Constant Time Algorithms for Computing the Contour of Maximal
Elements on the Reconfigurable Mesh

M. Manzur Murshed and Richard P. Brent
Computer Sciences Lab, Research School of Information Sciences & Engg.
The Australian National University, Canberra ACT 0200, Australia
E-mail: {murshed,rpb}@cslab.anu.edu.au

Abstract

There has recently been an interest in the intro-
duction of reconfigurable buses to existing parallel ar-
chitectures. Among them Reconfigurable Mesh (RM)
draws much attention because of its simplicity. This
paper presents two O(1) time algorithms to compute
the contour of the mazimal elements of N planar
points on the RM. The first algorithm employs an RM
of size N x N while the second one uses a 3-D RM of
size VN x VN x v/N.

1 Introduction

It is well-known that interprocessor communica-
tions and simultaneous memory accesses often act as
bottlenecks in present-day parallel machines. Bus sys-
tems have been introduced recently to a number of
parallel machines to address this problem. Examples
include the Bus Automaton [15], the Reconfigurable
Mesh (RM) [11], the content addressable array proces-
sor [16], and the Polymorphic torus [9]. A bus sys-
tem is called reconfigurable if it can be dynamically
changed according to either global or local informa-
tion.

Jang et al. [17] have recently studied a number of
constant time computational geometry algorithms on
the reconfigurable mesh. In this paper we explore one
further problem from a similar point of view. The
problem, considered from computational geometry, is
to compute the contour of the maximal elements of a
given set of planar points (see Section 2.2). Solution
to this problem is important in solving the Largest
Empty Rectangle Problem [2, 5, 14] where a rectangle
and a number of planar points in it are given and the
problem is to compute the largest rectangle containing
no points.

It is well known that the time complexity for com-
puting the contour of the maximal elements of N pla-
nar points is ©(N log N) using a sequential computer
[7]. Dehne [4] gives an efficient algorithm for solving
this problem on a mesh of size vVN x v/N in O(v/N)

Figure 1: A reconfigurable mesh of size 3 x 4

time. Whenever necessary N is assumed, throughout
the paper, to be a perfect square without any loss of
generality.

In this paper we present two O(1) time algorithms
to compute the contour of the maximal elements of N
planar points on the reconfigurable mesh. The first
algorithm employs an RM of size N x N while the
second one uses a 3-D RM of size VN x VN x /N.
To our knowledge this problem on the reconfigurable
mesh is examined here for the first time.

This paper is organized as follows. In the next sec-
tion we present the basic issues of RM as well as the
definition of the problem. Constant time algorithms
are developed in Section 3. Section 4 concludes the

paper.

2 Preliminaries

For the sake of completeness, we briefly define the
reconfigurable mesh and definitions of the problem of
computing the contour of the maximal elements of a
given set of planar points.

2.1 Reconfigurable Mesh

The reconfigurable mesh is primarily a two-
dimensional mesh of processors connected by reconfig-
urable buses. In this parallel architecture, a processor
element is placed at the grid points as in the usual

<
D
<
5
<

[EWN,S] [EWN,S] [EW.NS] [EW,NS] [WNES]

&
&
<
<
&

[WSEN] [ENW.S] [ESWN] [ESWN] [ENWS]

&
@
v
<
5

[NWSE] [ENW,S] [NES,W] [ESW,N] [EWNS]

Figure 2: Possible internal connections between the
four I/O ports of a processor

mesh connected computers. Processors of the RM of
size X x Y are denoted by PE;;, 0 < i < X —1,
0 < j <Y —1. Each processor is connected to at
most four neighbouring processors through fixed bus
segments connected to four I/O ports £ & W along
dimension z and N & S along dimension y. These
fixed bus segments are building blocks of larger bus
components which are formed through switching, de-
cided entirely on local data, of the internal connectors
(see Figure 1) between the I/O ports of each proces-
sor. The fifteen possible interconnections of I/0O ports
through switching are shown in Figure 2. Like all bus
systems, the behaviour of RM relies on the assump-
tion that the transmission time of a message along a
bus is independent of the length of the bus [1].

A reconfigurable mesh operates in the single in-
struction multiple data (SIMD) mode. Besides the
reconfigurable switches, each processor has a comput-
ing unit with a fixed number of local registers. A single
time step of an RM is composed of the following four
substeps:

BUS substep. Every processor switches the internal
connectors between I/0 ports by local decision.

WRITE substep. Along each bus, one or more pro-
cessors on the bus transmit a message of length
bounded by the bandwidth of the fixed bus seg-
ments as well as the switches. These processors
are called the speakers. It is assumed that a colli-
sion between several speakers will be detected by
all the processors connected to the bus and the
transmitted message will be discarded.

READ substep. Some or all the processors con-
nected to a bus read the message transmitted by
a single speaker. These processors are called the
readers.

COMPUTE substep. A constant-time local com-
putation is done by each processor.

Reconfigurable meshes of higher dimension can be
constructed in a similar way. Processors of a 3-D RM
of size X XY x Z are denoted by PE; ;;,0 <i < X—1,
0<j<Y-1,0< k< Z-1. Each processor of a 3-D
RM has two additional ports ¢/ and D along dimension
z.

Many basic operations can be performed in con-
stant time on RM. Below we briefly outline the results
used in our algorithms in Section 3.

Given a binary sequence, b;, 0 < j < N, the prefiz-
and computation is to compute, Vi : 0 < ¢ < N,
bo Aby A--- Ab;. Similarly the prefiz-or computation
computes bg Vb1 V---Vb;, Vi: 0 <i < N. Adapting
the technique of bus splitting [12] it is easy to show:

Lemma 1 Given a binary sequence of length N in the
only row of an RM of size 1 X N, both the prefiz-and
and the prefix-or of the elements in the sequence can
be computed in O(1) time.

Given N numbers of log N bits each, the problem
of sorting these numbers on an RM of size N x N has
been considered in [1, 6, 8, 13]. Several authors [3, 10,
13] consider an RM of size v/N x v/N x v/N to sort N
numbers. It is easy to show that these algorithms can
be modified to sort N constant length records within
a constant time reduction. Here the following lemmas
are stated without proof.

Lemma 2 Given N constant length records in a row,
these records can be sorted in O(1) time using an RM
of size N x N.

Lemma 3 Given N constant length records in a
plane, these records can be sorted in O(1) time using

an RM of size VN x VN x V/N.

2.2 Problem Definition

Let the planar point at coordinate (4,7) be defined
as P(i,j). Again, let for any point p, z(p) denote the
z-coordinate and y(p) denote the y-coordinate of p,

e.g., (P(i, 7)) = i and y(P(i, 5)) = j.

Definition 1 A point p dominates a point g (denoted

by ¢ < p) if x(q) < x(p) and y(q) < y(p). (The relo-
tion “<” is naturally called dominance.)

Let S be a set of N planar points. To simplify
the exposition of our algorithms, the points in S are
assumed to be distinct.

Definition 2 A point p € S is maximal if there is no
other point ¢ € S with p < q.

A O non-maximal point
® maximal point

» X

Figure 3: m-contour of a set of planar points

We are interested in the contour spanned by the
maximal elements of S, called the m-contour of S
which can be obtained by simply sorting the maxi-
mal elements in ascending order of their z-coordinates
(Figure 3). Let the m-contour of a set S be denoted
as m(9).

Two interesting observations on m-contour, con-
nected to our algorithms, are given below:

Lemma 4 FEvery m-contour is sorted in descending
order of the y-coordinates.

Proof. Suppose the contrary. Then there exists at
least one pair of maximal elements p and ¢ such that
y(p) < y(q) while z(p) < z(g), which contradicts with
the assumption that point p is maximal. O

Let for any set S of some planar points functions
ming(S) and maz,(S) denote the minimum and maz-
imum z-coordinates in the set respectively. Let two
more functions min,(S) and maz,(S) be defined sim-
ilarly w.r.t. y-coordinate.

Lemma 5 Given K sets sg, s1, ...Sk—1 of planar
points such that Yk : 0 < k < K — 1, maz,(si) <
ming(sg+1), then Vi : 0 < i < K -1, Vp €
m(s;) Ay(p) > mazy,(m(s;)), Vi > i, if and only if,

K—
pemUi, se)-

Proof. The necessity part can be proved by arranging
a contradiction of Lemma 4. To prove the sufficiency
part we consider a point p € m(s;), Fi : 0 < i <
K—-1Ap¢ m(Uf;(Jl sk).- Then by the definition of
maximality we get d¢q € Usz_z—li-l sk such that p < ¢,
Le., y(p) <y(q) O

3 Constant Time Algorithms for Com-
puting m-contour

We develop two constant time algorithms for com-
puting the m-contour of a set of N planar points. The
first algorithm MAXIMALL uses a 2-D RM of size
N x N while the second algorithm MAXIMAL2 re-
quires a 3-D RM of size VN x /N x+/N.
3.1 First Algorithm

The algorithm MAXIMALL is very straightforward.
N planar points are given in the IV processors at row
0. These points, after sorting, are distributed over
the RM through column and row broadcast in such
a way that each column 4, 0 < 4,< N, of the RM
computes the dominance of all other points over the
ith point. Then each column computes the logical or
of the previous dominance decision to assert whether
the point represented by that column is a maximal
point or not. As all the points are already sorted, the
m-contour is obtained simply by following this sorted
sequence. The detailed description of the algorithm is
given below. Here and below we assume the following
while presenting our algorithms for RM:

e In every step there may be at most four sub-
steps labelled as “b:”, “w:”, “r:”, and “c:” for the
BUS, WRITE, READ, and COMPUTE substeps
respectively.

e Any step without any labelled substep means the
use of another algorithm, internal or external to
this paper.

e In any step if the BUS substep is missing for a
particular processor it is assumed that the lo-
cal port interconnections of that processor remain
unchanged.

Algorithm: MAXIMAL1

Precondition: registers 9 and r; hold z- and y-
coordinates respectively.

Postcondition: register r» holds the decision of max-
imality.

1. Sort the given N points at row 0 in ascending or-
der of register rg, i.e., in ascending order of the
x-coordinates. The sorted list resides in the pro-
cessors of row 0 in the ascending row-major order.

2. b: Every processor connects port N with S;

w: Every processor at row (writes register rg
to port N;

r: Every processor reads port N into register
To;

3. w: Every processor at row 0 writes register r;
to port NV;

r: Every processor reads port N into register
T1;

4. b: Every processor connects port £ with W;

w: Every processor PE;;, 0 < ¢ < N, writes
register ro to port &;

r: Every processor reads port £ into register rs;

5. w: Every processor PE;;, 0 < i < N, writes
register r; to port &;

r: Every processor reads port £ into register rs;

6. b: Every processor PE;;, 0 < 4,5 < N, does
the following:

if ¢ 75 i and P(To,’l‘l) < P(T’Q,Tg) then
disconnect all the ports;

else
connect port N with S;

w: Every processor at row N — 1 writes an ar-
bitrary constant # to port N

r: Every processor at row 0 reads port S into
register ra;

c: Every processor at row 0 does the following:

if ro = # then

set register ro = 1;
else

set register ro = 0;

Theorem 1 Given N planar points in a row, the m-
contour of these points can be obtained in O(1) time
using an RM of size N x N.

Proof. Step 1 of algorithm MAXIMAL1 can be com-
puted in constant time using Lemma 2. Steps 2-5
require O(1) time. Step 6 is an elaboration of com-
puting prefix-or partially and requires constant time
by Lemma 1. O
3.2 Second Algorithm

In algorithm MAXIMAL2 we use the well-known
divide-and-conquer approach to compute the m-
contour. N points are given in the (XY —plane),—o.
These points are sorted in order of z-coordinate to
divide them into v/N disjoint sets of length v N
each. This division complies with the first condition
in Lemma 5. Now the m-contour of these smaller sets

are computed using all the 2-D submeshes lying par-
allel to YZ —plane. Now merging of the solutions of
these smaller problems is done by carefully utilizing
Lemma 5. Lemma 4 helps in getting the maz, of each
smaller m-contour in constant time (Step 3). The ith
maz, is then distributed over the (XY—plane).—; (Step
4-6). Every point in each smaller m-contour then com-
putes its overall maximality using the processors along
the z-axis (Step 7-8). The detailed description of the
algorithm is given below.

Algorithm: MAXIMAL2

Precondition: registers 9 and r; hold z- and y-
coordinates respectively.

Postcondition: register 5 holds the decision of max-
imality.

1. Sort the given N points in the (XY —plane).—o
in ascending order of register g, i.e., in ascend-
ing order of the x-coordinates. The sorted list
resides in the processors of the (XY —plane).—
in ascending column-major order.

2. For every column i, 0 < i < /N, of (XY —
plane).—o compute the m-contour of the v/N
points residing in processors PE; o, 0 < j <
VN, using the algorithm MAXIMAL1 on the 2-
D submesh lying in the (YZ —plane),—;.

3. b: Every processor in the (XY —plane).—q does
the following:

if ro =0 then
connect port N with S;

else
disconnect all the ports;

w: Every processor in the (XY —plane).—q does
the following:

if ro =1 then
write register r; to port S;

r: Every processor PE; 0, 0 <4 < VN, reads
port S into register r3;

4. b: Every processor in the (XZ —plane)y—o con-
nects port U with D;
w: Every processor PFE; 9,0 <1 < VN, writes
register r3 to port U;
r: Every processor PE;q;, 0 <i < VN, reads
port U into register rs;

5. b: Every processor in the (XZ—plane)y—o con-
nects port & with W;

w: Every processor PE;(;, 0 <¢ < VN, writes
register r3 to port &;

r: Every processor in the (XZ—plane),—¢ reads
port & into register r3;

6. b: Every processor connects port A with S;

w: Every processor in the (XZ—plane)y—o writes
register r3 to port N;

r: Every processor reads port N into register
T3;

7. b: Every processor connects port I with D;

w: Every processor in the (XY — plane).—o
writes register r; to port U;

r: Every processor reads port U into register
T4;

8. b: Every processor PE; ;r, 0 < i,j,k < VN,
does the following;:

if £ > i and r4 <73 then
disconnect all the ports;
else
connect port ¢ with D;

w: Every processor in the (XY —plane),_ ~_,
writes an arbitrary constant # to port U;

r: Every processor in the (XY —plane).—o reads
port D into register rg;

c: Every processor in the (XY —plane).—¢ does
the following;:

ifro =1 and ry # # then
set register 1o = 0;

Theorem 2 Given N planar points in a plane, the m-
contour of these points can be obtained in O(1) time

using an RM of size VN x VN x V/N.

Proof. Step 1 of algorithm MAXIMAL2 can be com-
puted in constant time using Lemma 3. By Theorem 1
step 2 can also be done in constant time. It is obvious
that the rest of the steps require O(1) time. i

4 Conclusion

In this paper we have described two O(1) time al-
gorithms for computing the contour of the maximal
elements of a given set of planar points. Hopefully
these algorithms will have an application to solving
the largest empty rectangle problem in constant time.

References

[1] Y. Ben-Asher, D. Peleg, R. Ramaswami, and
A. Schuster. The power of reconfiguration.
Journal of Parallel and Distributed Computing,
13:139-153, 1991.

[2] B. Chazelle, R. L. Drysdale, and D. T. Lee. Com-
puting the largest empty rectangle. SIAM J.
Comput., 15:300-315, 1986.

[3] Yen-Cheng Chen and Wen-Tsuen Chen. Constant
time sorting on reconfigurable meshes. IEEFE
Transactions on Computers, 43:749-751, 1994.

[4] Frank Dehne. O(n'/2?) algorithms for the maxi-
mal elements and ECDF searching problem on a
mesh-connected parallel computer. Information
Processing Letters, 22:303-306, 1986.

[5] Frank Dehne. Computing the largest empty rect-
angle on one- and two-dimensional processor ar-
rays. Journal of Parallel and Distributed Com-
puting, 9:63—68, 1990.

[6] Ju-Wook Jang and Viktor K. Prasanna. An op-
timal sorting algorithm on reconfigurable mesh.
Journal of Parallel and Distributed Computing,
25:31-41, 1995.

[7] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. J. ACM,
22:469-476, 1975.

[8] R Lin, Stephan Olariu, J. Schwing, and J. Zhang.
A VLSI-optimal constant time sorting on recon-
figurable mesh. In Ninth European Workshop
Parallel Computing, pages 1-16, Spain, 1992.

[9] Massimo Maresca. Polymorphic processor arrays.
IEEE Transactions on Parallel and Distributed
Systems, 4:490-506, 1993.

[10] Mark S. Merry and Johnnie Baker. A constant
time sorting algorithm for a three dimensional
reconfigurable mesh and reconfigurable network.
Parallel Processing Letters, 5:401-412, 1995.

[11] Russ Miller, V. K. Prasanna Kumar, Dionisios I.
Reisis, and Quentin F. Stout. Data movement op-
erations and applications on reconfigurable VLSI
arrays. In Proc. International Conference on Par-
allel Processing, pages 205-208, 1988.

[12] Russ Miller, V. K. Prasanna-Kumar, Dionisios I.
Reisis, and Quentin F. Stout. Parallel computa-
tions on reconfigurable meshes. IEEE Transac-
tions on Computers, 42:678—692, 1993.

[13]

[16]

[17]

Madhusudan Nigam and Sartaj Sahni. Sorting
n numbers on n X n reconfigurable meshes with
buses. Journal of Parallel and Distributed Com-
puting, 23:37-48, 1994.

M. Orlowski. A new algorithm for the largest
empty rectangle problem. Algorithmica, 5:65-73,
1990.

J. Rothstein. Bus automata, brains, and mental
models. IEEFE Trans. Syst. Man Cybern, 18:522—
531, 1988.

C. C. Weems et al. The image understanding ar-
chitecture. Internat. J. of Comput. Vision, 2:251—
282, 1989.

Ju wook Jang, Madhusudan Nigam, Viktor K.
Prasanna, and Sartaj Sahni. Constant time algo-
rithms for computational geometry on the recon-
figurable mesh. IEEE Transactions on Parallel
and Distributed Systems, 8:1-12, 1997.

