THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-97-09

Constant Time Algorithms for
Computing the Contour of Maximal
Elements on the Reconfigurable Mesh

M. Manzur Murshed and Richard P. Brent

May 1997

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports

Department of Computer Science

Faculty of Engineering and Information Technology
The Australian National University

Canberra ACT 0200

Australia

or send email to:
Techni cal . Reports@s. anu. edu. au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs. anu. edu. au/ t echreports/

Recent reports in this series:

TR-CS-97-08 Xun Qu, Jeffrey Xu Yu, and Richard P. Brent. A mobile TCP
socket. April 1997.

TR-CS-97-07 Richard P. Brent. A fast vectorised implementation of Wallace’s
normal random number generator. April 1997.

TR-CS-97-06 M. Manzur Murshed and Richard P. Brent. RMSIM: a serial
simulator for reconfigurable mesh parallel computers. April 1997.

TR-CS-97-05 Beat Fischer. Collocation and filtering — a data smoothing
method in surveying engineering and geodesy. March 1997.

TR-CS-97-04 Stephen Fenwick and Chris Johnson. HeROD flavoured
oct-trees: Scientific computation with a multicomputer persistent
object store. February 1997.

TR-CS-97-03 Brendan D. McKay. Knight's tours of an 8 x 8 chessboard.
February 1997.

Constant Time Algorithms for Computing the Contour
of Maximal Elements on the Reconfigurable Mesh

M. Manzur Murshed*
Richard P. Brent
Computer Sciences Lab, Research School of Information Sciences & Engg.

Australian National University, Canberra ACT 0200, Australia

e-mail: murshed@cslab.anu.edu.au

May 12, 1997

Abstract

There has recently been an interest in the in-
troduction of reconfigurable buses to existing
parallel architectures. Among them Recon-
figurable Mesh (RM) draws much attention
because of its simplicity. This paper presents
two O(1) time algorithms to compute the
contour of the maximal elements of N planar
points on the RM. The first algorithm em-
ploys an RM of size N x N while the second
one uses a 3-D RM of size VN x VN x v/N.

1 Introduction

It is well-known that interprocessor commu-
nications and simultaneous memory accesses
often act as bottlenecks in present-day par-
allel machines. Bus systems have been intro-

*Corresponding author.

duced recently to a number of parallel ma-
chines to address this problem. Examples in-
clude the Bus Automaton [15], the Reconfig-
urable Mesh (RM) [11], the content address-
able array processor [16], and the Polymor-
phic torus [9]. A bus system is called recon-
figurable if it can be dynamically changed ac-
cording to either global or local information.

Jang et al. [17] have recently studied
a number of constant time computational
geometry algorithms on the reconfigurable
mesh. In this paper we explore one further
problem from a similar point of view. The
problem, considered from computational ge-
ometry, is to compute the contour of the max-
imal elements of a given set of planar points
(see Section 2.2). Solution to this problem is
important in solving the Largest Empty Rect-
angle Problem [2, 5, 14] where a rectangle and
a number of planar points in it are given and
the problem is to compute the largest rectan-

gle containing no points.

It is well known that the time complexity
for computing the contour of the maximal el-
ements of N planar points is ©(N log N) us-
ing a sequential computer [7]. Dehne [4] gives
an efficient algorithm for solving this problem
on a mesh of size VN x v/N in O(v/N) time.
Whenever necessary NV is assumed, through-
out the paper, to be a perfect square without
any loss of generality.

In this paper we present two O(1) time al-
gorithms to compute the contour of the max-
imal elements of N planar points on the re-
configurable mesh. The first algorithm em-
ploys an RM of size N x N while the second
one uses a 3-D RM of size VN x VN x v/N.
To our knowledge this problem on the recon-
figurable mesh is examined here for the first
time.

This paper is organized as follows. In the
next section we present the basic issues of RM
as well as the definition of the problem. Con-
stant time algorithms are developed in Sec-
tion 3. Section 4 concludes the paper.

2 Preliminaries

For the sake of completeness, we briefly de-
fine the reconfigurable mesh and definitions
of the problem of computing the contour of
the maximal elements of a given set of planar
points.

2.1 Reconfigurable Mesh

The reconfigurable mesh is primarily a two-
dimensional mesh of processors connected by

Figure 1: A reconfigurable mesh of size 3 x 4

reconfigurable buses. In this parallel archi-
tecture, a processor element is placed at the
grid points as in the usual mesh connected
computers. Processors of the RM of size
X x Y are denoted by PE;;, 0 <7< X —1,
0 < j < Y—1. Each processor is connected to
at most four neighbouring processors through
fixed bus segments connected to four I/0O
ports £ & W along dimension z and N & S
along dimension y. These fixed bus segments
are building blocks of larger bus components
which are formed through switching, decided
entirely on local data, of the internal con-
nectors (see Figure 1) between the I/O ports
of each processor. The fifteen possible inter-
connections of I/O ports through switching
are shown in Figure 2. Like all bus systems,
the behaviour of RM relies on the assumption
that the transmission time of a message along
a bus is independent of the length of the bus
[1].

A reconfigurable mesh operates in the sin-
gle instruction multiple data (SIMD) mode.
Besides the reconfigurable switches, each pro-
cessor has a computing unit with a fixed num-
ber of local registers. A single time step of

DL

[EW.N,5] [EW.N,5] [EW,NS] [EW,NS] [WN,E,S]

CLLLY

[WSEN] [ENW,S| [ESW,N] [ESWN] [ENWS]

QD

[NWSE] [ENW,S] [NESW] [ESW.N] [EWNS]

Figure 2: Possible internal connections be-
tween the four I/O ports of a processor

an RM is composed of the following four sub-
steps:

BUS substep. Every processor switches
the internal connectors between I/O
ports by local decision.

WRITE substep. Along each bus, one or
more processors on the bus transmit a
message of length bounded by the band-
width of the fixed bus segments as well as
the switches. These processors are called
the speakers. It is assumed that a colli-
sion between several speakers will be de-
tected by all the processors connected to

the bus and the transmitted message will
be discarded.

READ substep. Some or all the processors
connected to a bus read the message
transmitted by a single speaker. These
processors are called the readers.

COMPUTE substep. A constant-time lo-
cal computation is done by each proces-
SOT.

Reconfigurable meshes of higher dimension
can be constructed in a similar way. Proces-
sors of a 3-D RM of size X XY x Z are denoted

by PE;;r, 0<i< X -1,0<j<Y -1,
0 < k < Z —1. Each processor of a 3-D
RM has two additional ports ¢ and D along
dimension z.

Many basic operations can be performed in
constant time on RM. Below we briefly out-
line the results used in our algorithms in Sec-
tion 3.

Given a binary sequence, b;, 0 < j < N,
the prefiz-and computation is to compute, Vi :
0<1 < N, bo ANby A --- /\bi. Slmllarly the
prefiz-or computation computes bgV b V---V
b;, Vi : 0 < i < N. Adapting the technique
of bus splitting [12] it is easy to show:

Lemma 1 Given a binary sequence of length
N in the only row of an RM of size 1 X N,
both the prefiz-and and the prefiz-or of the
elements in the sequence can be computed in
O(1) time.

Given N numbers of log N bits each, the
problem of sorting these numbers on an
RM of size N x N has been considered in
[1, 6, 8, 13]. Several authors [3, 10, 13] con-
sider an RM of size v'N x v'N x v/N to sort
N numbers. It is easy to show that these al-
gorithms can be modified to sort /N constant
length records within a constant time reduc-
tion. Here the following lemmas are stated
without proof.

Lemma 2 Given N constant length records
in a row, these records can be sorted in O(1)
time using an RM of size N x N.

Lemma 3 Given N constant length records
in a plane, these records can be sorted in O(1)
time using an RM of size VN x VN x V/N.

A O non-maximal point
® maximal point

= X

Figure 3: m-contour of a set of planar points

2.2 Problem Definition

Let the planar point at coordinate (i,j) be
defined as P(i,j). Again, let for any point p,
z(p) denote the z-coordinate and y(p) denote
the y-coordinate of p, e.g., z(P(i,7)) = ¢ and
y(P(i, 7)) = .

Definition 1 A point p dominates a point q
(denoted by q < p) if z(q) < z(p) and y(q) <
y(p). (The relation “<” is naturally called
dominance.)

Let S be a set of N planar points. To
simplify the exposition of our algorithms, the
points in S are assumed to be distinct.

Definition 2 A point p € S is maximal if
there is no other point ¢ € S with p < q.

We are interested in the contour spanned
by the maximal elements of S, called the m-
contour of S which can be obtained by simply
sorting the maximal elements in ascending or-
der of their z-coordinates (Figure 3). Let the
m-contour of a set S be denoted as m(S).

Two interesting observations on m-
contour, connected to our algorithms, are
given below:

Lemma 4 Every m-contour is sorted in de-
scending order of the y-coordinates.

Proof. Suppose the contrary. Then there
exists at least one pair of maximal elements
p and ¢ such that y(p) < y(¢g) while z(p) <
z(q), which contradicts with the assumption
that point p is maximal. O

Let for any set S of some planar points
functions min,(S) and maz,(S) denote the
menimum and mazximum x-coordinatesin the
set respectively. Let two more functions
min, (S) and max,(S) be defined similarly
w.r.t. y-coordinate.

Lemma 5 Given K sets sg, S1, ...Sx_1 of
planar points such that Vk : 0 < k < K — 1,
max,(sg) < ming(sgy1), then Vi : 0 < i <
K —1, Vp € m(s;) A y(p) > mazy(m(s;)),
Vi > i, if and only if, p € m(Ur—y si)-
Proof. The necessity part can be proved by
arranging a contradiction of Lemma 4. To
prove the sufficiency part we take a point p €
m(si), 3i:0<i< K—1Ap¢&m(ULy si)-
Then by the definition of maximality we get
dq € U,f:_i}rl sk such that p < ¢, i.e., y(p) <
y(g). O

3 Constant Time Algo-
rithms for Computing
m-contour

We develop two constant time algorithms for
computing the m-contour of a set of N planar

points. The first algorithm MAXIMAL1 uses
a 2-D RM of size N x N while the second
algorithm MAXIMAL?2 requires a 3-D RM of
size \/N X \/N X \/N ;

3.1 First Algorithm

The algorithm MAXIMALT1 is very straight-
forward. N planar points are given in the
N processors at row 0. These points, after
sorting, are distributed over the RM through
column and row broadcast in such a way that
each column 7, 0 < 4, < N, of the RM com-
putes the dominance of all other points over
the ith point. Then each column computes
the logical or of the previous dominance deci-
sion to assert whether the point represented
by that column is a maximal point or not.
As all the points are already sorted, the m-
contour is obtained simply by following this
sorted sequence. The detailed description of
the algorithm is given below. Here and below
we assume the following while presenting our
algorithms for RM:

e In every step there may be at most four
substeps labelled as “b:”, “w:”, “r:”, and
“c:” for the BUS, WRITE, READ, and

COMPUTE substeps respectively.

e Any step without any labelled substep
means the use of another algorithm, in-
ternal or external to this paper.

e In any step if the BUS substep is missing
for a particular processor it is assumed
that the local port interconnections of
that processor remain unchanged.

Algorithm: MAXIMAL1

Precondition: registers ry and r; hold z-
and y-coordinates respectively.

Postcondition: register ry holds the deci-
sion of maximality.

1. Sort the given NV points at row 0 in as-
cending order of register rg, i.e., in as-
cending order of the x-coordinates. The
sorted list resides in the processors of row
0 in the ascending row-major order.

2. b: Every processor connects port N

with S;

w: Every processor at row 0 writes reg-
ister 7y to port \/;

r: Every processor reads port A into
register 7;

: Every processor at row 0 writes reg-
ister r; to port \V;

r: Every processor reads port N into

register ry;

Every processor connects port &

with W;

w: Every processor PE;;, 0 <1 < N,
writes register ry to port &;

r: Every processor reads port £ into
register ro;

Every processor PE;;, 0 <1 < N,
writes register r; to port &;

r: Every processor reads port £ into
register rj;

Every processor does the following:
if P(rg,r1) < P(rg,73) then
disconnect all the ports;
else
connect port N with S;

w: Every processor at row N —1 writes
an arbitrary constant # to port N;

r: Every processor at row 0 reads port
S into register ry;

c: Every processor at row 0 does the
following:
if ro = # then
set register ro = 1;
else
set register ro = 0;

Theorem 1 Given N planar points in a row,
the m-contour of these points can be obtained
in O(1) time using an RM of size N x N.

Proof. Step 1 of algorithm MAXIMAL1
can be computed in constant time using
Lemma 2. Steps 2-5 require O(1) time.
Step 6 is an elaboration of computing prefix-
or partially and requires constant time by
Lemma 1. O

3.2 Second Algorithm

In algorithm MAXIMAL2 we use the well-
known divide-and-conquer approach to com-
pute the m-contour. /N points are given in the
(XY —plane),—o. These points are sorted in
order of z-coordinate to divide them into v/ N
disjoint sets of length v/N each. This division
complies with the first condition in Lemma 5.
Now the m-contour of these smaller sets are

computed using all the 2-D submeshes lying
parallel to YZ —plane. Now merging of the
solutions of these smaller problems is done
by carefully utilizing Lemma 5. Lemma 4
helps in getting the max, of each smaller
m-contour in constant time (Step 3). The
ith maz, is then distributed over the (XY —
plane),—; (Step 4-6). Every point in each
smaller m-contour then computes its overall
maximality using the processors along the z-
axis (Step 7-8). The detailed description of
the algorithm is given below.

Algorithm: MAXTMAL2

Precondition: registers ro and r; hold z-
and y-coordinates respectively.

Postcondition: register r, holds the deci-
sion of maximality.

1. Sort the given N points in the (XY —
plane),—o in ascending order of regis-
ter 1o, i.e., in ascending order of the x-
coordinates. The sorted list resides in
the processors of the (XY —plane),—y in
ascending column-major order.

2. For every column 7, 0 < 7 < \/N, of
(XY —plane) ,—o compute the m-contour
of the v/N points residing in processors
PE;;o, 0 < j < V/N, using the algo-
rithm MAXIMALL on the 2-D submesh
lying in the (YZ —plane) —;.

3. b: Every processor in the
(XY —plane),—q does the
following:

if ro = 0 then

connect port N with S;
else
disconnect all the ports;

: Every processor in the
(XY —plane),—o does the
following:
if ro = 1 then
write register r; to port S;

: Every processor PE,;g9, 0 < 1 <
Vv N, reads port § into register r3;

: Every processor PE; ok, 0 <14,k <
v N, connects port U with D;

: Every processor PE;o, 0 < 7 <
Vv N, writes register r3 to port U;

: Every processor PE;p,;, 0 < 1 <
Vv N, reads port U into register r;3;

: Every processor in the (XZ —
plane)y—o connects port €& with W;

: Every processor PFE;q;, 0 < i <
V' N, writes register r3 to port &;

: Every processor in the (XZ —
plane),—o reads port £ into register
Ts;

: Every processor connects port N
with S;

: Every processor in the (XZ —
plane),—o writes register r3 to port
N;

: Every processor reads port N into
register rs;

: Every processor connects port U
with D;

w: Every processor in the (XY —
plane),—y writes register r; to port
U;

r: Every processor reads port U into
register ry4;

8. b: Every processor PE; ;,
0 <i,4,k <+/N, does the
following:
if £ > i then
if r4, > r3 then
connect port Y with D;
else
disconnect all the ports;
else
connect port U with D;

w: Every processor in the (XY —
plane),_ ;_, writes an arbitrary
constant # to port U;

r: Every processor in the (XY —
plane),—o reads port D into regis-
ter ry;

c: Every processor in the
(XY —plane),—q does the
following:
if ro =1 and ry # # then
set register ro = 0;

Theorem 2 Given N planar points in a
plane, the m-contour of these points can be
obtained in O(1) time using an RM of size

VN x v/N x +/N.

Proof. Step 1 of algorithm MAXIMAL2
can be computed in constant time using
Lemma 3. By Theorem 1 step 2 can also be
done in constant time. It is obvious that the
rest of the steps require O(1) time. O

4

Conclusion

In this paper we have described two O(1)
time algorithms for computing the contour of
the maximal elements of a given set of planar
points. Hopefully these algorithms will have
an application to solving the largest empty
rectangle problem in constant time.

References

1]

2]

3]

[4]

[5]

Y. Ben-Asher, D. Peleg, R. Ramaswami,
and A. Schuster. The power of recon-
figuration. Journal of Parallel and Dis-
tributed Computing, 13:139-153, 1991.

B. Chazelle, R. L. Drysdale, and D. T.
Lee. Computing the largest empty rect-
angle. SIAM J. Comput., 15:300-315,
1986.

Yen-Cheng Chen and Wen-Tsuen Chen.
Constant time sorting on reconfigurable

meshes. IEEFE Transactions on Comput-
ers, 43:749-751, 1994.

Frank Dehne. O(n'/?) algorithms for the
maximal elements and ECDF searching
problem on a mesh-connected parallel
computer. Information Processing Let-
ters, 22:303-306, 1986.

Frank Dehne. Computing the largest
empty rectangle on one- and two-
dimensional processor arrays. Journal
of Parallel and Distributed Computing,
9:63-68, 1990.

[6]

7]

8]

9]

[10]

[11]

[12]

Ju-Wook Jang and Viktor K. Prasanna.
An optimal sorting algorithm on recon-

figurable mesh. Journal of Parallel and
Distributed Computing, 25:31-41, 1995.

H. T. Kung, F. Luccio, and F. P.
Preparata. On finding the maxima of
a set of vectors. J. ACM, 22:469-476,
1975.

R Lin, Stephan Olariu, J. Schwing, and
J. Zhang. A VLSI-optimal constant time
sorting on reconfigurable mesh. In Ninth
European Workshop Parallel Comput-
ing, pages 1-16, Spain, 1992.

Massimo Maresca. Polymorphic proces-
sor arrays. IEEE Transactions on Par-
allel and Distributed Systems, 4:490-506,
1993.

Mark S. Merry and Johnnie Baker. A
constant time sorting algorithm for a
three dimensional reconfigurable mesh

and reconfigurable network. Parallel
Processing Letters, 5:401-412, 1995.

Russ Miller, V. K. Prasanna Kumar,
Dionisios I. Reisis, and Quentin F. Stout.
Data movement operations and applica-
tions on reconfigurable VLSI arrays. In
Proc. International Conference on Par-
allel Processing, pages 205-208, 1988.

Russ Miller, V. K. Prasanna-Kumar,
Dionisios I. Reisis, and Quentin F. Stout.
Parallel computations on reconfigurable

meshes. IEEE Transactions on Comput-
ers, 42:678-692, 1993.

[13]

[14]

[15]

[16]

[17]

Madhusudan Nigam and Sartaj Sahni.
Sorting nm numbers on n X n recon-
figurable meshes with buses. Journal
of Parallel and Distributed Computing,
23:37-48, 1994.

M. Orlowski. A new algorithm for the
largest empty rectangle problem. Algo-
rithmaica, 5:65-73, 1990.

J. Rothstein. Bus automata, brains, and
mental models. IEEE Trans. Syst. Man
Cybern, 18:522-531, 1988.

C. C. Weems et al. The image under-
standing architecture. Internat. J. of
Comput. Vision, 2:251-282, 1989.

Ju wook Jang, Madhusudan Nigam, Vik-
tor K. Prasanna, and Sartaj Sahni. Con-
stant time algorithms for computational
geometry on the reconfigurable mesh.
IEEFE Transactions on Parallel and Dis-
tributed Systems, 8:1-12, 1997.

