
E�ective Scheduling in a Mixed Parallel and Sequential
Computing Environment

B. B. Zhou, X. Qu and R. P. Brent
Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Abstract
In this paper we describe a two-level scheduling

scheme for mixed parallel and sequential workloads on
scalable parallel machines. The design of this schedul-
ing system is based on two principles, that is, parallel
programs should be scheduled in a coordinated manner
so that they will not severely interfere with each other
and the performance for parallel computing becomes
predictable, and parallel programs may time-share re-
sources with sequential programs so that the e�ciency
of processor utilisation can greatly be enhanced and
good response to interactive clients can be maintained.
We also discuss the organisation of a registration of-
�ce through which the two-level scheduling is realised.

1 Introduction
The trend of parallel computer developments is to-

wards networks of workstations [2], or scalable parallel
systems [1]. In this type of system each processor, hav-
ing a high-speed processing element, a large-size mem-
ory space and full functionality of a standard operat-
ing system, can operate as a stand-alone workstation
for sequential computing. Interconnected by a high-
bandwidth and low-latency network, the processors
can also be used for parallel computing. Therefore,
the system actually provides a mixed parallel and se-
quential computing environment. To e�ciently utilise
the system resources, it is very important to design an
e�ective scheduling algorithm for mixed parallel and
sequential workloads.

There exist many scheduling schemes for parallel
machines. The simplest and most commonly used
method is batch job system. This system only allows
one parallel programs running at a time. Once a par-
allel job enters the service, it will continuously be ser-
viced until �nished and all other parallel jobs have to
wait in a batch queue outside of the system. If the
number of parallel jobs waiting in the batch queue
is large, however, it is likely that short jobs may be
blocked by several longer ones. In general batch sys-

tems are not user-friendly and the resources may not
be used e�ciently.

To solve problems encountered by the simple
batch scheme, multiprogramming should be consid-
ered. Multiprogramming on parallel systems is much
more complicated than that on sequential machines.
We need to consider the problem of time-sharing, that
is, the problem of interactive use of processors by
many jobs simultaneously. We should also consider
the problem of space-sharing, that is, the problem of
static/dynamic location and allocation of processors
to di�erent jobs. In the following discussion we mainly
discuss the issue of time-sharing. However, we must
stress that an e�ective resource management system
which addresses both time-sharing and space-sharing
needs to be studied to solve the overall scheduling
problem. The discussion of this type of management
system is beyond the scope of this paper.

Many scheduling schemes for time-sharing of a par-
allel system have been proposed in the literature.
They may be classi�ed into two basic types. The �rst
one is local scheduling. With local scheduling there
is only a single queue in each processor. Except for
higher (or lower) priorities being given, processes as-
sociated with parallel jobs are not distinguished from
those associated with sequential jobs. The method
simply relies on existing local schedulers on each pro-
cessor to schedule parallel jobs. Thus there is no guar-
antee that the processes belonging to the same par-
allel jobs can be executed at the same time across
the processors. When many parallel programs are
simultaneously running on a system, processes be-
longing to di�erent jobs will compete for resources
with each other and then some processes have to be
blocked when communicating or synchronising with
non-scheduled processes on other processors. This ef-
fect can lead to a great degradation in overall system
performance [3, 4, 7, 9, 11].

One method to alleviate this problem is to use two-



new Jps

new Jss
Qs

Qp

CPU

each scheduling slot
one Jp dispatched

Jp time-sharing
with Js

Figure 1: A two-level scheduling scheme.

phase blocking [16, 6] which is also called implicit
coscheduling in [6]. In this method a process waiting
for communication spins for some time in the hope
that the process to be communicated with on the
other processor is also scheduled, and then blocks if
the response is still not received. The reported exper-
imental results show that for parallel workloads this
scheduling scheme performs better than the simple lo-
cal scheduling. However, one problem associated with
local scheduling is that the scheduling of parallel jobs
is independent of their service times. Thus the per-
formance is unpredictable. If the system is busy, for
example, short jobs may not be completed quickly.

The second type of scheduling scheme is Coschedul-
ing [13] (or gang scheduling [7]), which may be a bet-
ter scheme in adopting short-job-�rst policy. Using
this method a number of parallel programs is allowed
to enter a service queue (as long as the system has
enough memory space). The processes of the same
job will run simultaneously across the processors for
only certain amount of time which is called scheduling
slot. When a scheduling slot is ended, the processors
will context-switch at the same time to give the ser-
vice to processes of another job. All programs in the
service queue take turns to receive the service in a
coordinated manner across the processors. Thus pro-
grams never interfere with each other and short jobs
are likely to be completed more quickly.

There are also certain drawbacks associated with
coscheduling. A signi�cant one is that it is designed
only for parallel workloads. In each scheduling slot
there is only one process running on each processor
and the process simply does busy-waiting during com-
munication/synchronisation. This will waste proces-

sor cycles and decrease the e�ciency of processor util-
isation.

It can be seen from the above discussion that both
local scheduling and coscheduling have problems in
scheduling mixed parallel and sequential workloads on
scalable parallel computers. In this paper we then de-
scribe a new scheduling system. The system design is
based on two principles, that is, �rst parallel work-
loads should be scheduled in a coordinated way so
that they will not severely interfere with each other
and the performance of parallel computing becomes
predictable, and second both parallel and sequential
workloads may time-share resources on each proces-
sor so that the e�ciency of processor utilisation can
be enhanced and good response to interactive clients
can be maintained on each processor.

In our new system parallel workloads are scheduled
at two di�erent levels. At the �rst, or global level they
are coscheduled across the processors, while at the
second, or local level processes associated with paral-
lel jobs may then time-share resources with sequential
processes on each processor, which is controlled by a
local scheduler. Thus our scheduling scheme is actu-
ally a combination of local scheduling and coschedul-
ing.

The big question is how to realise this kind of two-
level scheduling. To achieve this we designed a reg-
istration o�ce which is attached to each processor to
coordinate parallel workloads and to balance the re-
source utilisation for parallel and sequential jobs. This
registration o�ce is constructed on top of the conven-
tional queueing system. Thus our scheduling system
for mixed parallel and sequential workloads can be
constructed without signi�cant modi�cations to the



a scheduling slot

Jp runningJs runningJp running Js running Jp running

Jp dispatched
from Qp

Jp awakened
to Qs

Jp awakened
to Qs

Jp cycled
to Qp

Jp blocked Jp blocked

Figure 2: The normal situation in a scheduling slot.

conventional operating system adopted on each pro-
cessor.

The paper is organised as follows. In Section 2 we
describe the basic structure of our two-level schedul-
ing system. We then introduce the organisation of
the registration o�ce and show how parallel workloads
can be serviced coordinately across the processors in
Section 3. In the section we also discuss a loose gang
scheduling technique. Using this technique we can alle-
viate the disadvantages of conventional gang schedul-
ing which uses a centralised controller. The conclusion
is given in Section 4.

To simplify the description, in this paper processes
associated with parallel jobs are called parallel pro-
cesses to distinguish them from those sequential pro-
cesses associated with sequential jobs.

2 The Basic Two-Level Structure
The basic structure of the two-level scheduling

scheme on each processor is depicted in Fig. 1. This
system consists of two queues, a queue Qp at the �rst
level and a conventional, or sequential queue Qs at the
second level. Because it is used to coordinate paral-
lel workloads across the processors, Qp is then called
parallel queue in the following discussion. While new
sequential processes directly come to the sequential
queue, all parallel processes will �rst enter the par-
allel queue and then be dispatched to the sequential
queue before receiving a service. Since coscheduling
is applied, each time only one parallel process can be
dispatched from the parallel queue and thus at any
time instant there may only be one parallel process
in the sequential queue. If parallel processes associ-
ated with the same job are placed at the same place
in each parallel queue across the processors and the
same scheduling algorithm is applied, they can then
be dispatched at the same time.

After entering the sequential queue the parallel pro-

cess on each processor may time-share the service
with sequential processes. Unlike the conventional
coscheduling parallel processes can be blocked during
communication/synchronisation and then sequential
processes can be serviced, as shown in Fig. 2. When
the parallel process is awakened, instead of entering
the parallel queue it goes to the sequential queue so
that it can continuously be serviced within its own
scheduling slot. In each scheduling slot the parallel
process may be blocked several times. By the end
of the scheduling slot it will be cycled to the parallel
queue and wait there for the next service. This normal
situation in a scheduling slot is depicted in Fig. 2.

To ensure the e�ciency of parallel computing across
the processors implicit coscheduling should be applied
at the local level.

Since parallel processes may time-share resources
with sequential processes, coordination of parallel
workloads becomes more complicated. Assume that
the parallel queue is constructed as a conventional
queue, that is, parallel processes will be detached from
the queue after being dispatched. To time-share re-
sources with sequential processes, parallel processes
will be either in running state, or ready and blocked
states just like sequential processes. The situation in
Fig. 2 only shows that the parallel process is in run-
ning state at the end of its scheduling slot. Then the
process can easily be found and cycled back to the par-
allel queue. When a parallel process is still in either
ready, or blocked state at the end of the scheduling
slot, however, the system has to look for it from the
queues for processes in ready and blocked states. Oth-
erwise, the system will lose control to this process and
parallel workloads cannot properly be coordinated. In
the next section we introduce a structure of registra-
tion o�ce for parallel queue Qp to avoid complicated
procedures for searching parallel processes.



servant

process 2process 1 process 3 process 4

IN

algorithm timer

registration o�ce

manager

node 1 node 2 node 3 node 4H T

IN OUT IN

process dispatched

P

Figure 3: The organisation of a registration o�ce.

3 The Organisation of a Registration
O�ce

To avoid complicated procedures for searching par-
allel processes, we introduce a registration o�ce which
is constructed by using a linked list as shown in Fig. 3.
When a parallel job is initiated, each associated pro-
cess will enter the local sequential queueing system the
same way as sequential processes on the correspond-
ing processor. Just like sequential processes, parallel
processes can be either in running state, or in ready
state requesting for service, or, in blocked state dur-
ing communication/synchronisation. However, every
parallel process has to be registered in the registration
o�ce, that is, on each processor the linked list will be
extended with a new node which has a pointer point-
ing to the process just being initiated. Similarly, when
a parallel job is terminated, it has to check out from
the o�ce, that is, the corresponding node on each pro-
cessor will be deleted from the linked list.

In certain special cases, parallel processes may be
assigned a very high priority so that they can occupy
the whole time slots allocated to them. In those cases
the execution of sequential workloads can be seriously
deteriorated. To alleviate this problem we may in-
troduce certain time slots which are dedicated to se-
quential jobs only. This can be done by introducing
dummy nodes in the linked list. A dummy node is the
same type of nodes in a linked list except its pointer
points to NULL, the constant zero, instead of a real

parallel process. It seems that there is a dummy paral-
lel process associated with that node. When a service
is given to that dummy parallel process, the whole
scheduling slot will be dedicated to sequential pro-
cesses.

There is a servant working in the o�ce. When
the servant comes to a place, or a node in the linked
list, the process associated with that node will receive
a service, or be dispatched. When a process is dis-
patched, it will be marked out. Other processes which
are not receiving services will be marked in. In prac-
tice a process may be blocked if it is marked in. There-
fore, a parallel process can come out of the blocked
status only if it is ready for service (controlled by the
local scheduler) and the event out occurs (controlled
by the top level scheduler). By letting only one par-
allel process be marked out on each processor at any
time, we can guarantee that only one parallel process
time-shares resources with sequential processes in each
scheduling slot.

When a scheduling slot is ended for the current par-
allel process, the servant will move to a new node. The
parallel process associated with that node can then
be serviced next. However, the movement of the ser-
vant is totally controlled by an o�ce manager which
has a timer to determine when the servant is to move
and an algorithm to determine which node the ser-
vant is to move to. The algorithm can be simple ones
such as the conventional round-robin. (To obtain a



high system throughput, however, other more sophis-
ticated scheduling schemes may also be considered.)
The timer is to ensure that processes can obtain their
allocated service times in each scheduling round.

The use of registration o�ces is similar to that of
the two-dimensional matrix adopted in the conven-
tional coscheduling. Each row of the matrix corre-
sponds to a scheduling slot and each column to a pro-
cessor. The coscheduling is then controlled based on
that matrix. It is easy to see that the linked list on
each processor plays the same role as a row of that ma-
trix in coscheduling parallel processes. However, the
key di�erence is that our two-level scheduling scheme
allows both parallel and sequential jobs to be executed
simultaneously.

The conventional gang scheduler is centralised. The
system has a central controller. At the end of each
scheduling slot the controller broadcasts a message to
all processors. The message contains the information
about which parallel workload will receive a service
next. The centralised system is easy to implement,
especially when the scheduling algorithm is simple.
However, frequent signal-broadcasting for simultane-
ous context switch across the processors may degrade
the overall system performance on machines such as
networks of workstations. Because in our system there
is a registration o�ce on each processor, we can adopt
a loose gang scheduling policy to alleviate this prob-
lem.

In our system there is a global job manager. It is
used to monitor the working conditions of each proces-
sor, to locate and allocate processors, and to balance
parallel and sequential workloads. We believe that re-
sources in networks of workstations cannot e�ciently
be utilised without an e�ective global job manager.
This global job manager can also be able to broad-
cast signals for the purpose of synchronisation to co-
ordinate the execution of parallel jobs. However, the
signals need not be frequently broadcast for simulta-
neous context switch between scheduling slots across
the processors. They are sent only once after each
scheduling round, or even many scheduling rounds to
adjust the potential skew of corresponding schedul-
ing slots across the processors (or simply time skew)
caused by using local job managers on each processor.

There is a local job manager on each processor. It is
used to monitor and report to the global job manager
the working conditions on that processor. It also takes
orders from the global job manager to properly set up
its registration o�ce and to coordinate the execution
of parallel jobs with other processors.

It is easy to see that with help of the global job

manager the e�ective coscheduling is quaranteed if the
local job managers of all the coordinated processors
adopt the same scheduling algorithm. With the collab-
oration of the global and local job managers the sys-
tem can then work correctly and e�ectively. A poten-
tial disadvantage of the loose gang scheduling is that
there is an additional cost for executing the coschedul-
ing algorithm on each processor. However, in practice
scheduling slots are usually in order of seconds. This
extra cost for running a coscheduling process will be
relatively very small.

It should be noted that the registration o�ce can
easily be extended to having multiple lists. For exam-
ple, parallel workloads can be classi�ed based on their
required service times. (They can also be grouped
into di�erent classes according to the number of pro-
cessors they require [15].) Processes belonging to the
same class will be linked to the same list. The di�er-
ent length of scheduling slots may also be allocated to
processes of di�erent classes. By using multiple lists
plus a proper scheduling algorithm the system perfor-
mance can greatly be enhanced.

Multiple servants can also be employed to work in
each registration o�ce. To activate, or dispatch a par-
allel process is just to mark it out in our coschedul-
ing system. If multiple servants are used, therefore,
several parallel processes can time-share the same
scheduling slots if necessary.

4 Conclusions
In this paper we �rst presented a two-level schedul-

ing scheme for mixed parallel and sequential workloads
on scalable parallel machines, or networks of worksta-
tions. The design of this scheduling system is based on
two basic principles, that is, parallel programs should
be coscheduled so that they will not severely interfere
with each other and their performance will become de-
terministic, and parallel programs can time-share re-
sources with sequential programs so that the e�ciency
of processor utilisation can greatly be enhanced and
good response to interactive clients can be maintained.

Our objective is achieved by introducing a concept
of registration o�ce which coordinates parallel work-
loads across the processors and allows the execution of
parallel and sequential workloads simultaneously. Our
scheme is also simple to implement because it is built
on top of the conventional scheduling system so that
it is not required to signi�cantly modify the conven-
tional operating system adopted on each processor of
a given system.

We also introduced a loose gang scheduling scheme
to coschedule parallel jobs across the processors.
This scheme requires both global and local job man-



agers. The coscheduling is mainly controlled by local
job managers on each processor, so frequent signal-
broadcasting for simultaneous context switch across
the processors is avoided. There is only a bit extra
work for global job manager to adjust potential time
skew. Using a global job manager we believe that
the system can work more e�ciently than those using
only local schedulers. With a local job manager on
each processor the system will become more 
exible
and more e�ective in handling more complicated situ-
ations than those adopting only the conventional gang
scheduling policy.

The experiment is currently undertaken on the Fu-
jitsu AP1000+, a distributed memory machine located
at the Australian National University. It must be
stressed that to make both parallel and sequential jobs
to be executed e�ectively on a parallel system is not a
simple task. A lot of problems must be solved through
both theoretical and experimental studies which will
be our future work.

References
[1] T. Agerwala, J. L. Martin, J. H. Mirza, D. C.

Sadler, D. M. Dias and M. Snir, SP2 system ar-
chitecture, IBM Systems Journal, 34(2), 1995.

[2] T. E. Anderson, D. E. Culler, D. A. Patterson
and the NOW team, A case for NOW (networks
of workstations), IEEE Micro, 15(1), Feb. 1995,
pp.54-64.

[3] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L.
T. Liu, T. E. Anderson and D. A. Patterson,
The interaction of parallel and sequential work-
loads on a network of workstations, Proceedings
of ACM SIGMETRICS'95/PERFORMANCE'95
Joint International Conference on Measurement
and Modeling of Computer Systems, May 1995,
pp.267-278.

[4] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc and
E. Markatos, Multiprogramming on multiproces-
sors, Proceedings of the Third IEEE Symposium
on Parallel and Distributed Processing, Dec. 1991,
pp.590-597.

[5] H. M. Deitel, An Introduction to Operating Sys-
tems, 2nd ed., Addison-Wesley, Massachusetts,
1990.

[6] A. C. Dusseau, R. H. Arpaci and D. E. Culler,
E�ective distributed scheduling of parallel work-
loads, Proceedings of ACM SIGMETRICS'96 In-
ternational Conference, 1996.

[7] D. G. Feitelson and L. Rudolph, Gang scheduling
performance bene�ts for �ne-grained synchroni-
sation, Journal of Parallel and Distributed Com-
puting, 16(4), Dec. 1992, pp.306-318.

[8] D. G. Feitelson and L Rudolph, Distributed hier-
archical control for parallel processing, Computer,
23(5), May 1990, pp.65-77.

[9] A. Gupta, A. Tucker and S. Urushibara, The
impact of operating system scheduling policies
and synchronisation methods on the performance
of parallel applications. Proceedings of the 1991
ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, May
1991, pp.120-131.

[10] L. Lamport, concurrent reading and writing of
clocks, ACM Transactions on Computer Systems,
8(4), April 1990, pp.305-310.

[11] S.-P. Lo and V. D. Gligor, A comparative analysis
of multiprocessor scheduling algorithms, Proceed-
ings of the 7th International Conference on Dis-
tributed Computing Systems, Sept. 1987, pp.205-
222.

[12] J. C. Mogul and A. Borg, The e�ect of context
switches on cache performance, Proceedings of 4th
International Conference on Architect. Support
for Prog. Lang. and Operating Systems Apr. 1991,
pp.75-84.

[13] J. K. Ousterhout, Scheduling techniques for con-
current systems, Proceedings of Third Interna-
tional Conference on Distributed Computing Sys-
tems, May 1982, pp.20-30.

[14] A. Tucker and A. Gupta, Process control and
scheduling issues for multiprogrammed shared-
memory multiprocessors, Proceedings of the 12th
Symposium on Operating Systems Principles,
Litch�eld, AZ, Dec 1989, pp.159-166.

[15] F. Wang, H. Franke, M. Papaefthymiou, P. Pat-
tnaik, L. Rudolph and M. S. Squillante, A gang
scheduling design for multiprogrammed paral-
lel computing environments, 2nd Workshop on
Job Scheduling Strategies for Parallel Processing,
April 16, 1996, Honolulu, Hawaii.

[16] J. Zahorjan and E. D. Lazowska, Spinning ver-
sus blocking in parallel systems with uncertainty,
Proceedings of the IFIP International Seminar on
Performance of Distributed and Parallel Systems,
Dec. 1988, pp.455-472.


