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Abstract. The newest, and asymptotically the fastest known integer
factorisation algorithm is the number field sieve. The area in which the
number field sieve has the greatest capacity for improvement is poly-
nomial selection. The best known polynomial selection method finds
quadratic polynomials. In this paper we examine the smoothness prop-
erties of integer values taken by these polynomials. Given a quadratic
NFS polynomial f, let A be its discriminant. We show that a prime p
can divide values taken by f only if (A/p) = 1. We measure the effect
of this residuosity property on the smoothness of f-values by adapting
a parameter a, developed for analysis of MPQS, to quadratic NFS poly-
nomials. We estimate the yield of smooth values for these polynomials
as a function of a, and conclude that practical changes in @ might bring
significant changes in the yield of smooth and almost smooth polynomial
values.
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1 Introduction

Let N be a large postive integer. We refer to the multiple polynomial quadratic
sieve (MPQS) and the number field sieve (NFS) algorithms for factoring N.
Details of these algorithms can be found at [10] and [6] respectively . For the
MPQS we take NV to be the product of some small multiplier and the integer
requiring factorisation. Also, we refer to an integer as B-smooth when all its
prime factors are less than B.

For our purposes it suffices to understand the following about the number
field sieve. Like MPQS, the speed at which the number field sieve can factor IV is
limited mainly by the supply of smooth integers of a particular form. For NFS,
the smooth integers are required to be values associated with an irreducible
polynomial F € Z[z] of degree d. In fact we consider f € Z[z,y] given by
f =y?F(z/y), and search for B-smooth values of |f| for some bound B and for
coprime z,y € Z in a given range (see [6]). The area in which the number field
sieve has the greatest capacity for improvement is the selection of f. A “good”
polynomial is one whose values are more likely to be B-smooth than random
integers of the same size. Amongst polynomials, f; is “better” than fo if f;
takes values more likely to be smooth than those taken by fa.



The probability that a random integer is B-smooth decreases rapidly with
the size of the integer. The size of the values taken by f is therefore a key fac-
tor in optimising polynomial selection. This factor is usually viewed in terms of
the size of the coefficients of f. None of the selection methods used thus far are
provably optimal (see [6], [2] and [7]). With the exception of Peter Montgomery’s
algorithm reported in [9], current methods yield ¢; = O(N'/(4+1)) where ¢; for
i =0,...,d—1 are the coefficients of f. The method in [9] however, produces
two polynomials of degree d = 2 for which ¢; = O(N'/4). In that sense Mont-
gomery’s method is the best known method for polynomial selection. It is there-
fore worthwhile examining more closely the quadratic polynomials produced by
this algorithm.

In MPQS, we sieve over values taken by quadratic polynomials W (z) (so
called W-values). The factor base (ignoring large primes) initially ought to con-
tain all rational primes p less than some bound B. However by the choice of W,
it is known that only primes p for which (N/p) = 1 can divide W-values. This
is significant for two reasons.

1. For sufficiently large B approximately half of the primes less than B satisfy
(N/p) = 1, so only half the primes up to B need appear in the factor base.
Hence, sieving time is reduced by approximately one half.

2. For typical MPQS polynomials, it appears that W-values (given an appropri-
ate choice of the multiplier k) are more likely to be B-smooth than random
integers of the same size.

From point 2 above we obtain some understanding that the probability of
W-values being smooth is altered by knowledge that particular primes cannot
divide W-values. We call this the “root property”. In this paper we consider the
root property for quadratic number field sieve polynomials. In particular, we ask
how the distribution of primes p for which f cannot have roots mod p affects the
yield of smooth values from f.

In the next section we note that quadratic number field sieve polynomials
f possess a similar residuosity property to MPQS polynomials. In particular,
if f(z,y) = r for coprime z,y € Z then all the odd primes dividing r satisfy
(A/p) = 1, where A denotes the discriminant of f. In section 3 we repeat an
argument from [3] which estimates smoothness probabilities of f-values given
information from the residuosity condition on which primes may appear in their
factorisations. In section 4 we use the estimates of section 3 to approximate the
effect of this root property on the yield of smooth f-values, and of f-values which
are smooth but for the appearance of up to two large primes.

Thus, we quantify relative expected yields from quadratic NFS polynomials
as a function of their root properties. We conclude that, heuristically, practi-
cally attainable differences in root properties might bring significant increases
in the yield of smooth and almost smooth values of quadratic number field sieve
polynomials. In practice, such an increase is relevant to polynomial selection.



2 The Primes in the Factor Base

Montgomery’s polynomial selection algorithm produces pairs of binary quadratic
forms with integer coefficients. We ask, for coprime integer values of the vari-
ables, which integers do these forms represent? After giving some definitions and
notation, we give a theorem from [5] which addresses this question.

Definition 1. A form f primitively represents some r € Z if there exist coprime
integers z; and y; for which f(z1,y1) = r.

Consider two binary quadratic forms fi(x1,y1) and fa(z2,y2) with integer
coefficients, and whose variables range over Z.

Definition 2. The forms f; and f» are Z-equivalent if there exists a linear
transformation over Z represented by a 2 x 2 integer valued matrix A with
det A = +£1.

The unimodularity condition ensures that the transformation and its inverse
preserve the integrality of the variables.

Let A; and As be the discriminants of f; and f respectively. If f; and fs
are Z-equivalent under the transformation A then

AQ = (det A)2A1 = Al.

Finally, if a given form f represents a particular integer, then so do all forms
Z-equivalent to f.

The following theorem ([5] p50) gives necessary conditions on the primitive
representation of integers by binary quadratic forms over Z.

Theorem 3. Let fi = azx? + bx1y; + cy? be a quadratic form over Z and A
its discriminant. Then fi primitively represents r € Z only if there exists some
s € Z for which

52 = A mod 4r. (1)

Proof. Suppose fi(a,vy) = r for coprime o, € Z. Then there exist integers 3, §
for which ad — By = 1. Under the (unimodular) transformation

T1 — azs + By
Y1 = YT + 0y

f1 is mapped to a Z-equivalent form f; with leading coefficient
ay = aa® +bay+cy? =r.
Since the discriminant of fs is A, its remaining coefficients by and co satisfy
b3 —drcy = A.

Hence with s = by the congruence (1) holds.



As an immediate consequence of Theorem 1 we have

Corollary 4. Let f be a binary quadratic form over Z with discriminant A, and
let p be an odd prime not dividing A. If f primitively represents some r € Z
and p|r then

In the case p = 2 we have

Corollary 5. Let f = ax? + bxy + c2? be a binary quadratic form with odd
discriminant A. If f primitively represents some even r € Z then at least one
of a,c is even.

Proof. By Theorem 1 we require a solution s to s2 = A mod 8 . The only odd
quadratic residue mod 8 is 1, so we require

A =1mod 8. (2)

Clearly A is odd if and only if b is odd, so (2) holds only if 4ac = 0 mod 8, which
implies a and ¢ are not both odd.

Note also that if b (and therefore A) is even, f cannot fail to primitively represent
some even 7.

In general the converse of Theorem 1 is not quite true, but there is a slightly
more general statement that holds. If a solution to (1) exists then some class of
forms of discriminant A primitively represents r (see [5] p50).

3 Quadratic Residuosity and Smoothness Probabilities

Here we repeat an argument proposed for the MPQS in [3], due to Peter Mont-
gomery, regarding the effect of information about quadratic residuosity on the
smoothness probabilities of W-values. Given Corollaries 1 and 2, we are able to
extend this argument to quadratic number field sieve polynomials.

Suppose we are to sieve over W-values for some MPQS polynomial . Recall
that the factor base F'B consists of all odd primes p < B for which (N/p) =1,
and (by the choice of multiplier) the prime 2. Let

2 if (%):1,
"o (&) =-1,

where we assume p does not divide N. By the choice of multiplier we define
r9 = 2. For all primes p € FB (including 2) the expected exponent of p in the
factorisation of a W-value (that is, the expected contribution of p) is

pTP(%+pL2+m) = pprfl.




Hence, the estimated sieve array value corresponding to log |W (z)| after sieving

is
logp
log W ()] — 3 ryon.
p<B p

The corresponding value for a random integer y of the same size is

logp
logy — E 1
P~
p<

So it is suggested that W -values are about as smooth as random integers of log
size o + log W (z) where

a=>(1-r) lofp. (3)

p<B p-1

Hence, if a < 0 then W-values are considered more likely to be smooth than
random integers of the same size.

Remark. Except in marginal cases, the sign of « is determined by the value
of r, at small p, perhaps even the first three or four values. Clearly it is not
necessarily true in general that a < 0. A feature of MPQS however is that by
choosing an appropriate multiplier, we can ensure that NV is a quadratic residue
for sufficiently many small odd p, and that (as above) 2 € FB. Optimal use
of the MPQS therefore tends to the case a@ < 0. Indeed, in [3], values of «
are presented for thirty four distinct values of N. In all cases o < 0. In fact
a € [—3.186,—0.5899]. For values as high as —0.5899, all that saves a from
being positive is that ro = 2 (by the choice of multiplier).

We now adapt the definition of « for quadratic number field sieve polynomi-
als.
For a given binary quadratic form f(z,y) = ax? + bxy + cy? over Z and for
odd p with p fA, let
2 if
q =
" loif
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If p|A, put ¢, = 1. Finally, if A (equivalently, b) is odd let

_ [ 2 if at least one of a,c is even,
2=70 otherwise,

and if A is even let ¢, = 2. Then let a(f) be given by

alf) = 37 (1 - g,) 22

p<B p-1

That is, given f, the value a(f) represents our knowledge that particular
primes are a priori excluded from dividing f-values. Now, polynomials f for



which a(f) < 0, at least heuristically, produce values more likely to be smooth
than random integers of the same size. Moreover, suppose we have forms f; and
f2 with a(f1) < a(f2). Depending on how the distribution of smooth values
varies with a, we might expect f; to be a “better” polynomial than fs.

In the next section we estimate the effect of the root property by calculating
yield as a function of a.. Below though we give a result estimating g, for a random
assignment modp of the coefficients (a, b, c) of f.

Lemma6. For each odd prime p coprime to A, the number of non-trivial 3-
tuples (a,b,c) mod p for which (A/p) =1 is

%(p -1)(*+p) -1

Proof. Fix b # 0 mod p. For A = b? — 4ac and (A/p) = 1 we have
ac = (—4) " (xp — b?) mod p, (4)

where x, is any of the (p — 1)/2 quadratic residues mod p. Hence the product
ac may take any of (p —1)/2 values mod p, exactly one of which will force the
right hand side of (4) to be zero because exactly one x, = b?.

For each of the (p — 3)/2 non-zero values of the right hand side of (4), there
are p — 1 ordered pairs (a,c) whose product gives the right hand side, since for
each non-zero a, ¢ is uniquely determined by ¢ = a=!(—4)"!(x, — b?) mod p.

For each single zero value of the right hand side of (4), there are 2p — 1
ordered pairs (a,c) for which at least one of a = 0 mod p or ¢ = 0 mod p holds.

Hence, for non-zero b, there are

-3
I)T(p—1)+2p—1

ordered pairs (a,c) giving (A/p) = 1. There are p — 1 non-zero residue classes
for b, so non-zero b account for

p—3 P 1
D - +2p-1] = p-1) |E+=
o-0 | 22 0-n+2-1] = o-1 |5+ ]
tuples (a,b,c) mod p.
Now, if b = 0 mod p, we require
ac = (—4)"*x, mod p (5)

where again x, is any of the (p —1)/2 quadratic residues mod p. Since the right
hand side of (5) is always non-zero, there are p—1 pairs (a, c) for each x4, giving
a total of
p—1 1
T(P —-1)
tuples (a,b,c) mod p for b = 0 mod p.
So, the total number of tuples is

o-1 |5+ 5|+ L -0 =25 [+,

one of which is the trivial tuple (0,0, 0) mod p.



Thus, for odd p, the probability that a uniformly random non-trivial selection
(a,b,c) mod p satisfies (A/p) =1 is given by

-1 +p)/2-1
P -1

1 1
R
2 [ pQ]
For odd p not dividing A, it is therefore more likely than not that (A/p) = —1,

and the probability that (A/p) = 1 is smallest for smaller p. This highlights the
significance of selecting polynomials which do have roots modulo small p.

Prob[(A/p) =1] =

4 Yield per Polynomial

We refer to the number of B-smooth f-values on the sieve interval as the full
yield of f. For the NFS this is not quite the same as the number of full relations
per polynomial, since a full relation is required to be a B-smooth value taken
by two polynomials with a common root modN. We estimate the full yield in
section 4.2 by repeating Boender’s MPQS calculation for NFS polynomials. In
section 4.3 we examine this yield as a function of a.

Relation collection can be sped up considerably by the collection of f-values
which are smooth but for up to 2 prime factors between B; and B, (with B <
B; < Bj). We refer to these as incomplete f-values. We refer to an incomplete
f-value with exactly one so called large prime factor as partially (or p-) smooth,
and to an incomplete f-value with exactly two large prime factors as partially
partially (or pp-) smooth. Incomplete f-values are useful only if they lead to
relations in which the same large prime occurs at least twice. It is a seperate
and open question to estimate (for the NFS) the number of ’useful’ relations
obtained from a given number of incomplete f-values. In sections 4.4 and 4.5
therefore, we consider only the ‘yield’, that is, the number of incomplete f-values.

4.1 Smooth Integers in an Interval

We require an estimate of the number smooth integers amongst an integer in-
terval of a given size. For an integer n let P;(n) denote the largest prime factor
of n. As usual, let

Y(z,y) =|{n € Z" :n <z and Pi(n) <y}|.

Then

vl o (p) + (1= A=) ©)

where u = (log z)/logy, «y is Euler’s constant and p(u) is Dickman’s rho function

(B3, 18]



Now, for fixed ¢ € (0,1), the number of y-smooth integers in the interval
[z, + x /2] is given by

¢ <$+ %71‘/) - w(fﬂ:y) =
log(1 + y/logz)

1 loglog(1+y)
zlogy

14+0( -
for x,y, z in the range > 2 and
(loglog#)*/**¢ <logy < (log2)*/®, 1 < 2 < R(z,y) ",

where R(z,y) is some expression depending on z,y and some fixed constants
(see [3] p 48).
Combining (6) and (7) and approximating some of the logarithms gives

UG

loglogx 1 loglogy
1 08087 1 - 08 08Y
( — )o(w,y,z>( a0 + el EEL), ®)

where o(z,y, 2) is given by

plu—1)

o(r,9,2) = plu) + (1= ) F

and the c¢;(€) are constants depending on € ([3] p 49). Boender notes that the
range of interest for z,y, z is slightly outside that for which (7) is proven to
hold. Empirically however, (7) still provides a good approximation in the range
of interest.

4.2 Estimating the Yield

In the implementation described in [9] sieving is performed using a method
known as line sieving. During line sieving, only values f(z,1) are considered.
Hence we now consider only quadratic polynomials f(z). Suppose then, that we
are to sieve for B-smooth values of |f(z)| with z in the range [a1, a2].

Care is required in the calculations below when f (considered as a continuous
curve on the real interval [a;, as]) contains a stationary point or roots in [ay, as].
In our circumstances this is always the case. Clearly each curve f can be cut
into segments which exclude roots and turning points (we require at most four
segments). We call the segment so obtained which occupies the largest portion
of [a1,az] the principal segment. For each curve below we have repeated our
calculations on every segment of the curve, and obtained almost identical results
on each segment. Hence we report only the results on the principal segment.

Let I be the real z-interval defining the principal segment, and let I" be the
continous curve defined by f on I. Since I' contains no turning point in I, we
can assume either f'(z) < 0 or f'(z) > 0 for all x € I. We assume the latter, the
former only requires sign changes in the arguments below. Similarly, we assume



f(z) > 0 for all z € I. The question now is ‘how many integer points on I" are
B-smooth?’.

We approximate the number of B-smooth integer values on I" by cutting I"
into shorter intervals and summing the yield over these intervals. Let S; and S
be the minimum and maximum values respectively, taken by I' on I. We cut
[S1,S2] into K subintervals [y;, yiy1] for ¢ =0,..., K — 1 by taking

log Sy — log Sy
h=—""%—
so y; = Siet". In accordance with our notation for estimating the number of
smooth integers in an interval, we write y;;1 = y; + y;/z where 1/z = e® — 1.
Now, for each y;, let z; € IR be such that (z;,y;) € I'. Let

_ Y1 — Y
Tiy1 — T4

85

denote the slope of I'" on [z;,z;11], and let ¢(y;) denote the number of B-smooth
f-values on I' with y < y;. Clearly the yield on the whole of I', X, is given by

X = Y (i) — t00). ©)

For y € [yi, yi+1] the probability that a randomly chosen (z,y) € 'hasz € Z
is approximately 1/s;. So we have

Yir1 = ¥i py

= (Ziq1 —z) P
s (@it1 — @)

t(yit1) —t(yi) ~

where P is the probability that an integer f-value in [y;, y;+1] is B-smooth.
Recall that we consider f-values f(z) to be as likely to be B-smooth as
random integers of logarithm log(f(z)) + a(f) where

logp
a(f) = 3 (1 -a,) 2E

p<B

So, if g; = logy; + @ = S1 + ih + a, and if v; = g;/log B, approximation (8)
yields

H(yir1) — t(y:) ~
(wivr =) (1= 1222 ) (oo + (1= 2222

¢ cloglogB
1+ —+——=—". 1
x ( + z + log B (10)

Approximation (10) and equation (9) give an approximation to Xy.



4.3 Full Yield as a Function of o

We now consider the yield per polynomial as a function of a. For B fixed, a(f)
is bounded, in fact for B = 5 - 10 we have approximately |a| < 14.16. However
for the quadratic NFS polynomials investigated, typically a € [—3, 1], a range of
4. So we consider « € [—4,0] and refer to this as the practical range for a. We
approximate Xy, with appropriate parameter choices, as « varies in the practical
range, all other things being equal. In fact we calculate

_ X
X5(0)

SR i — o) (1= 200) (p(vi(@)) + (1 — ) £lealel))
SR i — ) (1= 1282) (p(ws) + (1 = 7)22=2)

where the terms in the denominator are understood to be evaluated at a = 0.
The quantity )(a) approximates the relative increase in full yield we might
expect as a decreases in the practical range.

Q(a)

~
~

7

Remark. In practice Q(«) is approximately independent of K, so we use K = 100
in accordance with [3]. Also, we calculate the Dickman function using the Taylor
series method described in [1].

We calculate values of Q(a) for five sets of parameters, labelled C87, C97,
C105, C106 and C107. We use the parameters reported in [9] for factorisations
of integers of the same labels. Moreover, we use the polynomials f;(x) of [9] for
each integer, to determine our values z;,y; and s;. We claim therefore, only that
the parameters Cs are typical for quadratic NFS polynomials with integers of
s decimal digits. So the values @Q(«a) approximate the relative range of yields
we can expect from typical quadratic polynomials for integers of size s. In any
event ()(a) seems more dependent on the rate at which the Dickman function
is decreasing than it does on minor parameter changes.

Table 1 contains the relevant parameters.

C87 C97 C105 C106 C107

divides| 72%° 41 | 12*1 41 | 3%7_1 | 1287 41 | 622 41
B |1.0-10%| 2.2-10° 1.6-10° | 2.7-10% | 2.9-10°
|z| < [ 7.5-10" | 25.10" | 7.5-10" | 1.0-10" | 1.0-10%
I~ [[3.0-10'%|[-2.5-10",|[-1.3-10"%,|[-1.0 - 10%5,|[-1.3 - 10"*,
7.5-10']| —5.8-10'%]| 7.5-10"] |—2.2-10"]| 1.0-10'%)

Table 1. Parameters for Table 2



Table 2 contains values of Q(«a) for these parameters, at several values of a.

Q)
—a [[C87] €97 [ C105 [ C106 | C107

0.05({1.01 {1.01 | 1.01 | 1.01 | 1.01
0.50{1.11 | 1.11 | 1.12 | 1.11 | 1.11
1.001 1.24 | 1.22 | 1.24 | 1.23 | 1.23
1.50{1.37 | 1.35 | 1.39 | 1.37 | 1.36
2.00{ 1.53 | 1.50 | 1.54 | 1.51 | 1.51
2.50{1.69 | 1.66 | 1.72 | 1.68 | 1.68
3.00{1.88 | 1.83 | 1.92 | 1.86 | 1.86
3.50( 2.09 | 2.02 | 2.13 | 2.06 | 2.06
4.00{ 2.32 | 2.23 | 2.38 | 2.28 | 2.28

Table 2. Q(a) vs a

The complete results on C107 for o € [—4,0] are shown in Figure 1 below.
The complete results for the other parameters are similar.

25

=

o
T
I

Expected increase in full yield
-
T
I
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0 I I I I I I I
25 3 3.5 4

2
—alpha

Fig.1. Q(a) for C107

We see that, heuristically, we might expect the difference in yield between
polynomials with values of a at the extremes of the practical range to be as
much as a factor of 2. This would be a significant increase.



4.4 Partial Yield as a Function of o

Let Y7 be the number of partially smooth f values on I'. Again, we approximate
Y; by examining the partial yield in intervals along I". Let ¢1(y;) be the number
of partially smooth f-values on I' with y < y;. Clearly

K-1

Yr= Y (ti(yir1) — t1 (i) (11)

i=0
For each large prime p, let g;, = g; —logp = logS1 + ih + a — logp, and
Vip = ip/log B. Where necessary we indicate the dependence on a by writing
9ip(a) and v; ,(a). Then

hlyi) =)~ Y 2 (4 /p) — ti/p))

B1<p<Baz
q log g;, p(vip —1
s (1= 28R () + (1 e =)
By1<p<Bs p g 9i,p
¢ cxloglogB
14+ —4+ —— 12
% ( Tt log B ’ (12)

which, with (11) gives an approximation to Yy (see [3] p 52) .
We are interested in the relative increase in p-yield as a function of «, that
is, the ratio
Yi(a)
Yy (0)

Calculating (13) directly is time-consuming. Since we are interested only in
checking that practical changes in « can bring significant increases in yield,
we instead obtain upper and lower bounds on (13) in intervals along f. The
bounds suffice to show a significant increase in yield. For i = 1...K — 1 let
Y7 () = t1(yir1) — t1(y:) be the partial yield of f in the i-th interval only. We
bound

Yyi(a)

Rife) = Y%,:(0)

(13)

fori=1...K —1.
Let
LP ={p:pprime, B; <p< By, (A/p) =1},

and let p;,p2 be the minimum and maximum elements (respectively) in LP.
Then

9:,1(0) =logz; + ih + a — logps, and
gi2(a) =logz; +ih+ a —logp
are the minimum and maximum values (respectively) of g; , on (z;,z;41). Also,
v;,1(@) = gi1(a)/log B, and
vi2(a) = gi2(a)/log B



are the minimum and maximum values (respectively) of v; , on (z;, Z;41). Finally,
let

£ila) = 2 (1= 18020 (0 0)) + (1 -y 2221,
t) = 2 (1= I (g @) + (1) MDD,
Then

Vii(a) < (zit1 — i) - [LP| - Us(e).
Similarly, Yy :(a) > (xs41 — ;i) - |LP| - Li(a) . Since we are varying only «,

Li(a) Ui(a)
< Ri(a) < . (14)
Ui(0) ' L;(0)
To calculate R;(a) we use the following additional parameters from [9].
C87 C97 | C105 | C106 C107
Bi| 1.0-10° |10-10°|23 - 10°|27 - 10°|27.2 - 10°
B»|2.346 - 10%(24 - 10°(30 - 10°(30 - 10°| 30 - 107
Table 3. Large prime bounds
We give values of the bounds on R;(a) evaluated at o = —4, for several 4, in
Table 4.
Li(—4) Ui(—4)
i) WD) cs7 | €97 | C105 | C106 | C107
= 0.64,4.42|10.61,4.39(1.52,1.93|1.51,1.93(1.54,1.92
i=25  |0.69,4.98/0.65,4.82|1.62,2.05|1,62,2.06|1.62, 2.05
1 =50 0.72,5.36/0.68,5.18(1.72,2.18|1.72,2.20(1.72,2.18
i=75  |0.75,5.74]0.71,5.53|1.81, 2.29(1.83,2.321.81, 2.30
2 =99 0.78,5.97(0.73, 5.85|1.87,2.40| 1.88, 2.42 (1.90, 2.40

Table 4. Upper and lower bounds on R;(—4)

The values for C87 and C97 are inconclusive, but the values for C105, C106
and C107 (in particular the lower bounds) are useful. We conclude that for
sufficiently large integers, practical changes in a might bring significant increases
in the partial yield.



4.5 Partial-partial Yield as a Function of «
Let Z; be the number of pp-smooth f values on I'. Let t2(y;) be the number of
pp-smooth f-values on I' with y < y;. Then

K-1

Zr = (ta(yis1) — ta(ws)). (15)
i=0
For the large prime pair {p,q} let gipq = gi(a) — logp — logq and v;p, =
9i.pq/ log B. Then, assuming that the appearance of p and ¢ in the factorisations
of f-values is independent,

to(yiv1) —ta(ys) & Y 2 (t(yi+1/pa) — t(yi/Pa))

{p,q}eLP
4 log g, P(Vipg — 1)
R (Tip1 — ) E — (1 "o é)q> (p(vi,pq) +(1-7) I_)q
(paleLP pq g 9i,pq
¢ cloglogB
1+ =4+ ——. 1
x ( + z + log B (16)

Equation (15) and approximation (16) give an approximation to Zy.

Again we present bounds on the relative increase in Zy in intervals along I,
as a varies in the practical range. Let Zy; = t2(yiy1) — t2(y;) be the pp-yield of
f in the i-th interval, and let

Zs.i(a)
Tl(a) = : .
Z1,i(0)
We calculate bounds on T; for ¢+ = 1... K — 1 by repeating the calculations of

the previous section. Thus, let p1, p2 and ps, ps be the two least and two greatest
elements (respectively) of LP. Let

giji(@) =logz; + a —logps — log pa,
9i2(0) =logz; + o —logpy — logpa,

)
v;,1(@) = ¢5,1(a)/log B, and
Vi, 2 (a) = gi,z(a)/log B.
Then if
_ 4 log g »(a) , ~Pig(a) = 1) N
cito) = o (1= B2 (a0 +.1 ) Hriale) =) ). and
_ 4 log gi,1 (@) , _ Pia(a) —1)
the) = - (1= B0 ) () + (1= 2210 22
we have
Li(a) Ui(a)
U:(0) < Ti(a) < Z:0)" (17)

Table 5 contains values of the bounds on T;(—4) given by (17), for several i.

The results for C87 and C97 are inconclusive, whilst those for C105, C106 and
C107 are useful. We conclude again, that for sufficiently large integers, practical
changes in a might bring significant increases in the pp-yield.
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Li(=) Ui(-0)
A, U et C97 | C105 | Cl06 | C107

=1 0.25,11.60(0.23,11.53(1.26, 2.02|1.26, 2.02|1.33, 2.07
1 =25 0.25,12.32|0.23,12.04(1.33, 2.12|1.33, 2.13|1.40, 2.19
1 =250 0.26,13.13|0.24, 13.00(1.40, 2.26|1.41, 2.27|1.45, 2.28
1 =175 0.26,13.68|0.24, 13.64(1.46, 2.36|1.47, 2.38|1.51, 2.38
1 =99 0.27,14.36|0.25, 14.24(1.51, 2.47|1.53, 2.50|1.56, 2.46

Table 5. Upper and lower bounds on T;(—4)

Conclusion

We have given necessary conditions on the existence of roots mod p for quadratic
NF'S polynomials f. Using the measure a capturing these conditions and adapted
from the MPQS calculations in [3], we are able to quantify the extent to which
these conditions may affect the yield and incomplete yield of f. We conclude
that varying a within practically attainable values can bring significant changes
in the yield of smooth values of quadratic number field sieve polynomials.
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