Numerical Stability of Some
Fast Algorithms for Structured
Matrices (invited paper)*

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Richard.Brent@anu.edu.au

March 1997

*Presented at Workshop on Scientific Computing 97,
CUHK, Hong Kong, 12 March 1997. Dedicated to Gene
Golub on the occasion of his 65-th birthday.

Copyright © 1997, R. P. Brent.

rpb173t typeset using BTEX

Abstract

We consider the numerical stability/instability
of fast algorithms for solving systems of linear
equations or linear least squares problems with
a low displacement-rank structure. For
example, the matrices involved may be Toeplitz
or Hankel. In particular, we consider algorithms
which incorporate pivoting without destroying
the structure, such as the GKO algorithm, and
describe some recent results by Sweet and
Brent, Ming Gu, Michael Stewart and others on
the stability of these algorithms. It is interesting
to compare these results with the corresponding
stability results for algorithms based on the
seminormal equations and for the well known
algorithms of Schur/Bareiss and Levinson.
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Because of shortage of time, I will not consider
look-ahead algorithms or iterative algorithms.

Acronyms

BBH = Bojanczyk, Brent & de Hoog.
BBHS BBH & Sweet.
GKO = Gohberg, Kailath & Olshevsky.

Notation

R is a structured matrix,

T is a Toeplitz or Toeplitz-type matrix,
P is a permutation matrix,

L is lower triangular,

U is upper triangular,

Q is orthogonal.

Error Bounds

In error bounds O, (g) means O(ef(n)), where
f(n) is a polynomial in n.



Displacement Structure

Structured matrices R satisfy a Sylvester
equation which has the form

V{Avab}(R) = AfR — RAy, = @7 ,

where Ay and A, have some simple structure
(usually banded, with 3 or fewer full diagonals),
® and ¥ are n X @ and a X n respectively, and
« is some (small) integer.

The pair of matrices (®, ¥) is called the
{Ay, Ap}-generator of R.

a is called the {Ay, Ap}-displacement rank of R.
We are interested in cases where « is small (say
at most 4).

Example — Cauchy

Particular choices of Ay and Ay lead to
definitions of basic classes of matrices. Thus, for
a Cauchy matrix

1
C(t7s):|:t'—8':| )
% 3145

we have
Af =D; = diag(tl,tz, Ce ,t") s

Ap = D, = diag(s1,52,..-,5n)

and
el =w=1,1,...,1].

More general matrices, where ® and ¥ are any
rank-a matrices, are called Cauchy-type.

Example — Toeplitz

For a Toeplitz matrix T = [t;;] = [ai—;]
o o0 --- 01
1 0 0

Ap=Z1=|0 1 S

0 0 0 -1
1 0 0
A=Z1=]10 1 ,
0 0 1 O
T
P — 1 0 0
ay a1-n+tar - G-1+ap-1
and
_ | Gp-1—G-1 -+ G1 —0A1-pn Q
\I][ 0 0 1}

We can generalize to Toeplitz-type matrices in
the obvious way.

GE and Schur Complements

Let the input matrix, R;, have the partitioning

Rlz{dl “ilT}.
Y1 Ry

The first step of normal Gaussian elimination is

to premultiply R; b, 1 or which
p Py Ruby | 0 1 |
. d1 W,{
reduces it to { 0 R |’ where

R2 = Rl — ylwr{/dl

is the Schur complement of di in R;.

At this stage, R; has the factorization
1 OT d1 W{
R = .
yi/di T 0 Ry
One can proceed recursively with the Schur

complement Rg, eventually obtaining a
factorization Ry = LU.



Structured Gaussian Elimination

The key to structured Gaussian elimination is
the fact that the displacement structure is
preserved under Schur complementation, and
that the generators for the Schur complement
Rp41 can be computed from the generators of
Ry, in O(n) operations.

Partial Pivoting

Row and/or column interchanges destroy the
structure of matrices such as Toeplitz matrices.
However, if Ay is diagonal (which is the case for
Cauchy and Vandermonde type matrices), then
the structure is preserved under row
permutations.

This observation leads to the GKO-Cauchy
algorithm for fast factorization of Cauchy-type
matrices with partial pivoting (and many recent
variations on the theme by Boros, Gohberg,
Ming Gu, Heinig, Kailath, Olshevsky,

M. Stewart, etc).

Toeplitz to Cauchy

Heinig (1994) showed that, if T is a
Toeplitz-type matrix, then

R=FTD'F*
is a Cauchy-type matrix, where

_ L pemi-1)G-1
F= \/ﬁ[e

is the Discrete Fourier Transform matrix,

™1 <k j<n

D = diag(1, emim ,em("_l)/"),

and the generators of 7" and R are simply
related.

The transformation T <> R is perfectly stable
because F' and D are unitary.

Note that F' is (in general) complex even if T is
real.
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GKO-Toeplitz

As pointed out by Heinig (1994) and exploited
by GKO (1995), it is possible to convert the
generators of T to the generators of R in
O(nlogn) operations via FFTs (we assume

a = 0(1)). R can then be factorized as

R = PTLU using GKO-Cauchy. Thus, from the
factorization

T =FPTLUFD,
a linear system involving T' can be solved in
O(n?) (complex) operations.

Other structured matrices, such as
Toeplitz-plus-Hankel, Vandermonde,
Chebyshev-Vandermonde, etc, can be converted
to Cauchy-type matrices in a similar way.
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Error Analysis

Because GKO-Cauchy (and GKO-Toeplitz)
involve partial pivoting, we might guess that
their stability would be similar to that of
Gaussian elimination with partial pivoting.

The Catch

Unfortunately, there is a flaw in the above
reasoning. During GKO-Cauchy the generators
have to be transformed, and the partial pivoting
does not ensure that the transformed generators
are small.

Sweet & Brent (1995) show that significant
generator growth can occur if all the elements of
@V are small compared to those of |®||¥|. This
can not happen for ordinary Cauchy matrices
because ®*) and ¥(*) have only one column
and one row respectively. However, it can
happen for higher displacement-rank
Cauchy-type matrices, even if the original
matrix is well-conditioned.
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The Toeplitz Case

In the Toeplitz case there is an extra constraint
on the selection of ® and ¥, but it is still
possible to give examples where the normalized
solution error grows like k2 and the normalized
residual grows like x, where « is the condition
number of the Toeplitz matrix. Thus, the
GKO-Toeplitz algorithm is (at best) weakly
stable.

It is easy to think of modified algorithms which
avoid the examples given by Sweet & Brent, but
it is difficult to prove that they are stable in all
cases. Stability depends on the worst case,
which may be rare and hard to find by random
sampling.
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Gu and Stewart’s improvements

The problem with the original GKO algorithm
is growth in the generators. Ming Gu suggested
exploiting the fact that the generators are not
unique.

Recall the Sylvester equation
V{AﬁAb}(R) =AfR— RApy = @Y,

where the generators ® and ¥ are n X o and

a X n respectively. Clearly we can replace ® by
®M and ¥ by MU, where M is any
invertible o x a matrix, because this does not
change the product ®¥. Similarly at later
stages of the GKO algorithm.

Ming Gu (1995) proposes taking M to
orthogonalize the columns of ® (that is, at each
stage we do an orthogonal factorization of the
generators). Michael Stewart proposes a
(cheaper) LU factorization of the generators. In
both cases, clever pivoting schemes give error
bounds analogous to those for Gaussian
elimination with partial pivoting.
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Gu and Stewart’s error bounds

The error bounds obtained by Ming Gu and
Michael Stewart involve an exponentially
growing factor K™ where K depends on the
ratio of the largest to smallest modulus
elements in the Cauchy matrix

t; — s; ij.

Although this is unsatisfactory, it is similar to
the factor 2*~! in the error bound for Gaussian
elimination with partial pivoting.

Michael Stewart (1997) gives some interesting
numerical results which indicate that his scheme
works well, but more numerical experience is
necessary before a definite conclusion can be
reached.

In practice, we can use an O(n?) algorithm such
as Michael Stewart’s, check the residual, and
resort to iterative refinement or a stable O(n3)
algorithm in the (rare) cases that it is necessary.
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Positive definite structured matrices

An important class of algorithms, typified by
the algorithm of Bareiss (1969), find an LU
factorization of a Toeplitz matrix T, and (in the
symmetric case) are related to the classical
algorithm of Schur for the continued fraction
representation of a holomorphic function in the
unit disk.

It is interesting to consider the numerical
properties of these algorithms and compare
with the numerical properties of the Levinson
algorithm (which essentially finds an LU
factorization of 771).
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Bareiss — Positive Definite Case

BBHS (1995) have shown that the numerical
properties of the Bareiss algorithm are similar
to those of Gaussian elimination (without
pivoting). Thus, the algorithm is stable for
positive definite symmetric T'.

The Levinson algorithm can be shown to be
weakly stable for bounded 7, and numerical
results by Varah, BBHS and others suggest that
this is all that we can expect. Thus, the Bareiss
algorithm is (generally) better numerically than
the Levinson algorithm.

Cybenko showed that if certain quantities called
“reflection coefficients” are positive then the
Levinson-Durbin algorithm for solving the
Yule-Walker equations (a positive-definite
system with special right-hand side) is stable.
However, “random” positive-definite Toeplitz
matrices do not usually satisfy Cybenko’s
condition.
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The generalized Schur algorithm

The Schur algorithm can be generalized to
factor a large variety of structured matrices —
see Kailath and Chun (1994) or Kailath and
Sayed (1995). For example, the generalized
Schur algorithm applies to block Toeplitz
matrices, Toeplitz block matrices, and to
matrices of the form T7T where T is
rectangular Toeplitz.

It is natural to ask if the stability results of
BBHS (which are for the classical Schur/Bareiss
algorithm) extend to the generalized Schur
algorithm. This was considered by M. Stewart
and Van Dooren, and also (independently) by
Chandrasekharan and Sayed (1996).

The conclusion is that the generalized Schur
algorithm is stable for positive definite matrices,
provided that the hyperbolic transformations in
the algorithm are implemented correctly. In
contrast, BBHS showed that stability of the
classical Schur/Bareiss algorithm is not so
dependent on details of the implementation.
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Fast Orthogonal Factorization

In an attempt to achieve stability without
pivoting, and to solve m X n least squares
problems, it is natural to consider algorithms
for computing an orthogonal factorization

T =QU

of T. The first such O(n?) algorithm! was
introduced by Sweet (1982-84). Unfortunately,
Sweet’s algorithm is unstable.

Other O(n?) algorithms for computing the
matrices Q and U or U™! were given by

BBH (1986), Chun et al (1987),

Cybenko (1987), and Qiao (1988), but none of
them has been shown to be stable, and in
several cases examples show that they are
unstable.

'For simplicity the time bounds assume m = O(n).
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The Problem — @)

Unlike the classical O(n?) Givens or
Householder algorithms, the O(n?) algorithms
do not form @ in a numerically stable manner
as a product of matrices which are (close to)
orthogonal.

For example, the algorithms of Bojanczyk,
Brent and de Hoog (1986) and Chun

et al (1987) depend on Cholesky downdating,
and numerical experiments show that they do
not give a @) which is close to orthogonal.

The generalized Schur algorithm, applied to
TTT, computes the upper triangular matrix U
but not the orthogonal matrix Q.
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The Saving Grace — U and
Semi-Normal Equations

It can be shown (BBH, 1995) that, provided the
Cholesky downdates are implemented in a
certain way (analogous to the condition for the
stability of the generalized Schur algorithm) the
BBH algorithm computes U in a weakly stable
manner. In fact, the computed upper triangular
matrix U is about as good as can be obtained by
performing a Cholesky factorization of TTT, so

|77 = TGN T] = O(e) -
Thus, by solving
UT0z =1

(the so-called semi-normal equations) we have a
weakly stable algorithm for the solution of
general Toeplitz systems Tz = b in O(n?)
operations. The solution can be improved by
iterative refinement if desired.

Note that the computation of ) is avoided.
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Computing () stably

It is difficult to give a satisfactory O(n?)
algorithm for the computation of @ in the
factorization

T=QU

Chandrasekharan and Sayed get close they
give a stable algorithm to compute the
factorization

T = LQU

where L is lower triangular, provided that 7T is
square. Their algorithm can be used to solve
linear equations but not for the least squares
problem. Also, because their algorithm involves
embedding the n X n matrix T in a 2n X 2n

matrix
' 1T
T 0 ’
the constant factors in the operation count are
large: 59n2 + O(nlogn), compared to

8n? + O(nlogn) for BBH and seminormal
equations.
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Some open problems

o Is there a stable (not just weakly stable)
fast algorithm for the (rectangular)
structured least squares problem ?

e What are the best generalizations to
block-structured problems, e.g. block
Toeplitz with y/n x y/n blocks ?
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