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ABSTRACT

There has recently been an interest in the introduction of reconfigurable
buses to existing parallel architectures. Among them the Reconfigurable Mesh
(RM) draws much attention because of its simplicity. This paper presents
three constant time algorithms to compute the contour of the maximal ele-
ments of N planar points on the RM. The first algorithm employs an RM of
size N x N while the second one uses a 3-D RM of size v/ N x+/N x+/N. We fur-
ther extend the result to k-D RM of size N1/ (71 5 N1/ (=1) 5. .. 5 N/ (=1

Keywords: Reconfigurable mesh; Parallel algorithm; Computational geometry

1 Introduction

It is well known that interprocessor communications and simultaneous memory
accesses often act as bottlenecks in present-day parallel machines [1]. Bus systems
have been introduced recently to a number of parallel machines to address this
problem. Examples include the Bus Automaton [2], the Reconfigurable Mesh (RM)
[3], the content addressable array processor [4], and the Polymorphic torus [5]. A
bus system is called reconfigurable if it can be dynamically changed according to

either global or local information.
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Jang et al. [6] have recently studied a number of constant time computational
geometry algorithms on the reconfigurable mesh. In this paper we explore one
further problem from a similar point of view. The problem, considered from com-
putational geometry, is to compute the contour of the maximal elements of a given
set of planar points (see Section 2.2). This problem is also known as finding the
maxima, of a set of vectors and has been extensively explored for serial computers in
[7,8,9]. Computation of maximal elements is important in solving the Largest Empty
Rectangle Problem [10] where a rectangle R, and a number of planar points S € R,
are given and the problem is to compute the largest rectangle » C R that contains
no point in S and whose sides are parallel to those of R. If R is divided into four
quadrants then the maximal elements w.r.t. the northeast(NE), northwest(NW),
southwest(SW), and southeast(SE) directions as depicted in Fig. 1 remain the only
candidates to be the supporting elements of the empty rectangles lying in all the
four quadrants.
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Fig. 1: Importance of maximal elements in computing largest empty rectangle

It is well known that the time complexity for computing the contour of the
maximal elements of N planar points is ©(N log N) using a serial computer [7].
Dehne [11] gives an efficient algorithm for solving this problem on a mesh of size
VN x /N in O(\/N) time.

In this paper we present three constant time algorithms to compute the contour
of the maximal elements of N planar points on the reconfigurable mesh. The first
algorithm employs an RM of size N x N while the second one uses a 3-D RM of
size VN x v/N x v/N. The second algorithm is then further extended on a k-D RM
of size N1/ (k=1) 5 N1/(k=1) 5 ... 5 NT/(k=1) " An O(4*) time algorithm is developed
using only O(N'+1/(¥=1)) processors, where 0 < 1/(k — 1) < 1 for large N. To our
knowledge this problem on the reconfigurable mesh is examined here for the first
time.

Whenever necessary N'/(*~1) is assumed to be an integer where k is the dimen-
sion of the RM under consideration. This implies k£ <log, N + 1.

This paper is organized as follows. In the next section we present the basic
issues of RM as well as the definition of the problem. Constant time algorithms are
developed in Section 3. Section 4 concludes the paper.



2 Preliminaries

For the sake of completeness, we briefly define the reconfigurable mesh and give
definitions of the problem of computing the contour of the maximal elements of a
given set of planar points.

Fig. 2: A reconfigurable mesh of size 3 X 4

2.1 Reconfigurable Mesh

The reconfigurable mesh is primarily a two-dimensional mesh of processors con-
nected by reconfigurable buses. In this parallel architecture, a processor element
is placed at the grid points as in the usual mesh connected computers. Processors
of the RM of size X x Y are denoted by PE; ;, 0 <i< X -1,0<j <Y —1.
Each processor is connected to at most four neighbouring processors through fixed
bus segments connected to four I/O ports £ & W along dimension z and N & S
along dimension y. These fixed bus segments are building blocks of larger bus com-
ponents which are formed through switching, decided entirely on local data, of the
internal connectors (see Fig. 2) between the I/O ports of each processor. The fifteen
possible interconnections of I/O ports through switching are shown in Fig. 3.The
analysis of the behaviour of RM, like all bus systems, relies on the assumption that
the transmission time of a message along a bus is independent of the length of the
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Fig. 3: Possible internal connections between the four I/O ports of a processor

A reconfigurable mesh operates in the single instruction multiple data (SIMD)
mode. Besides the reconfigurable switches, each processor has a computing unit



with a fixed number of local registers. A single time step of an RM is composed of
the following four substeps:

BUS substep. Every processor switches the internal connectors between I/0 ports
by local decision.

WRITE substep. Along each bus, one or more processors on the bus transmit
a message of length bounded by the bandwidth of the fixed bus segments as
well as the switches. These processors are called the speakers. It is assumed
that a collision between several speakers will be detected by all the processors
connected to the bus and the transmitted message will be discarded.

READ substep. Some or all the processors connected to a bus read the message
transmitted by a single speaker. These processors are called the readers.

COMPUTE substep. A constant-time local computation is done by each pro-
Cessor.

Reconfigurable meshes of higher dimension can be constructed in a similar way.
For example, processors of a 3-D RM of size X x Y x Z are denoted by PE; ; ,
0<i<X-1,0<j<Y—-1,0< k< Z-1 and each processor has two additional
ports U and D along dimension z.

For convenience, we use the notation PE, ;, ;,.... ;;, to denote the set of processors
Vi1 : PE;, iy ig,....ir - Similarly PE, ;. « ..., denotes the set of processors Vi;Vis :
PEi, iy i,....ix-

Many basic operations can be performed in constant time on RM. Below we
briefly outline the results used in our algorithms in Section 3.

Given a binary sequence, b;, 0 < j < N, the prefiz-and computation is to
compute, Vi : 0 < i < N, bg Aby A--- Ab;. Similarly the prefiz-or computation
computes Vi : 0 <i < N, bg Vb V---Vb;. Adapting the technique of bus splitting
[13] it is easy to show:

Lemma 1 Given a binary sequence of length N in the only row of an RM of size
1 x N, both the prefiz-and and the prefiz-or of the elements in the sequence can be
computed in O(1) time.

Given N numbers of log N bits each, the problem of sorting these numbers
on an RM of size N x N has been considered in [12,14,15,16]. Several authors
[16,17,18] consider an RM of size VN x /N x /N to sort N numbers. Chen et al.
[17] has further developed a constant time sorting algorithm on a k-D RM of size
N/ k=1) 5 NU/(=1) 5.5 NU/(k=1) Tt is easy to show that these algorithms can
be modified to sort N constant length records within a constant time reduction (the
constant may depend on k). Here the following lemmas are stated without proof.

Lemma 2 Given N constant length records in a row of processors, these records
can be sorted in O(1) time using an RM of size N x N.

Lemma 3 Given N constant length records in a plane of processors, these records
can be sorted in O(1) time using a 3-D RM of size VN x VN x /N.



Lemma 4 Given N constant length records in o hyperplane of processors, these
records can be sorted in O(4%) time using a k-D RM of size N'/(k=1) x N1/(k=1)
oo x NYE=1 “where k > 4.

2.2  Problem Definition

Let P(i, j) be the planar point at coordinate (4, j). Again, For any point p, let z(p)
denote the z-coordinate and y(p) denote the y-coordinate of p, i.e., z(P(i,j)) =4
and y(P(i,j)) = j-

Definition 1 A point p dominates a point ¢ (denoted by q < p) if (q) < z(p) and
y(q) < y(p). (The relation “<” is naturally called dominance.)
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Fig. 4: m-contour of a set of planar points

Let S be a set of N planar points. To simplify the exposition of our algorithms,
the points in S are assumed to be distinct.
Definition 2 A point p € S is maximal if there is no other point ¢ € S with p < q.
The definition above actually defines maximality w.r.t. NE direction as depicted
in Fig. 1. The definitions of maximality w.r.t. other directions are then obvious.
We are interested in the contour spanned by the maximal elements of S, called
the m-contour of S which can be obtained by simply sorting the maximal elements
in ascending order of their z-coordinates (Fig. 4). Let the m-contour of a set S be
denoted by m(S).
Two interesting observations on m-contour, connected to our algorithms, are
given below:
Lemma 5 FEvery m-contour is sorted in descending order of the y-coordinates.

Proof. Suppose the contrary. Then there exists at least one pair of maximal
elements p and ¢ such that y(p) < y(q) while z(p) < z(q), which contradicts the
assumption that point p is maximal. O

For any set S of some planar points, let functions min.(S) and maz.(S) denote
the minimum and mazimum x-coordinates respectively in the set. Let two more
functions min,(S) and maz,(S) be defined similarly w.r.t. y-coordinate.



Lemma 6 Given K sets Sy, S1, --.-Sk—1 of planar points such that Vk : 0 < k <
K -1, maz,(Sk) < ming(Sky1), then Vi : 0 <1 < K — 1, Vp € m(S;)(y(p) >
max,(m(S;)), Vi > i, if and only if, p € m( f:_ol Sk)).-

Proof. The necessity part can be proved by arranging a contradiction of Lemma 5.
To prove the sufficiency part we take a point p € m(s;), i :0<i < K—1Ap¢
m(Ur_y s&)- Then by the definition of maximality we get 3¢ € Uf:;il sp such
that p < g, i.e., y(p) < y(g). O

3 Constant Time Algorithms for Computing m-contour

We develop three constant time algorithms for computing the m-contour of a set of
N planar points. The first algorithm MAXIMAL]L uses a 2-D RM of size N x N
while the second algorithm MAXIMAL2 requires a 3-D RM of size VN x /N x
V/N. The third algorithm MAXIMALS3 is an extension of algorithm MAXIMATL2
to higher dimensions. An algorithm similar to algorithm MAXIMALIL appears in
[6] to compute three dimensional maxima.

3.1 First Algorithm

The algorithm MAXIMALLI is very straightforward. N planar points are given in
the row of processors PE, . These points, after sorting, are distributed over the
RM through column and row broadcast in such a way that each column of processors
PE; ., 0 <i,< N, compute the dominance of all other points over the ith point.
Then each column computes the logical and of the previous dominance decision to
assert whether the point represented by that column is a maximal point or not. As
all the points are already sorted, the m-contour is obtained simply by following this
sorted sequence. The detailed description of the algorithm is given below. Here and
below we assume the following while presenting our algorithms for RM:

o In every step there may be at most four substeps labelled as “b:”, “w:”, “r:”,

and “c:” for the BUS, WRITE, READ, and COMPUTE substeps respectively.

e Any step without any labelled substep means the use of another algorithm,
internal or external to this paper.

e In any step if the BUS substep is missing for a particular processor it is
assumed that the local port interconnections of that processor remain un-
changed.

Algorithm: MAXIMAL1
Precondition: registers ro and r; hold z- and y-coordinates respectively.
Postcondition: register ro holds the decision of maximality.

1. Sort the given N points in the row of processors PE, o in ascending order of
register rg, i.e., in ascending order of the z-coordinates. The sorted list also
resides in the row of processors PE, o in the ascending row-major order.



2. b: Every processor connects port N with S;
w: Every processor € PE, o writes register ro to port A

r: Every processor reads port NV into register ro;

3. w: Every processor € PE, o writes register 1 to port A

Every processor reads port N into register r;

=

4. b: Every processor connects port £ with W;
w

: Every processor PE;;, 0 <1i < N, writes register ro to port &;

=

Every processor reads port £ into register ra;

5. w: Every processor PE;;, 0 < i < N, writes register r to port &;
r: Every processor reads port £ into register r3;
6. b: Every processor PE; ;, 0 <i,j < N, does the following:
if i # j and P(rg,r1) < P(rz2,r3) then
disconnect all the ports;

else
connect port A/ with S;

w: Every processor € PE, y_1 writes an arbitrary constant # to port N;
r: Every processor € PE, o reads port S into register ry;

c: Every processor € PE, o does the following:

if 7o = # then
set register ro = 1;
else

set register ro = 0O;

Theorem 1 Given N planar points in a row of processors, the m-contour of these
points can be obtained in O(1) time using an RM of size N X N.

Proof. Step 1 of algorithm MAXIMALL can be computed in constant time using
Lemma 2. Steps 2-5 require O(1) time. Step 6 is an elaboration of computing
prefix-or partially and requires constant time by Lemma 1. O

3.2  Second Algorithm

In algorithm MAXIMAL2 we use the well-known divide-and-conquer approach to
compute the m-contour. NN points are given in the plane of processors PE, ..
These points are sorted in order of z-coordinate to divide them into v/N disjoint
sets of length v/N each. This division complies with the first condition in Lemma 6.
Now the m-contour of the ith smaller set is computed using the 2-D submesh of
processors PE; , ., 0 <i < VN. Merging of the solutions of these smaller problems
is then done by carefully utilizing Lemma 6. Lemma 5 helps in getting the maz, of
each smaller m-contour in constant time (Step 3). The ith mazx, is then distributed



over the plane of processors PE, . ; (Steps 4-6). Every point in each smaller m-
contour then computes its overall maximality using the processors along the z-axis
(Steps 7-8). The detailed description of the algorithm is given below.

Algorithm: MAXIMAL?2

Precondition: registers ro and r; hold z- and y-coordinates respectively.

Postcondition: register ro holds the decision of maximality.

1. Sort the given N points in the plane of processors PE, o in ascending order
of register 7, i.e., in ascending order of the z-coordinates. The sorted list also
resides in the plane of processors PE, . o in ascending column-major order.

2. For every column i, 0 < i < v/N, the m-contour of the v/N points residing in
the sth column of processors PE; . is computed using the algorithm MAX-
IMAL1 on the 2-D submesh of processors PE; . .. Here step 1 of algorithm
MAXIMALTL should be ignored.

3. b: Every processor € PE, , o does the following:

if ro = 0 then
connect port A/ with S;
else

disconnect all the ports;
w: Every processor € PE, , o does the following:
if ro = 1 then
write register r; to port S;

=

Every processor € PE, g reads port S into register r3;

4. b: Every processor € PE, ; , connects port i/ with D;
w: Every processor € PE, oo writes register r3 to port U;

: Every processor PE;;, 0 <4 < VN, reads port I into register rs;

-

5. b: Every processor € PE, . connects port £ with W;
w: Every processor PE;;, 0 <i < v/ N, writes register r3 to port &;

-

: Every processor € PE, o, reads port £ into register rs;

6. b: Every processor connects port A with S;
w

: Every processor € PE, . writes register r3 to port N;

-

: Every processor reads port A into register r3;

7. b: Every processor connects port I with D;
w

: Every processor € PE, , o writes register r; to port U;

-

: Every processor reads port U into register r4;



8. b: Every processor PE; ;, 0<14,j,k < V/N, does the following:
if £k > i and r4 < r3 then
disconnect all the ports;
else
connect port U with D;

w: Every processor € PE, , ,_, writes an arbitrary constant # to port
U;
r: Every processor € PFE, . ¢ reads port D into register ry;

c: Every processor € PE, . o does the following:
if o =1 and r4 # # then
set register ro = 0;

Theorem 2 Given N planar points in a plane of processors, the m-contour of these
points can be obtained in O(1) time using a 3-D RM of size VN x VN x /N.

Proof. Step 1 of algorithm MAXIMAL?2 can be computed in constant time using
Lemma 3. By Theorem 1 step 2 can also be done in constant time. It is obvious
that the rest of the steps require O(1) time. O

3.8 FEzxtension to Higher Dimensions

Based on Lemma 5 and Lemma, 6, the m-contour problem can be solved in a re-
cursive way. We derive the m-contour algorithm on k-D RM from the m-contour
algorithm on (k — 1)-D RM. The size of the k&-D RM adopted here is N*/(*~1) x
N1 .o x NY/(=1) " The algorithm developed for k-D RM is very similar
to algorithm MAXIMAL?2. In fact the technique applied in algorithm MAXIMAL2
is simply extended to higher dimensions. This extension is made possible by the
availability of the sorting algorithm stated in Lemma 4. The detailed description
of the algorithm is given below.

Algorithm: MAXTMAL3

Precondition: registers ro and r; hold z- and y-coordinates respectively.

Postcondition: register o holds the decision of maximality.

1. Sort the given N points in the hyperplane of processors PE, .. 0 in as-

cending order of register ry, i.e., in ascending order of the z-coordinates. The
sorted list also resides in the hyperplane of processors PE, ... «,0-

2. For every (k—2)-flat i, 0 < i < N*/(*~1) the m-contour of the N*/(*~1) points
residing in the ith (k — 2)-flat of processors PE; , . ¢ is computed on the
(k—1)-D submesh of processors PE; ...« If k—1 > 4 we simply recursively
use the algorithm MAXIMALS else algorithm MAXIMAL?2 is used. Here step
1 of algorithms MAXIMAL2 and MAXIMALS3 should be ignored.



3. Using k — 2 bus splittings based on register 72, one along each axis except the
1st and the kth axes, the maz, of the m-contour of the ith subset, which is
the first maximal element according to Lemma 5, is read into register r3 of
the processor PE; g, . 00, 0 <i< NY/(k=1),

4. Using a single broadcast along the kth axis transfer the content of register
r3 of the processor PE;g . 0,0 into register rs of the processor PFE;q. .. 0.,
0<i< NYk=D,

5. Using k — 1 broadcasts, one along each axis except the kth axis, transfer the
content of register r3 of the processor PE;, . o, into the register r3 of the
hyperplane of processors PE, ... +i, 0 <i < Nt/ (k=1),

6. b: Every processor connects ports along the kth axis;

w: Every processor € PE, , . .o Wwrites register 71 to the top port along
the kth axis;

r: Every processor reads the top port along the kth axis into register ry4;

7. Using a single bus splitting along the kth axis, based on registers r3 and ry,
compute the overall maximality decision into register r2 of all the processors
S PE* *,..0,%,0-

)

Theorem 3 Given N planar points in a hyperplane of processors, the m-contour
of these points can be obtained in SORT (N, k) + O(k?) time using a k-D RM of
size NY/(k=1) 5 NV/(=1) 5 ..o 5 NV k> 4 where SORT(N, k) denotes the
time required by the sorting algorithm used in step 1.

Proof. Step 1 of algorithm MAXIMALS3 is used only once. Steps 3-7 take only
O(k) time. Considering the recursion in step 2, the overall complexity of algorithm
MAXIMALS3 then can be expressed as SORT (N, k)+O(k)+O(k—1)+---+0(1) =
SORT(N,k) + O(k%). O

From Lemma 4, SORT(N,k) = O(4*). Thus, Theorem 3 gives constant time
complexity for any fixed k > 4.

4 Conclusion

In this paper we have described three constant time algorithms for computing the
contour of the maximal elements of a given set of planar points. Hopefully these
algorithms will have an application to solving the largest empty rectangle problem
in constant time.
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