an option, the basic portable
functions including the assignment of IP addresses and system parameters to portable host can be
taken over by DHCP, which is an Internet standard and has been populated in the Internet.

When a portable host migrates into a network, the portable host follows the following procedure to go
back on line and to work as a non-portable system to its peer communication systems.

e portable host broadcasts its requests to find a local F-PSS or DHCP server in order to obtain new
system parameters, in particular the current IP address.

e If there is F-PSS, F-PSS will talk with this portable host’s H-PSS and authenticates the portable
host’s requests. If the request is granted, F-PSS will issue a temporary IP address and assign other
system parameters to portable host.

e After resetting TCP/IP, portable host sends back the new IP address and other location-related
information back to its H-PSS. H-PSS will check whether the F-PSS is bogus. This can avoid fault
routing IP datagrams.

As far as we can see above, in a foreign network where portable hosts are visiting, the portable hosts look
like a fixed system in the sense that portable hosts initiate communication sessions with other systems
in a normal way using a new assigned IP address. When a system needs to talk to the portable host

4TETF proposed an additional routing scheme in [8] for extensive operations to its IMHP. However, it imposes additional
burden on both mobile hosts and correspondent systems to encapsulate datagrams so as to complicate these systems too.

residing in the foreign network, it uses the portable host’s home IP address or DNS name to inquire
H-PSS in order to obtain portable host’s current IP address. The Figure 9 shows the entire procedure
of communications among these systems.

/

PH obtains local |P address from F-PSS;
PH registers new |P address with H-PSS;
FH uses PH’s DNS name to get |P address from its H-PSS;

1.
2.
3. 3
4. Communications between PH and FH viadirect normal routing.

Figure 9: Portable Host System

Our portable IP support system does not require special support from any foreign networks and
routers except the standard protocols, such as DHCP, BOOTP etc. The main advantages of portable
system are as follows.

e Direct routing: It can save communication costs compared to indirect and triangle routing.
Since portable system does not require special routing mechanisms, a portable system and its
correspondent system communicate through existing routing infrastructure. Unlike IMHP which
requires IP-IP encapsulation, our portable system consumes less network bandwidth and CPU time
at both home support systems and either special routers at foreign network or at mobile hosts.

e Few requirements are imposed: Only standard DHCP or BOOTP services are required at
foreign networks. Special protocols are implemented only on the portable system itself and its
home portable support system. Then it is easy to deploy portable systems in the Internet and give
large roaming areas for mobile hosts in Internet.

¢ Ease of implementation: Because a portable system does not modify network and transport
layer protocols, not only can it talk to normal TCP/IP system, but it satisfies the most likely
comparability with any internet environment without any portable support at a foreign network.
The users of our portable system can access server systems as normal using telnet, ftp, email, etc.

‘ Application ‘

Mobile Socket Layer
é I'ranspcrt— Bg?gﬁortable
] ek [portabte

time

Figure 10: Two-step Solution

5 Mobile TCP Solution

Our portable support system plays an important role in our mobile TCP solution. In our mobile TCP
solution, we further exploit the advantages of our portable system, and enhance it with mobile TCP
communication services. Figure 10 portraits a layering structure of our mobile system. To provide
application layer with mobile TCP services, the mobility in our mobile solution is provided in two
separate steps.

e (Step-1) Portability: Up to transport layer, the portability is supported by unmodified TCP/IP
protocols with additional portable support module. The Link layer in TCP/IP protocol suite is
supposed to be portable since various types of Ethernet, Token Ring or serial line protocols (e.g.
PPP or SLIP) offer portability in the sense that users can easily plug into and unplug from the
network connector at the physical and link layer. Our portable system is adopted as given in the
previous section.

e (Step-2) Continuity: In our approach, TCP/IP protocols themselves are intact which guarantees
that our mobile system can communicate with all TCP/IP systems. The continuity is provided
at the socket APT layer. The socket API is not a protocol layer in TCP/IP protocol stack, but
it is an access interface to transport services in all BSD-clone TCP/IP implementations as well
as in Windows environment (Winsock 1 and 2). We call our enhanced socket layer Mobile Socket
Layer(MSL).

With our TCP mobile solution, mobility is equal to portability plus continuity. Our mobile solution
is twofold. First, the mobile TCP support is at socket layer, all underlying protocols need not to be
modified to support mobile TCP communications. Secondly, the deployment of our mobile system is
much easier than existing MHP solutions in terms of employing current routing infrastructure. The
implementation details will be discussed in the later sections.

Assume that an application process at mobile host M H, is communicating with a peer application
App, at another host by using the BSD socket in a network Net,, and further suppose that M H, needs
to move to another network Net, meanwhile the connection with App, need remain uninterrupted. Using
this situation as an example, the continuity provided by MSL has to support two main functions, namely,
the continuous TCP association and I/O support. First, active TCP association between a pair of TCP
sockets must not be interrupted by any losses of underlying communication links caused by movement of
mobile hosts. When M H, leaves Net,, the TCP connection will be broken. As soon as M H, arrives at
Nety, the portable system will first assign system parameters including a new IP address to M H,. Then,
after TCP/IP protocols resume functioning, MSL will then reopen new TCP connections for pending
associations that is for communicating with App, in an automatic and transparent way. Second, During
moving, no network I/O will be performed. In order to provide a seamless socket services, MSL keeps
accepting I/O requests from the upper layer even when TCP connections have been broken. The pending
I/0 requests will be performed after the connection is reopened.

6 Preliminaries

6.1 TCP Association and TCP Connection

The BSD socket API is a set of system calls which provide applications with accesses to communication
services. As first introduced in TCP protocol[18], the concept of socket was defined as an endpoint of
TCP communication and identified by an IP address and a TCP port number. In BSD Unix socket
API, a socket is further extended to a protocol-independent communication endpoint. Given there are
several protocol suites (e.g. OSI, XNS, SNA and Internet TCP/IP), each socket will be bound to one
of them, which is called Domain. Each domain can have more than one candidate transport or network
layer protocols to be further assigned to a open socket. As shown in Figure 11, in the Internet domain,
three types of sockets are available including datagram (UDP), data stream (TCP) and raw socket.

A socket is presented as a triple, (protocol, IP-address, port-number). The binding between two
sockets is call an association which is defined as a 5-tuple[19]:

(protocol, local-IP-address, local-port-number, peer-IP-address, peer-port-number)

Importantly, an association is Internet wide unique, that means an association between two sockets can
be set up once at a time, no two same associations can exist simultaneously.

In this paper, we restrict ourselves to TCP. A TCP association will be established between an active
open socket and a passive one, or called client and server. A TCP association is defined as

(TCP, local-IP-address, local-port-number, peer-IP-address, peer-port-number)

10

Application Process| Application Process|

socket \\b/\\b/smka

association between two sockets

p //,' | e

-
o]

UDP
ot her domai ns

IP ICMP

internet domain

Figure 11: Socket and Protocols

For a TCP association between two TCP sockets, a TCP connection, (local-IP-address, local-port-number,
peer-IP-address, peer-port-number), is established in the transport layer. The TCP association is then
mapped to the corresponding TCP connection. The transport layer is responsible for real communica-
tions.

socket ()

bi nd() socket ()

listen() \

accept() |—

/

bi nd()

connect ()

i

child process

Figure 12: Sequence of System Calls

6.2 Socket System Calls

A typical sequence of socket system calls are shown in Figure 12. The server first creates a socket, and
then binds it to a local address, namely a local-IP address and a port number. All client programs
must know that port number if they intend to use the services provided by the server. The next step at
the server site is to use listen() and accept() in order to wait for any incoming connection requests.
When a client requests a connection, accept () will return a new socket for the server to response. The
initial socket is only used for acceptance new incoming requests.

6.3 The TCP I/O Semantics

The TCP I/O semantics is mainly affected by its internal buffer and the I/O system calls which ma-
nipulate the internal buffers. Using 4.4BSD-Lite as an example[23], there are two groups of socket I/O
system calls that manipulate the internal buffer, namely, the write system calls and the read system calls.
They include write, writev, sendto, sendmsg and read, readv, recvfrom, recmsg, respectively.

Figure 13 shows both the control and data follows for the write system calls. Application processes
pass to the socket layer data and control messages including the destination IP address by calling one
of these four write system calls. Two socket layer calls soo_write and sendit keep such requests in
an internal data structure. The socket layer sosend first tries to obtain enough buffer space to hold
all data if possible, and then copy them to the sending buffer by calling the TCP layer subroutine —
pr-usrreq. Figure 14 shows both control and data flows for read system calls. The two socket layer
calls, soo_read and recvit, keep user requests in an internal structure with which a socket layer call
soreceive performs real data transfer from the TCP receiving buffer to the application process buffer.

11

process
] -
kenel (write) (_writev) (_sendto) [sendmsg]":,\
(s00_write) (Csendit_]
(Lsosend] -
socket layer e
protocol layer /

Figure 13: Write System calls and Buffering

(Creev)
process ‘ c-msystr:c(dali:
4
I
kemel (read) (Creadv) (recvirom) (recvmsg]r\
_, [e-msg/struct
(s0o_read) (Trecvit) - T
soreceive | -----cctTTTTTTTTIITIIINT =
socket layer
protocol layer

Figure 14: Read System calls and Buffering

As for write calls, locally the data being sent are first copied into the socket layer buffer, and then
to the TCP layer’s sending buffer. For synchronous I/O socket, write system calls return after data
have been copied into the TCP sending buffer. For asynchronous I/O socket, though write calls return
immediately, the signal of I/O completion is sent to application process after data are properly put into
the TCP sending buffer. Therefore, there are no any chances of loss of data when transferring data to
the TCP sending buffer. However, no error occurring in copying data locally does not ensure that data
are successfully transfered to the remote site. Closing socket will cause loss of data in the TCP sending
buffer. Usually close closes TCP socket. At default, close call will return immediately and all data
in the TCP sending buffer are sent out. When tearing down the TCP connection, application processes
can discard pending data to be sent by set the socket option SO_LINGER. Another system call shutdown
performs similar closing function.

As for read calls, TCP protocol will not discard any data correctly received. If there are no buffers
in the receiving buffer, TCP will close its receive window. All data out of the receiving window are
discarded and will not be acknowledged. If processes provide a small read buffer, the socket layer will
only transfer up to the size of that small read buffer. The remainder will be supplied for next read.
Similarly with the sending buffer, the receiving buffer will be cleared by close and shutdown.

A socket can be closed in two ways — read half and write half. When closing write half, application
can further indicate whether the pending data are to be discarded or not.

In summary, TCP socket guarantees that data will be correctly deliver to remote process without
duplication and loss in normal data transfer period. Socket I/O system calls will not introduce additional
possibility of loss of data. When sockets are closing, the data remaining in the sending and receiving
buffers may be discarded by TCP entity.

one-to-one

associ ation

, connecti on

moving

Figure 15: Life time of Association and Connection

12

7 The Continuity of TCP is Mobile Mapping: The Concept
and Issues

In this section, we first introduce the concept of mobile mapping and discuss the issues on how to
implement such mobile mapping.

7.1 Mobile Mapping

In conventional TCP/IP host systems, the relationship between a TCP association and a TCP connection
is 1:1. When application processes request to open or close an TCP association, in response, the socket
layer underneath will request the transport layer to setup or tear down a corresponding TCP connection
correspondingly. The association and connection can be considered as to have the same life time.

Before the discussion of mobile mapping between a TCP association and a TCP connection, two
terms have to be clarified. A home-IP is an IP address assigned to a mobile host permanently when
the mobile host resides in its home network. A current-IP is an IP address temporarily assigned to a
mobile host when it moves to different guest network.

Our strategy is briefly given as follows.

o Keeping TCP associations unchanged. Since the home-IP address is a unique identifier of a mobile
host, we use home-IP addresses in TCP association even when the mobile host is in a guest network.
The TCP association is independent of the location of the mobile host.

e Resetting TCP connections when mobile hosts move to a new location. The current-IP addresses
are used in real TCP connections.

e Hiding any loss of TCP connections from applications by introducing mobile mapping mechanisms
between TCP associations and TCP connections.

MSL provides an uninterrupted TCP association for TCP sockets between two MSL supported sys-
tems. When a mobile host moves, the TCP connection will be broken. However, both MSLs will continue
to support socket I/O operations as long as sending buffer is not full, and make the TCP association alive.
When the mobile host arrives at a new location, a TCP connection will be automatically reconnected
by two MSLs, and then the queued I/O requests and new I/O requests are performed through the new
TCP connection. In such circumstances, one association may be mapped to more connections. However,
at the same time, the relationship between two sockets is constant. The Figure 15 schematically depicts
the life time of TCP association and TCP connection.

Host Ha, IPa Host Hb, IPb
P
- mobile socket =
7 T
/i rpat transport
¥ iff//df I Pb1
A R il

Figure 16: Mobile Connection

Figure 16 shows the mapping between a TCP (socket) association and a TCP (transport) connection.
If a process A on mobile host H, needs to talk to process B at mobile host Hy via TCP, a TCP association
can be established between H, and H, at mobile socket level as {T'C P, IPa, Pa,Pb, Pb}. Where both
IP, and IP, are home-IP addresses. If a mobile host moves away from its home network, a TCP
connection is broken and a new one has to be reconnected later. TCP connection must be reconnected
using current-IP address. The mapping is from a TCP association

13

(TCP, home-IPy, Ports, home-IPg, Portg)
to a TCP connection
{current-IP4, Porty, current-IPg, Portg}

Note that the port numbers need not changing. As depicted in Figure 16, if mobile host H, moves to a
new location, its current-IP address changes from IPa; to [Pay. Although the TCP socket association
is still alive when moving, the old TCP transport connection, (I'CP, I Pa;, Pa,IPb;, Pb), will be taken
over by the new TCP transport connection, (T'C' P, [Pas, Pa,IPb, Pb). The data flow between mobile
sockets is continuous through the new connection.

7.2 Issue 1: Distinguishing Old and New Connection

Whenever a mobile host changes its location and therefore its current IP address, the opening TCP
socket association must be mapped on to the new TCP connection using the new current IP address
accordingly. However, implementation of such a mapping and re-mapping an open association to a new
connection is challenging. The major contribution to the complicity is the reuse of port numbers. Both
server and client systems may reuse a local port number to make different connections with different
peer sockets.

Figure 17: Reuse of Port Number

The mechanisms of reusing port numbers make it difficult to map a mobile TCP association to a new
TCP connection. For example, as in Figure 17, a server program is running on a fixed host. The port
number P; is used to connect with two mobile systems. Suppose that M H; and M H, are talking to
socket S; and Ss on the fixed host. The server is also waiting for new incoming requests. Suppose that
M H; moves away from current network. Then its TCP connection will be forced to terminate, but its
corresponding TCP association will be kept alive. However, the server has no way to determine whether
a new connection request is either a new request or a reconnection from M H;, because the incoming
request will have a new source IP address.

Another potential problem is from the reuse of the temporary current IP addresses. For example, a
server has a TCP connection with a mobile host, M H;, using a temporary current IP address I P,y
After a while, M H; moves away and leaves the server in the state of waiting for reconnection from M H;.
The IFP.y,» may be allocated to another mobile host, M Hj;, which may try to set up a connection with
exactly the same IP address and port number at server as used by M H;. In spite of the same IP address
and port number, the two mobile hosts shall be treated differently.

7.3 Issue 2: Keeping the Same Semantics

To keep the same TCP socket I/O semantics in our mobile socket environment is not simple. At first
glance, a TCP association is mapped to a TCP connection and the semantics should be maintained by
TCP entities which is supposed to be remained unchanged in mobile environments. However, a potential
problem occurs when closing of connection. In a non-mobile network environment, a TCP association
is always mapped to a single TCP connection. The only possible loss of data without further warning
is at the end of communication. Whereas a mobile TCP association might be mapped to many TCP

14

connections in different time periods (referring to Figure 15). At all ends of these connections, data may
be lost.

There two possible cases. First, a mobile host tries to close TCP connection just before moving. The
TCP entities at both ends will try to send out all data kept in the sending buffers before closing. But
this process will take time. If a mobile host moves before completion of active/passive close, both sides
have no idea whether the data remaining in TCP sending buffer have been successfully sent out. There
are two further possible cases: a) the data have already been sent to the correspondent site and the only
loss is the acknowledge which may be lost or has not been sent out; and b) the data have lost on the
way toward the remote site. Therefore, the data cannot be simply resent when a new TCP connection
is setup. Second, the network connection of mobile host gets lost in a non-voluntary way, so mobile
hosts have no time to close their current TCP connections and are forced to abort it. For example, a
user unplugs the network cable, or inadvertently goes beyond the covered area of current wireless LAN.
In such cases, old TCP connections are aborted at both sides which detect loss of network connection
or any network changes. Both systems do not know whether data in the sending buffer are correctly
received by the remote side.

To mobile TCP association, any kind of loss of data or any suspicious situation might occur in the
middle of life cycle of mobile association. This could change the TCP socket I/O semantics. Data might
be lost when system moves consequently.

7.4 Issue 3: Distinguishing Between Different TCP Services

The MSL-supported systems are expected to communicate with both conventional and peer MSL-
supported TCP systems so as to allow all applications to communicate without hassles of dealing with
different systems and different services. Two solutions are possible. One is to change the conventional
socket API interface that supports both conventional and mobile TCP services to applications. The
other is to find ways to detect whether a request is from a conventional system or a MSL-enabled sys-
tem. The former request to change the socket API syntax and therefore the semantics. Consequently,
existing applications can not be able to access our mobile TCP services without recompilation. The
latter incurs unnecessary system overhead when applications do not need mobile service.

8 Virtual Port

Our solutions to the first two issues mentioned in the previous section are introducing the concept of
virtual port which is an additional port between socket and TCP port as shown in Figure 18. A virtual
port acts as a TCP port from the viewpoint of a socket. When an application binds a socket to a TCP
port, MSL creates a virtual port, and binds the socket to it accordingly. The mobile TCP association is
established between two such virtual ports. All code above the virtual port is the same as used in the
current socket layer, and extensive mobile functionality is hidden by a virtual port.

client H server
| socket API

| ' | virtual port

— T T E—

I

Figure 18: Virtual Port
When created, a virtual port is assigned to a home-IP address and a local port number. Therefore,

what the socket sees is a TCP port with consistent permanent address. MSL maps a virtual port
associated with a home-IP address and a port number, to a real TCP port associated with current-IP

15

and port number, dynamically®. The TCP connection is set up between two real ports by conventional
TCP/IP protocol stacks. Furthermore, like TCP ports in the current TCP/IP system, a virtual port
can be shared by more than one sockets.

The following information must be managed in MSL system, namely, a six tuple (A, Viq4, P, B, By, F).
A is a TCP association, represented as:
(T'CP,home-IPy, port-number; , home-IP,, port-number,).
As mentioned before, it is difficult to distinguish reconnection requests from connection requests due
to port reuse at the server side. Hence an identifier, V4, is added to identify a unique virtual asso-
ciation from all associations through the same virtual port. V;; itself does not need to be unique in
Internet wide. The V4 is assigned by the server virtual port when a client cite requests to initiate a
connection. The V;; will be passed to the client. Later, the client cite uses the V4 as an additional
information to reconnect to the server virtual port. P is a connection between two addresses, namely,
(current-Py, port-numbers,, current-Py, port-number,). The home-IP is the permanent IP address for a
mobile host, and current-IP is a temporary IP address for the mobile host. The MSL system maps
home-IP addresses used in A to the corresponding current-IP addresses used in P. The port number
in general can be different. F' is used to indicate the type of local socket, either client or server. B is
a sending buffer being managed inside of the MSL system. B,, is a serial number to indicate the serial
number of data transfer. It starts from 0 at the beginning of mobile association.

(o)
‘

e virtual port

socket API

4

@‘

TCP port

®

Figure 19: A Simple Example

8.1 Procedure for Connection

The procedure for connection between two sockets is given in this section. We illustrate the steps in
Figure 19, assuming that the server system is a fixed host.

e Step 1: A server application creates a socket and binds it to a local address, (home-IP;, port-number,).
The MSL system at the server site creates a virtual port using the same address, accordingly.

e Step 2: The server application passively opens the socket. Correspondingly, the MSL system
at the server site opens a passive TCP port, (current-IP;, port-number,), and waits for incoming
request. Here current-IP; is the same as home-IP;.

e Step 3: A client application completes creating and binding its local socket, (home-IP,, port-number,).
The MSL system at the client site creates a virtual port using the same address as server does in
Step 1.

e Step 4: The client process then initiates a connection procedure to establish a TCP association
with the server socket. The address of the server socket given by the client process is a permanent
address.

e Step 5: The MSL system at the client site maps both local and server permanent addresses to
corresponding current TCP socket addresses, and starts a regular TCP three-way handshake to

5Note that the port number at server side might be changed, we will discuss this later.

16

set up a real TCP connection between two virtual ports at both the client and the server sites at
first. This procedure is not visible to application processes at both sides.

e Step 6: The MSL system at the server site will then accept the TCP connection from (current-I1P,
port-number;) to (current-IP2, port-number,) for further exchange of additional MSL control
information. Noting that the TCP association between two sockets has yet to exist at this stage.

e Step 7: By the real TCP connection, the MSL system at the client site sends its virtual port
address including additional information to its peer MSL system at the server site to indicate that
it is an initial connection request.

e Step 8: Based on the information provided by the MSL at the client site, the MSL system at the
server site decides whether or not to accept this request according to the parameters passed from
the upper layer at the server site.

e Step 9: If this request is accepted, a new socket is created at the server site, but not a new virtual
port. The MSL system at the server site will assign a V;4 to this new association and also inform
the MSL system at the client side of the acceptance.

e Step 10-a: The MSL system at the client side keeps the V4 internally and informs the client
application of the successful connection.

e Step 10-b: If the server application refuses the connection at Step 9, the MSL system at the
server site sends a deny information back to the MSL system at the client site. Then client MSL
returns a error code to client.

Obviously, the major difference of the connection procedure between the MSL systems and the
conventional systems is that a real TCP connection is set up before the socket association and before
the connection between virtual port is accepted.

Next, we briefly describe how to implement the above steps using the API for the standard socket
system calls. At the server side, for Step 1, a socket () creates a socket structure and a bind () assigns
a local permanent address to the socket. For Step 2, the server calls both listen() and accept() to
passively open the socket. The accept () will create a virtual port locally, and the MSL maps the virtual
port address to a real TCP address. This accept () will return when a virtual port is accepted at Step
9. At the client site, for Step 3, the client process calls socket () to create its own local socket. The
client can call bind () to explicitly assign an address to local socket. If the client does not call bind (),
connect () will implicitly assign such an address, at Step 4. To both the server and the client processes,
all the steps between Step 5 to Step 8 is transparent. The additional mobile operations are completed in
accept () and connect () system calls. When these two system calls return successfully, a mobile TCP
association is created.

The reconnection procedure will be the similar. The server virtual port is always waiting for incoming
request from the underlying TCP port. The MSL system at the client site will send different request
messages with a V4 to the MSL system at the server site. Hence the MSL system at the server site
understands whether or not it is a reconnection, and is able to map it to correct destination socket.

The server application itself may be ceased before its child processes and its socket is closed. Normally,
there is no alive socket listening on the corresponding TCP port. In other words, all sockets associated
with this TCP port are created for child processes and are not in a passive open mode. Any incoming
requests to this TCP port will be refused by the TCP layer. However, as for MSL, the processing is
different in a certain circumstance. If there is a socket, which has active association with a client process
which is not currently connecting to the TCP connection due to its movement, the MSL system at the
server site will still passively open the underlying TCP port, and wait for reconnection requests.

The MSL systems have to distinguish the close of last TCP connection from all previous ones as well.
At the last connection, the virtual ports and sockets at both sides need to be deleted. Otherwise, the
virtual ports must be kept alive. When the client or server applications need to close an association, the
MSL systems will explicitly close the TCP connection and will delete such virtual ports and associations.

17

8.2 I/0 Semantics

The sending buffer, B, is aimed at two targets: providing continuous I/O services and remaining the
TCP I/O semantics unchanged.

As for providing continuous I/O services, the local data buffering scheme is given as follows. If the
underlying TCP connection between the two real TCP ports exists and functions, the virtual ports at
both sides will not buffer any data. All data being sent out will be put into the TCP sending buffer
directly. During the movement, there is no real TCP connection, and no I/O requests can be performed.
The MSL system is expected to buffer data in its own sending buffer. These buffered data will be sent
out when a new TCP connection is created later on. A virtual port can reject data when its buffer is full.
The rejection is not an exceptional case by all means. For instance, in normal socket communications,
network congestion can occur. In this case TCP cannot send more data when the sending window is full
and the consequent sending requests will fail. The loss of underlying TCP connection looks the same as
loss of network bandwidth to application processes in terms of I/0O failures.

Regarding TCP I/0 semantics, TCP uses both sliding window and acknowledgement mechanism to
ensure correct delivery of all data being transfered between two TCP ports over unreliable networks.
When a TCP connection is being closed, either side may discard data in its sending buffer. Hence, TCP
associations are reliable during the data transfer period but there is no guarantee during the closing
time. In mobile association environments, there might be more that one TCP connections to convey
data between a pair of sockets, and exist no mechanisms to ensure that these TCP connections can be
closed in a complete manner.

associ ation
w ndow

' — — i association

. TCP connections

P

time

o Eow"
Figure 20: Association Window and TCP Window

To keep the I/O semantics unchanged, besides the buffer, B, we introduce a new mechanism, called
association window, which spans over entire association lifetime and is independent of TCP window
mechanism as shown in Figure 20. TCP windows make sure that data can be correctly transfered in
single TCP connection, whereas association windows are aimed at the correct data transfer during entire
lifetime of a mobile association. Association window gives all data being transfered in one direction a
sequential number, B,,, like TCP window does. The initial number is always from zero. At each beginning
of re-establishing underlying TCP connection, both virtual ports will exchange the sequential numbers
in association window to indicate how many bytes in incoming data stream have been correctly received,
hence the peer systems can resume transfer from correct starting points. Virtual ports will keep records
of the sequential numbers of both last byte sent to the TCP layer and the last byte received, these
numbers are updated when each time virtual port sends data to TCP sending buffer or receives data
from TCP receiving buffer. Given the loss of data in TCP communications can only occur at the end
of each TCP connection, only these data in TCP sending buffer might be lost. Therefore, MSL fetches
back the remainder of data in TCP sending buffer into virtual port buffer, B, at the end of each TCP
connection. Upon reconnecting, virtual ports will re-send all or partial portion of data in the buffer, B,
according to the requested sequential number B; sent by remote side. Both B and B; are recorded in
the aforementioned 6-tuple of virtual port.

8.3 Virtual Port Protocol

The Virtual Port Protocol(VPP) is a protocol used between a pair of virtual ports. The basic tasks
of VPP are demultiplexing and mapping the incoming connection requests to proper associations and
resynchronising data transfer after reconnections.

There are four types of Protocol Data Units (PDU) used in VPP, as given in Figure 21. After setting

18

8 32 16 32 16

OP = INI_REQ [OP] Tocal HIP | Port | foreign HIP [Port |
8 16

P = IN_RSP [CP] index |
8 16 32

OP = REC_REQ [oP] index | recv. pointer |
8 16 32

OP = REC_RSP [oP] index | recv. pointer |

Figure 21: Protocol Data Units

up the underlying TCP connection between the pair of virtual ports, VPP PDUs are exchanged before
any data transfer of application processes.

First, the MSL at the client site sends a INI_REQ with the definition of virtual connection (local home-
IP, local-Port, peer-home-IP, peer-port). The MSL at the server site then finds that the incoming request
is for a new connection. According to the condition specified in the server application’s accept (), the
MSL system at the server site decides whether or not to accept this request. The result is sent back to
the client in INI_RSP PDU. If the connection is refused, the value of V4 is assigned to a negative number,
and underlying TCP will then be closed by server system immediately as well. If the request is accepted,
Viq will be a positive number as the valid and unique association identifier among all associations of this
virtual port at the server site. Afterwards, all incoming data will be directly passed to the sockets by
virtual ports, and not further control information is embedded into the normal outgoing data stream as
well.

When a client moves into a different location, the MSL system at the client site uses the V;4 to
reconnect. This request is sent in REC_.REQ UDP. And the MSL system at the server site will recognise
the reconnection request and find the corresponding association followed by replying a REC_RSP message.
REC_RSP indicates that the current underlying TCP connection is successfully mapped to the destination
socket. Like INI_REQ, if the MSL system at the server site cannot find a V4, a response with an invalid
Vig will be sent back. During reconnection period, both sides need to exchange the B,s to inform the
other side of the position from which data transfer should start.

8.4 The API of MSL

MSL provides two types of TCP services, namely, regular and mobile services at both server and client
sides. As for the API of MSL, there are two solutions. One is to define a new API for a mobile protocol
supported in the internet domain, say, IPPROTO_MTCP. The other is to use the existing internet domain,
by which MSL must be able to handle both regular and mobile services inside the MSL layer. The
advantage of the later approach is the transparency at the expense of extra cost for handling regular
TCP services. Due to the compatibility issues, we adopt the latter approach for our prototype system.

Suppose that we use the current internet domain. Then, the next issue is how to make a regu-
lar/mobile connection. For example, the MSL at the client site always attempts to make a mobile
connection with a remote virtual port following the VPP protocol, which defines the PDU’s and ex-
change procedures. However, the server system may not support VPP. Therefore, the establishment of
underlying TCP connection may have different meanings to the client and the server. The client will
use VPP, whereas the server will consider the connection between two sockets has been completed and
bypass PDUs up to the server application processes. Two solutions are available. The first solution is
to use an additional TCP option. The client virtual port sends INI_REQ to normal well-known server
port with a new TCP option which inform the server that the client system wants to set up a mobile
connection. If the server system is MSL-enabled, it will correctly understands and responds such re-
quest with another new mobile TCP option. If the server system does not support mobile service, it
must discard it and complete normal TCP connection according to the requirement to TCP/IP host
system[16]. The second solution is to use the so called magic number. After establishing a underlying
TCP connection, the MSL system at the client site sends the server a magic number at the beginning
of data stream which is followed by the VPP INI_REQ or REC_.REQ PDU’s. From the magic number, the
server will understand that the client system needs mobile services. Otherwise, a regular association is

19

set up. As for the first approach, it requires to enhance the TCP layer. We adopt the magic number
approach for our prototype system.

9 An Example
In this section, we demonstrate the functions of the virtual port protocol using an example.

Initial Connection of Association and Underlying TCP

Figure 22 shows the simplified procedure of initial connection between two sockets, namely, a server and
a client.

TCP connection ®
t ® ® I

@ ®

nobi | e socket

%
3 virtual nobile port
B TCP port

Figure 22: Initial Mobile Connection

In the first step, the server process creates a socket and binds it to a local permanent address (home-
IPs, Portg). In Step 2, the MSL system at the server site creates a virtual port for this socket and
translates the permanent address into a local current address, (current-I Ps, Portg). Then server process
listens on the socket in Step 3. Inside the MSL system, the virtual port listens to the real local TCP port
on behave of the socket. In Step 4, the client process creates and binds an active socket to an assigned
local address. The MSL system at the client site creates a underlying local virtual port, (home-IPg,
Portc). Then, the client process initiates a connection with the server process using its permanent
address in Step 4. The MSL system at the client site maps both permanent addresses, for the client
and the server hosts, into current IP addresses, and then attempts to set up a regular TCP connection
between these two current IP addresses, (current-I P, Portc, current-IPs, Portg), in Step 5. In Step
6, the server virtual port accepts the connection request so that a regular TCP connection can be set
up. The virtual port protocol entities exchange information between the pair of virtual ports in Step 6,
7 and 8, as depicted in Figure 23.

As shown in Figure 23, the client virtual port first sends an initial request (INI_REQ message) to the
server virtual port, which contains both local and remote permanent addresses. The server will check
to see if the request is destined to a correct system and if there is a running server. Suppose that the
server MSL positively replies the request with INI_RSP. The 16-bit index V;4 in INI_RSP is assigned for
later reconnection. Typically five TCP segments are exchanged to establish a virtual connection. But we
can combine INI_REQ with SYN, since it is legal under TCP protocol with most TCP implementation[21]
The INI_REQ and INI RSP messages are used internally in MSL and will not be delivered to the upper
layers. If the server system rejects this virtual connection, it simply closes the real TCP connection.
The client system will know the request is rejected and all internal data structures will be freed at
both systems. Note that unlike TCP, no initial sequential number for association window needs to be
exchanged, because it always starts from zero. Each of the two virtual ports maintains two pointers for
receiving and sending association windows. The values of pointers indicate the sequential number of the
last byte received and sent form and to TCP port. Initial values of these pointers are zero.

In Step 9 and 10, both the client and the server virtual port inform their corresponding sockets of
the successful connection. Then, the underlying TCP connection is switched to normal data transfer

20

Client Server

three-way
handshake
Step 6
Step 7
Step 8
8 32 16 32 16
[OP] local P-1P] port] Foreign P-1P] port |
INI_REQ
8 16
[OP[index |
INI_RSP

Figure 23: Initial Connection of Virtual Ports

status.

Client Server

recv. assoc. window pointer = 900 recv. assoc. window pointer =200
>.| DATA(101-200) .
send assoc. window pointer = 200 ACK 900 send assoc. window pointer = 1100
- 7 901 1100+
o1 200 £ DATA(901 £160) 0077
K 200 £

N Tost e
V7771 2
TCP send buffer TCP send buffer

Figure 24: Loss of TCP Connection

Suppose that at later stage the client system starts to move and the TCP connection is lost between
these virtual ports, as shown in Figure 24. Further assuming that the client received the first 900 bytes
from the server, and sent the first 200 bytes into TCP port. We also suppose that the server has received
all the 200 bytes, and sent 1100 bytes to the client. Here, the 901st byte to 1100th byte of data being
sent by the server are lost. After the TCP connection is broken, both sides fetch the remaining data
in the sending buffers of the TCP ports to their virtual port buffer. In the client, there are 100 bytes
left in the TCP sending buffer due to the fact that the last IP datagram carrying the ack information
from the server was lost. In the server, 200 bytes remain in the TCP sending buffer, and these data are
totally lost.

Reconnection of Underlying TCP

When the client arrives at its new location, new TCP connection will be re-established to resume the
communication between these two virtual ports. In our VPP, the client system always actively tries to
connect to the server system. Envision that client system moves from network IV; to a new network Ns,
and current IP address is I Pc,.

As shown in Figure 25, the server always listens on Portg if there are any alive virtual ports associated
with it (Step 1). After the client is ready to communicate at its new location, it starts a three-way
handshake to establish a new TCP connection with the server virtual port at first. The new TCP
connection between these two virtual port is (current-IPq,, Portc, current-IPs, Portg). The server
will accept this connection first at the real TCP port level which is done in Step 2. In Step 3, the client
virtual port sends reconnection request to the server virtual port with V;4 and its receiving association
window pointer. The server virtual port then looks up its association list, and checks to see if there is a

21

IPb, PORTc, P-IPs, PORTSs) @ \L
@

€]

v nobi | e socket
3 virtual nobile port
EE TCP port

Figure 25: Reconnection of Virtual Port

pending mobile association to wait for reconnection. If successful, a response is sent back to the client
to inform the success of a reconnection (Step 3). Then, in step 4, both virtual ports will resend the data
in the buffer of virtual port at first, and then continue the I/O services provided to sockets (in Step 5).

Client Server

SYN REC_REQ
SYN, ACK

three-way

handshake

virtual
connection
REC_RSP

8 16 32
|OP[index | recv pointer |
OP=REC_REQ
8 16 32
[OP]index | recv. pointer |
OP=REC_RSP

Figure 26: Reconnection of Virtual Port

During the reconnection, the messages changed between virtual ports are depicted in Figure 26.
Firstly, the three-way handshake establishes a TCP connection between the two virtual ports. Then, the
client virtual port sends a REC_RES to the server virtual port which contains the V;; and the receiving
pointer of its receiving association window of 900. The server responses a REC_RSP with a pointer of 200
from which client virtual port understands that there is no need to resend the data. The server virtual
port has to resend the data to the client starting from 901.

If the server system moves, or even both systems move during the same period, the reconnection
procedure will be similar to the case when only the client system moves. The server system always
passively listens on a certain TCP port. When the client system arrives at a new location, it will
attempt to connect the server system at server’s previous IP address. If it fails after timeout or ICMP
error message goes back, the client system will try to fetch server system’s new current IP address and
try again until the re-connection is successfully completed or the association between mobile sockets is

22

broken due to failure of connection.

System calls getpeername and getsockname will be used if a process enquires the IP address from
DNS name. In a mobile environment, we need emphesize that an IP address returned by these two
system calls is a permanent IP address. application processes are shielded from current IP address at
all.

10 Conclusion

In this paper, we described the mobile TCP socket, one step of our two step solution to support mobility.
In our mobile TCP socket, a mobile mapping is introduced which maps TCP associations to TCP
connections. The mobile mapping can be implemented in the socket layer and on top of TCP/IP layers.
We showed the implementation details in this paper as well. Our approach achieves high compatibilities
with the current TCP/IP protocols due to the following reasons. First, we adopt the same API of
the socket layer. Second, we do not require any special functionality in the network or the transport
layers to support mobility. Finally, we do not require all networks, where mobile hosts may visit, to
support special routing mechanisms. In terms of performance, our mobile solution can reduce both the
propagation cost for distributing the location information of mobile hosts and the forwarding cost for
forwarding IP datagrams across the Internet. As a future work, we will attempt to conduct a performance
study on the two costs mentioned above.

References

[1] Ajay Bakre and B.R. Badrinath. I-TCP: Indirect TCP for mobile hosts. Technical Report DCS-
TR-314, Department of Computer Science, Rutger University, Piscataway, NJ 08855, USA, October
1994.

[2] Stuart Cheshire and Mary Baker. Internet mobility 4x4. ACM Computer Communications Review,
26(8), August 1996.

[3] C. Perkins (editor). IP mobility support, version 17. IETF Internet Draft, May 1996.

[4] John Ioannidis, Dan Duchamp, and Gerald Q. Maguire Jr. Ip-based protocols for mobile internet-
working. ACM Computer Communications Review, 21(5):235-245, September 1991.

[5] John Ioannidis and Gerald Q. Maguire Jr. The design and implementation of a mobile internet-
working architecture. In Proceedings of 1993 Winter USENIX Conference, San Diego, CA, USA.,
January 1993. USENIX.

[6] David B. Johnson. Mobile host internetworking using loose source routing. Technical Report CMU-
(CS-93-128, School of Computer Science, Carnegie Mellon University, 1993.

[7] David B. Johnson. Scalable and robust internetwork routing for mobile hosts. In Proceedings of the
14th International Conference on Distributed Computing Systems. IEEE Computer Society, June
1994.

[8] David B. Johnson and Charles Perkins. Routing optimisation in mobile IP. Internet Draft Standard.

[9] Andrew Myles and David Skellern. Comparing four IP based mobile host protocols. Computer
Networks and ISDN Systems, 26:349-355, 1993.

[10] Baiju V. Patel, Partha Bhattacharya, Yakov Rekhter, and Arvind Krishna. An architecture and
implementation toward multiprotocol mobility. IEEE Personal Communications, 2(3):32—-42, June
1995.

[11] C. Perkins and Y. Rekhter. Draft RFC, July 1992.

23

[12] C. Perkins and Y. Rekhter. Support for mobility with connectionless network layer protocols (trans-
port layer transparency). Draft RFC, January 1993.

[13] Charles Perkins, Andrew Myles, and David Johnson. IMHP: A mobile host protocol for the internet.
Computer Networks and ISDN System, 27:479-491, 1994.

[14] Charles Perkins, Andrew Myles, and David B. Johnson. The internet mobile host protocol (IMHP).
In Proceedings of INET’94/JENC5, 1994.

[15] Xun Qu, Iain Macleod, and Hong Jiang. A practical method to achieve portable communication
in internet context. In Proceedings of GlobeCom’95, pages 1512-1516, Singapore, November 1995.
IEEE.

16] Requirements for internet hosts — communication layers, RFC 1122, October 1989.
17] Internet protocol(IP), RFC 791, September 1981.
18] Transmission control protocol, RFC 793, September 1981.

[

[

[

[19] W. Richard Stevens. UNIX Network Programming. Pretice Hall, 1990.

[20] W. Richard Stevens. TCP/IP Illustrated, Volume 1, The Protocols. Addison-Wesley, 1994.
[

21] W. Richard Stevens. TCP/IP Illustrated, Volume 3, TCP for Transactions, HTTP, NNTP, and
the UNIX Domain Protocols. Addison-Wesley, 1996.

[22] Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro. A network architecture providing host migra-
tion transparency. ACM Computer Communications Review, 21(1):209-220, January 1991.

[23] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, volume 2, The Implementation.
Addison-Wesley, 1995.

24

