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Abstract

There has recently been an interest in the introduction of reconfigurable
buses to existing parallel architectures. Among them the Reconfigurable Mesh
(RM) draws much attention because of its simplicity. However the wide ac-
ceptance of RM depends on its scalability through self-simulation. This paper
presents a simple self-simulation algorithm which can self-simulate the mono-
tonic RM model optimally and the piecewise-monotonic RM model asymptot-
ically optimally. We claim here that our algorithm preserves the essence of
configurational computation and uses less broadcasts than simulation by the
contraction and linear-connected component computation methods [1].

Keywords: Reconfigurable mesh; Simulation; Parallel algorithms; Parallel
architectures

1 Introduction

It is well known that interprocessor communications and simultaneous memory ac-
cesses often act as bottlenecks in present-day parallel machines. Bus systems have
been introduced recently to a number of parallel machines to address this problem.
Examples include the Bus Automaton [15], the Reconfigurable Mesh (RM) [9], the
content addressable array processor [17], and the Polymorphic torus [8]. A bus sys-
tem is called reconfigurable if it can be dynamically changed according to either global
or local information.

*Corresponding author.



Can these models be the basis for the design of next generation of massively
parallel computers? Perhaps the answer depends on the most fundamental related
issue of virtual parallelism or self-simulation: Given an algorithm which is designed
for a large RM, can it be executed efficiently on a smaller RM?

In [1] Ben-Asher et al. present optimal self-simulation algorithms for the HV-
RN and LRN models (defined in Section 2). They also present a self-simulation
algorithm for the RN model with an extra slowdown which is polylogarithmic in
the size of the simulated mesh. In self-simulating the HV-RN model they apply
a standard simulation technique, known as the contraction method, where a single
processing element (PE) simulates a submesh. This method destroys the beauty of
configurational computation [16], a key strength of RM-algorithms, as most of the bus
segments are configured virtually in a single PE. Self-simulation of the LRN model is
done by windowing the simulating mesh over the simulated mesh in a snakelike order
while computing linear-connected components. This introduces extra broadcasts in
addition to the necessary windowing broadcasts.

In this paper we present a self-simulation algorithm SIMPLE where the simulating
mesh is used as a window over the simulated mesh. The key issue in Algorithm
SIMPLE is to determine a suitable sequence of windowing so that after a finite number
of steps correct self-simulation is achieved. We show that Algorithm SIMPLE can
simulate the monotonic RM model optimally. We also show that Algorithm SIMPLE
can self-simulate the piecewise-monotonic RM model and the optimal slowdown can
be achieved if the simulating mesh is small compared to the simulated mesh which is
a desirable property of self-simulation.

This paper is organized as follows. In the next section we present the basic issues
of RM and present the monotonic and piecewise-monotonic RM models. The section
also includes definitions associated with the self-simulation problem. In Section 3.1
mapping of the simulated mesh into the simulating mesh is described in detail. The
Algorithm SIMPLE is presented in Section 3.2. In Section 3.3 we show that Algo-
rithm SIMPLE can self-simulate the monotonic and piecewise-monotonic RM models
optimally. Section 4 concludes the paper.

2 Preliminaries

For the sake of completeness, we briefly define the reconfigurable mesh and give
definitions of the problem of self-simulation.

2.1 Reconfigurable Mesh

The reconfigurable mesh is primarily a two-dimensional mesh of PEs connected by
reconfigurable buses. In this parallel architecture, a PE is placed at the grid points
as in the usual mesh connected computers. Each PE is connected to at most four
neighbouring PEs through fixed bus segments connected to four I/O ports N &
S along dimension z and £ & W along dimension y. These fixed bus segments
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Figure 2: Possible fifteen local configurations of a PE.

are building blocks of larger bus components which are formed through switching,
determined entirely by local data, of the internal connectors (see Figure 1) between
the I/O ports of each processor. The fifteen possible interconnections of I/0O ports
through switching, also known as local configurations, are shown in Figure 2. Like
all bus systems, the behaviour of RM relies on the assumption that the transmission
time of a message along a bus is independent of the length of the bus [2].

A reconfigurable mesh operates in the single instruction multiple data (SIMD)
mode. Besides the reconfigurable switches, each PE has a computing unit with a
fixed number of local registers. A single time step of an RM is composed of the
following four substeps:

BUS substep. Every processor switches the internal connectors between 1/O ports
by local decision.

WRITE substep. Along each bus, one or more processors on the bus transmit
a message of length bounded by the bandwidth of the fixed bus segments as
well as the switches. These processors are called the speakers. It is assumed
that a collision between several speakers will be detected by all the processors



connected to the bus and the transmitted message will be discarded.

READ substep. Some or all the processors connected to a bus read the message
transmitted by a single speaker. These processors are called the readers. In
this paper we assume that each reader can detect whether the designated port
carries any signal or not. A reader is allowed to read only when it detects a
signal in the associated port.

COMPUTE substep. A constant-time local computation is done by each proces-
SOT.

The general reconfigurable mesh model, as presented above, does not specify the
exact operation of the switches. The following basic variants are proposed in [1]:

Horizontal-Vertical RM (HV-RN Model). Buses are formed along either rows
or columns, but may not contain building blocks from both dimensions. This
model supports local configurations 1 to 4 in Figure 2.

Linear RM (LRN Model). A bus may consist of any connected path of edges, not
only vertical or only horizontal. The buses are however only linear, i.e., a fixed
bus segment is attached to at most one other fixed bus segment at each end.
Local configurations 1 to 10 in Figure 2 are supported by this model.

General RM (RN Model). A configuration of buses is any partition of the net-
work into edge disjoint subgraphs, so buses are not necessarily linear. This
model supports all the fifteen local configurations in Figure 2.

The variants defined above depends solely on local configurations of ports. Now
we present two additional models where restrictions are imposed over the global char-
acteristics of the buses.

Definition 1 A function f(z) is called positive monotonic w.r.t. x if f(x1) > f(z2)
whenever x1 > xo. Similarly a function f(x) is called negative monotonic w.r.t. x if
f(z1) < f(x2) whenever x1 > x9. A function f(z) is monotonic w.r.t. x if it is either
positive or negative monotonic w.r.t. .

Definition 2 A function f(x) is called piecewise-monotonic w.r.t. x if azis-x can be
divided into successive ranges such that f(x) is positive monotonic in alternate ranges
and negative monotonic in the rest of ranges.

Monotonic RM Model. Each bus represents a monotonic function w.r.t. either
row and/or column index within a range.

Piecewise-Monotonic RM Model. Every bus represents a piecewise-monotonic
function w.r.t. either row or column index within a range. Moreover in any
step all buses represent functions w.r.t. same index.



Observe that both the models are included in the LRN model. Also observe that
the HV-RN model is included in the monotonic RM model which is again included
in the piecewise-monotonic RM model.

We believe that the monotonic and piecewise-monotonic RM models are defined
here for the first time but many published algorithms for the LRN models can readily
be used in these models without any modifications or with very small modifications.
Among them PARITY algorithms [7, 14], conversion between number representations
algorithms [6], prefix-sums algorithm [11], sorting algorithms [12, 13] etc. can be
adapted into the monotonic as well as the piecewise monotonic RM models and prefix-
remainders algorithm [11], integer summing algorithms [6, 11], integer multiplication
algorithm [5], sorting algorithm [6], algorithms based on function decomposition [3],
HISTOGRAM algorithm [4] etc. can be applied into the piecewise-monotonic RM
model only. Moreover it is quite obvious that all the algorithms suitable for the
HV-RN model are applicable to both the models.

2.2 Problem Definition

Let RM&*® denote a reconfigurable mesh of A rows and B columns with each PE
having C registers.

Definition 3 The self-simulation problem of RM is to step-by-step simulate RM}%/IXN

by RMg(izQ{M} [21) where P < M, @ < N, and the computing power of the PEs and
Fllq

the bus bandwidth (not less than log MN ) are assumed to be equivalent in both the

meshes.

To simplify the exposition 2 and £ are assumed to be integers. If the memory
requirement of the simulating RM is bounded as defined in the above definition then

the slowdown remains as the key issue.

Definition 4 We say that reconfigurable mesh Ry is simulated by Ry with slowdown
S if the result for any algorithm A; on Ry is achieved through the execution of a
step-by-step simulation algorithm Ay on Ry in which each step of Ay is simulated
with slowdown at most S.

Obviously the self-simulation of RM}%/[XN by RMZ;{RQME), P<Mand Q@ <N,is
PQ

MN ) A smaller slowdown would lead to a

said to be optimal if the slowdown is © (FE
serial algorithm contradicting lower bound.

3 Self-Simulation Algorithm

Let the PEs of the simulated mesh RMpy *" and the simulating mesh RMg(>< RQM ~) be
PQ
denoted by the matrices R[0: M —1,0: N—1] and S[0: P—1,0: Q — 1] respectively.

Let R(z,y), 0 <z < M and 0 < y < N, denote the PE at the intersection of row
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Figure 3: Mapping of the simulated RM into the simulating RM.

x and column y of the simulated mesh. Similarly let the PE at the intersection of
row = and column y of the simulating mesh be denoted by S(z,y), 0 < z < P and
0<y<@Q.

We first develop necessary mapping techniques for the simulation. An algorithm
SIMPLE is then presented and finally restrictions are imposed on the general RM to
make the algorithm SIMPLE optimal.

3.1 Mapping of the Simulated RM into the Simulating RM

In this paper the following two functions play important role in mapping meshes:

a mod b if a div b is even
FOLD(a,b) = { b—1— (amodb) otherwise

[ beta if ¢ is even
UNFOLD(a'a ba C) - { b(c —+ ]_) —1—a otherwise

Let the simulated RM be divided into %% nonoverlapping submeshes R; ; of size

P x (@) containing the processing elements R[iP : (i + 1)P — 1,jQ : ( + 1)Q — 1]

for 0 <1 < % and 0 < j < % Now the simulated mesh is mapped into the



simulating mesh in such a way that the processing element R(zx,y) is simulated by
S(FOLD(z,P), FOLD(y,Q) for 0 < x < M and 0 < y < N. This ensures one-
to-one PE mapping of each submesh R;; into the simulating RM and whenever the
simulating RM simulates the submesh R; ; the processing element S(xz,y) simulates
the processing element R(UNFOLD(z, P,i),UNFOLD(y,Q,7)) for 0 < i < %,
0< < %, 0 <x< Mand 0 <y < N. The same benefits can also be achieved
through straightforward mapping without using any folding techniques. But the
mapping presented here has its unique characteristics - the external neighbours of a
boundary PE, p of the submesh R;; are mapped in the same simulating PE where p
is also mapped, 0 < i < % and 0 < j < % This keeps the broadcasts of simulation
data low in the expense of the introduction of a mapping of the ports due to the
change in the direction of z- and/or y-axes in some of the mapped submeshes. For
the submesh R; ;, 0 <1 < % and 0 < j < X the ports are mapped as follows:

£ if 7 is even

MAPPORT(&,i,j) = { W  otherwise

W if 7 is even

MAPPORT(W,i,j) = { £  otherwise

N if j is even

MAPPORT(N,i,j) = { S  otherwise

S if jis even

MAPPORT(S,i,j) = { N otherwise

Now each PE of the simulating mesh simulates % % PEs of the simulated mesh. We
assume that the k-th register of the simulated processing element R(zx,y) is mapped
into the ((m% + y) (R+¢)+ k)—th register of the corresponding simulating process-
ing element S(z mod P,y mod @) where 0 <2 < M, 0<y< N,0< k<R, and ¢
is a small integer. If register is considered as the third axis then the above register
mapping stacks the submeshes R;; over the simulating RM in column-major order
(Figure 3) and each submesh is alloted an extra e registers per PE for simulation
purpose.

3.2 SIMPLE: a Self-Simulation Algorithm

Let B denote the set of all the boundary PEs of the simulating RM, i.e., B =
{S(z,y) | r=0vVz=P—-1Vy =0Vy = Q—1}. Let a port, t of a boundary PE, p be
called *port if t is not connected to any port external to p. Every boundary PE has
exactly one *port except S(0,0), S(0,Q —1), S(P—1,0), and S(P —1,Q — 1) which
have two *ports each. Whenever the submesh R;; is simulated, for each boundary
PE, two registers from the & extra registers are allocated for each *port. Let these
special registers be called *reg! and *reg2.

Let for each step s of an RM-algorithm A, b(s), r(s), w(s), and c(s) denote
the BUS, READ, WRITE, and COMPUTE substeps respectively. In the reminder
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whenever we mention that some steps or substeps are executed in the simulating RM
while simulating a specific submesh, it is assumed that the references to any register,
to any port and to the coordinates of any PE are mapped accordingly.

We now present a self-simulation algorithm without considering any specific model
in mind. In Section 3.3 we show that this algorithm can optimally self-simulate some
classes of RM where restrictions are imposed over the global characteristics of bus
reconfigurations.

ALGORITHM: SIMPLE( RM-algorithm: A )
1 For each step s € A do the following

1.1 For each boundary PE € B do the following in parallel

For each *port ¢ do the following
For each mapped submesh R, ;, 0 <1 < % and 0 < j <
*regl to 0;

N

o set

1.2 Generate a finite sequence of pairs (i1, j1), (42, jo), - - -, (i1, jz,) of length L
where VK : 0 <1 < P and 0 < j; < Q.
1.3 For each pair (i, jx) do the following on the mapped submesh R
1.3.1 Execute b(s);
1.3.2a Execute w(s);
1.3.2b For each boundary PE € B do the following in parallel
For each *port, ¢ do the following

ksJk

if *regl = 1 then write *reg2 to port ¢;
1.3.3a Execute r(s);
1.3.3b For each boundary PE € B do the following in parallel
For each *port, ¢ do the following
if ¢ senses signal then set *regl to 1 else set *regl to 0;
if *regl = 1 then read port ¢ into *reg2;
1.3.4a Execute c(s);
1.3.4b For each boundary PE € B do the following in parallel
For each *port, ¢ do the following

Copy *regl and *reg2 into the similar registers, allocated for ¢,
of the neighbouring mapped submeshes;

Step 1.2 is the most crucial part of the above algorithm. Generating a sequence
of length L which leads to correct self-simulation depends on many factors which are
discussed in the next section.

The order of step 1.1 of Algorithm SIMPLE is © (%%) Let the order of step 1.2
be O15. Steps 1.3.2a and 1.3.2b can be done in a single WRITE substep. Similarly
steps 1.3.3a and 1.3.3b can be done in a single READ substep while steps 1.3.4a and
1.3.4b can be done in a single COMPUTE substep. So all the substeps of step 1.3
can be executed in order O(1). Hence the order of step 1.3 is O(L).

8



Lemma 1 Slowdown of Algorithm SIMPLFE is max (@ (% %) , O1.0, O(L)).

3.3 Optimal Self-Simulation of Some Restricted RM

Let RSEQ(i) and CSEQ(j) denote the sequences of pairs (3,0), (4,1), ..., (%, % -1)
and (0,7), (1,7), ---, (% — 1, 7) respectively. Let S denote the sequence S in reverse
order, S; + S + - -+ + 5, denote the concatenation of sequences Sy, Sz, ..., S, in
order and S* denote the sequence S+S85+---+65.

k times

Theorem 1 Any monotonic RM-algorithm can be self-simulated optimally by the
Algorithm SIMPLE.

Proof. Let us consider the sequences of pairs, S, = CSEQ(0) + CSEQ(1) + --- +
CSEQ(g — 1) and S_ = CSEQ(0) + CSEQ(1) + --- + CSEQ(§ —1). Let S =
S, + S_. Let A be any arbitrary monotonic RM-algorithm written for the simulated
mesh. We now show that the sequence S+ S = S, +S_ +S_ + S, of length 455 &

which is © (M%) can be used in the step 1.2 of Algorithm SIMPLE for each step of

P
A to achieve a correct self-simulation.

First consider only the positive monotonic buses. Let any arbitrary positive
monotonic bus u terminate in the submeshes R,; and R.4. Now assume a < ¢
and this implies b < d as u is positive monotonic. Based on the characteristics of
positive monotonic bus we can say that the trajectory of the bus through various sub-
meshes R, ; follow the sequence of pairs S, = (a,b), (a+1,b), ..., (ks,b), (kp, b+ 1),
(kp+1,0+1), ..., (kpy1,0+1), ..., (kg_1,d), (kg_1+1,d), ..., (c,d) where 0 < k; < ¢
and k; 1 <k <c b<l<d.

It is very easy to show that S, and S, are contained in S, and S, respectively
preserving the order.

Suppose, the processor that writes on the bus u resides on the submesh R, ,,
(p,q) € S,. Then after using the the sequence S, completely in the step 1.2 of
Algorithm SIMPLE it can be claimed that the portion of the bus u residing in the
submeshes R, ;, (i,7) € S, and the index of the pair (7, j) in S, is greater than or equal
to that of the pair (p, ¢), is simulated completely. Similarly after using the sequence
S, completely we can claim that the rest portion of the bus u is also completely
simulated.

The sequences of pairs S_ and S_ play similar role in simulating negative mono-
tonic buses correctly.

Now the generation of the sequence of pairs S + S is independent of any step
of RM-algorithm A. So the order of step 1.2 of Algorithm SIMPLE, O;5 can be
considered as O(1) and thus by Lemma 1 the slowdown of Algorithm SIMPLE in
self-simulating any monotonic RM-algorithm is © (% %) which is optimal. O

Theorem 2 Any piecewise-monotonic RM-algorithm can be self-simulated by the Al-
gorithm SIMPLE.



Figure 4: A step in the algorithm [6] of adding k& integers of n bits each on an RM of
size 2n X 2nk where A = n (figure generated by the serial simulator RMSIM [10]).

Proof. Let A be any arbitrary piecewise-monotonic RM-algorithm written for the
simulated mesh. Without any loss of generality we assume that the buses of any
particular step of A be piecewise-monotonic w.r.t. column index.

Let A} denote the minimum of the minimum PE distance along the row axis of
any two successive positive monotonic segments of bus u. Similarly let A, denote
the minimum of the minimum PE distance along the row axis of any two successive
negative monotonic segments of bus u. Let A = miny, (min(A;, A;)) and

K — { 1+ (2 [%1 + 1) if A can be computed
3 otherwise.

An example of A is given in Figure 4.
Now consider the sequence of pairs

x Kdiv?
2, (CSEQU) + TSEQR)) it K> 3

20 (CSEQ(j) + CSEQ()) + CSEQ())) otherwise.

S =

We now show that the sequence S + S of length 2K & can be used in the step 1.2
of Algorithm SIMPLE for each step of A to achieve a correct self-simulation.

Let any arbitrary piecewise-monotonic bus u terminates in the submeshes R, ; and
R.q. Now assume a < c. Let the trajectory of the bus through various submeshes R, ;
follow the sequence of pairs S,. As this trajectory S, passes through any submesh
R; ; at most K — 1 times it is easy to show that S, and S, are contained in S and S
respectively preserving the order.

Suppose, the processor that writes on the bus u resides on the submesh R, ,,
(p,q) € Sy. Then after using the the sequence S completely in step 1.2 of Algorithm
SIMPLE it can be claimed that the portion of the bus u residing in the submeshes R; ;,
(,7) € S and the index of the pair (,7) in S, is greater than or equal to that of the
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pair (p, q), is simulated completely. Similarly after using the sequence S completely
we can claim that the rest portion of the bus u is also completely simulated. O

In Theorem 2 nothing is stated about the slowdown of the self-simulation. In
general cases the slowdown will not be optimal. However we can achieve optimal
slowdown for instances where the following conditions are met:

1. For each step of piecewise-monotonic RM-algorithm A, A is known a-priori.

2. % is large, a desirable property in self-simulation, so that K can be considered

as a constant.

4 Conclusion

In this paper we have presented a self-simulation algorithm SIMPLE for monotonic
and piecewise-monotonic RM model. Through Algorithm SIMPLE we have achieved
optimal self-simulation for monotonic RM model and asymptotically optimal self-
simulation for piecewise monotonic RM model. We believe that Algorithm SIMPLE
preserves the essence of configurational computation and uses less broadcasts than
the algorithms in [1].
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