Twenty years’ analysis of the
Binary Euclidean Algorithm
Richard P. Brent

1 Introduction

The real significance of Quicksort is its excellent average case behaviour. A large
part of Tony Hoare’s seminal 1962 paper [7] is devoted to a thorough average
case analysis of quicksort. The formal correctness proofs appeared later, in [6, 8].
When invited to write a paper for this celebration of Tony Hoare’s contributions
to Computing Science, the choice of topic was easy. Given Tony’s interest in
Euclidean algorithms and average case analysis, my conclusion was that I should
consider the average case behaviour of Euclidean algorithms. Fortunately, thanks
to Don Knuth and Brigitte Vallée, I had something new to say about the binary
Euclidean algorithm.

1.1 Outline

The binary Euclidean algorithm is a variant of the classical Euclidean algorithm.
It avoids divisions and multiplications, except by powers of two, so is potentially
faster than the classical algorithm on a binary machine. In §2 we define the binary
Euclidean algorithm and mention some of its properties, history and generalisa-
tions. In §3 we outline the heuristic model which was first presented in my 1976
paper [1]. Some of the results of that paper are mentioned (and simplified) in §4.

Average case analysis of the binary Euclidean algorithm lay dormant from 1976
until Vallée’s recent analysis [12, 13] using some nontrivial functional analysis. In
§85—6 we discuss Vallée’s results and conjectures. In §7 we give some numerical
evidence for one of her conjectures. Some connections between Vallée’s results and
our earlier results are given in §8.

Finally, in §9 we take the opportunity to point out an error in the 1976 pa-
per [1]. Although the error is theoretically significant and (when pointed out)
rather obvious, it appears that no one noticed it until recently. The manner of its
discovery is discussed in §9.

Due to space limitations, much had to be omitted from this chapter. For a
more leisurely exposition, including proofs of Theorems 1-2 below, see [2].



42 The Binary Euclidean Algorithm

1.2 Notation

lg(z) denotes log,(x). N,n,a,k,u,v are positive integers. Valy(u) denotes the
dyadic valuation of the positive integer u, i.e. the greatest integer j such that 27 | u
(this is just the number of trailing zero bits in the binary representation of ).
f(x) is usually a probability density, and F'(x) is the corresponding probability
distribution.

A word of warning: Brent [1], Knuth [9], and Vallée [11, 12, 13] use incompat-
ible notation, so we can not be consistent with all of them. Knuth uses G(z) for
our F(z) = 1 — F(z), and Vallée sometimes interchanges our f and g.

2 The Binary Euclidean Algorithm

The idea of the binary Euclidean algorithm is to avoid the “division” operation
r < m mod n of the classical algorithm, but retain O(log N) worst (and average)
case.

We assume that the algorithm is implemented on a binary computer so division
by a power of two is easy. In particular, we assume that the “shift right until odd”
operation

U u/2V"‘12 (u)

or equivalently
while even(u) do u + u/2

can be performed in constant time, although time O(Vala(u)) would be sufficient.

2.1 Definitions of the Binary Euclidean Algorithm

There are several almost equivalent ways to define the algorithm. It is easy to take
account of the largest power of two dividing the inputs, using the relation

GCD(U,U) — 2min(Va12(u),Va12(v)) GCD (u/2Va12(u)’ ,U/2Va12('u)) ,

so for simplicity we assume that u and v are odd positive integers. Following is a
simplified version of the algorithm given in Knuth [9, §4.5.2].
Algorithm B

Bl. t + |u —v];
if ¢ = 0 terminate with result u

B2. t « t/2V2l()

B3. if u > v then u + t else v « t;
go to B1.



Richard P. Brent 43

2.2 History

The binary Euclidean algorithm is usually attributed to Silver and Terzian (unpub-
lished, 1962) and independently Stein (1961-1967). However, it seems to go back
much further. Knuth [9, §4.5.2] quotes a translation of a first-century AD Chinese
text Chiu Chang Suan Shu on how to reduce a fraction to lowest terms:

If halving is possible, take half.

Otherwise write down the denominator and the numerator,
and subtract the smaller from the greater.

Repeat until both numbers are equal.

Simplify with this common value.

This is essentially Algorithm B ! Hence, the binary algorithm is almost as old as
the classical Euclidean algorithm.

3 A Heuristic Continuous Model

To analyse the expected behaviour of Algorithm B, we can follow what Gauss did
for the classical algorithm. This was first attempted in my 1976 paper [1]. There
is a summary in Knuth (Vol. 2, third edition, §4.5.2).

Assume that the initial inputs ug, vo to Algorithm B are uniformly and inde-
pendently distributed in (0, N), apart from the restriction that they are odd. Let
(un,vn) be the value of (u,v) after n iterations of step B3. Let

_ min(uy,vy)
~ max(un,vn)

and let F,(z) be the probability distribution function of z, (in the limit as
N = 00). Thus Fy(z) =z for z € [0,1].

3.1 A Plausible Assumption

We make the assumption that Valy(t) takes the value k with probability 2% at step
B2. The assumption is plausible because Vala(t) at step B2 depends on the least
significant bits of u and v, whereas the comparison at step B3 depends on the most
significant bits, so one would expect the steps to be (almost) independent when N
is large. (Vallée does not need to make this assumption. Her results are mentioned
in §85-6. They show that the assumption is correct in the limit as N — oc.)

3.2 The Recurrence for F),

Consider the effect of steps B2 and B3. We can assume that initially v > v, so
t =u —w. If Valy(t) = k then X = v/u is transformed to

X — min (LY 2ky i (L 2k X
N 2%y Tu—v) 2kX '1-X)
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It follows that X’ < z iff

1 1
X< or X>— .
ST1+27z O T T2k

Thus, the recurrence for F,,(z) = 1 — F,(z) is

=T (o) P ()

E>1

and Fo(z) =1 — gz for z € [0, 1].

3.3 The Recurrence for f,

Differentiating the recurrence for F,, we obtain (formally) a recurrence for the
~1
probability density fn(z) = F.(z) = —F,(z):

1\’ T 1\’ 1
o= 3 (1) 2 (2) 5 () e (1)
i1 T+ 2 T+ 2 s 1+ 2Fx 1+ 2Fx
It was noted in [1, §5] that the coefficients in this recurrence are positive, and that
the recurrence preserves the L; norm of positive functions.

The recurrence for f, may be written as f,+1 = Baf,, where the operator Bs
is the case s = 2 of a more general operator B; which is defined in §5.3.

4 Conjectured and Empirical Results

In my 1976 paper [1] I gave numerical and analytic evidence that F,(x) converges
to a limiting distribution F(z) as n — oo, and that f,(x) converges to the cor-
responding probability density f(z) = F'(x) (note that f = Baf so f is a “fixed
point” of the operator Bz).

Assuming the existence of F, it is shown in [1] that the expected number of
iterations of Algorithm Bis ~ K1lg N as N — oo, where K = 0.705. .. is a constant
given by

K =In2/E.. ,

and

HE 1—27k 1
Em:1n2+/0 <l§(l+(2k—l)m>_2(l+$)) F(z) dx .

4.1 A Simplification
We can simplify the expression for K to obtain

K =2/b, (2)
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where
1
b=2—/ lg(1 — z)f(z) d=z . (3)
0
Using integration by parts we obtain an equivalent expression
1 ['1-F()
b=2+— —— 2 dx. 4
T2, 1=2 )

My direct proof of (3)—(4) is given in Knuth [9, §4.5.2].

5 Another Formulation — Algorithm V

It will be useful to rewrite Algorithm B in the following equivalent form (using
pseudo-Pascal):

Algorithm V { Assume u < v }
while u # v do
begin
while u < v do
begin
j < Vala(v — u);
v+ (v—u)/27;
end;
U v;
end;
return u.

5.1 Continued Fractions

Vallée [13] shows a connection between Algorithm V and continued fractions of a
certain form:

u

- = ay +2% /as + 2%/ ... [(a, + 2F) ,

where a; is odd, k; > 0, and 0 < a; < 2% (excluding the trivial case u = v = 1).

5.2 Some Details of Vallée’s Results

Algorithm V has two nested loops. The outer loop exchanges u and v. Between
two exchanges, the inner loop performs a sequence of subtractions and shifts which
can be written as

v o — u+ 2b1v1;

11 = u+ 2b2’l)2;

VUm—1 —> u+2b"‘1)m
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with v, < u.
If zp = u/v at the beginning of an inner loop, the effect of the inner loop
followed by an exchange is the rational z; = v, /u defined by

1

To= ——
a+ 2kx,

y

where a is an odd integer given by @ = 14201 4 2b1+b2 ... 4 9b1+-4bm-1 and the
exponent k is given by k = by + -+ + by,. Thus, the rational u/v, for 1 < u < v,
has a unique binary continued fraction erpansion of the form

u
E=1ﬁh+2“ﬁm+2“/~-+2“*/wT+2“)

Vallée studies three parameters related to this continued fraction

1. The height or the depth (i.e. the number of exchanges) 7.

2. The total number of subtractions necessary to obtain the expansion; if p(a)
denotes the number of “1”s in the binary expansion of the integer a, it is equal
to p(a1) + p(az) + - - - + p(a,). (Equivalently, the number of times step B2 of
Algorithm B is performed.)

3. The total number of single-bit shifts, i.e. the sum of exponents of 2 in the
numerators of the binary continued fraction, ky + - - + k.

Her results give the average values of these three parameters: they are asymptoti-
cally A;In N for certain computable constants A, Ay, As.
5.3 Some Useful Operators

Operators Bs, Us, LN{S, Vs, useful in the analysis of the binary Euclidean algorithm,
are defined by

ute) =X (15 )/ (59m ) ®)

k>1
aine@ = (1) win (1), ©)
By =Us +Us, (7)
e =x % () f(59) ®

In these definitions s is a complex variable, and the operators are called Ruelle
operators [10]. They are linear operators acting on certain function spaces.

The case s = 2 is of particular interest. By encodes the effect of one iteration
of the inner “while” loop of Algorithm V, and Vs, encodes the effect of one iteration
of the outer “while” loop. See Vallée [12, 13] for a more detailed explanation.
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5.4 History and Notation

Ba (denoted T') was introduced in my 1976 paper [1], and was generalised to B, by
Vallée. V,; was introduced by Vallée [12, 13]. We shall call

e B, (or sometimes just Bs) the binary Fuclidean operator and

e V, (or sometimes just Vo) Vallée’s operator.

5.5 Relation Between the Operators

The binary Euclidean operator and Vallée’s operator are closely related, as the
following results show. Proofs may be found in [2].

Lemmal V, =V, U, +U,. o

Theorem 1 (V, —T)U; =V:(B, — 1). O

5.6 Algorithmic Interpretation

Algorithm V gives an interpretation of Lemma 1 in the case s = 2. If the input
density of x = u/v is f(z) then execution of the inner “while” loop followed by the
exchange of u and v transforms this density to Va[f](z). However, by considering
the first iteration of this loop (followed by the exchange if the loop terminates) we
see that the transformed density is given by

Valls[f](z) + Uslf](2),

where the first term arises if there is no exchange, and the second arises if an
exchange occurs.

5.7 Fixed Points

It follows immediately from Theorem 1 that
g= Z/{zf = (VQ —I)g = VQ(BQ —I)f .

Thus, if f is a fixed point of the operator By, then g = Us f is a fixed point of the
operator Va. From a result of Vallée [13, Prop. 4] we know that Vs, acting on a
certain Hardy space H2(D), has a unique positive dominant simple eigenvalue 1,
so g must be (a constant multiple of) the corresponding eigenfunction (provided
g € H*(D)).
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6 A Result of Vallée

Recall the constant K defined in §4. Using her operator V,, Vallée [13] recently
proved that

21n 2 1

K = 2~ lsalg (—) 9

29 2 a ©)
a>0

where g is a nonzero fixed point of Vs, (i.e. g = Vag #0) and G(z) = fow g(t)dt .
Because Vallée’s operator V, can be proved to have nice spectral properties,
the existence and uniqueness (up to scaling) of g can be proved rigorously.

6.1 A Conjecture of Vallée

Let A = f(1), where f is the limiting probability density (conjectured to exist)
as in §4. Vallée (see Knuth [9, §4.5.2(61)]) conjectured that A\/b = 2In2/72%, or
equivalently that

_4ln2
o)

Vallée proved the conjecture under the assumption that the operator B, satisfies a
certain spectral condition which is known to be satisfied by V.

(10)

7 Numerical Results

Using an improvement of the “discretization method” of my 1976 paper [1], with
Romberg extrapolation and the equivalent of more than 50 decimal places (50D)
working precision, we computed the limiting probability distribution F', then K
(using (2) and (4)), A = f(1), and KA. The results were

K = 0.7059712461 0191639152 9314135852 8817666677
A 0.3979226811 8831664407 6707161142 6549823098
KX = 0.2809219710 9073150563 5754397987 9880385315

These are believed to be correctly rounded values.
Vallée’s conjecture (10) is that

KX=4In2/7*.

The computed value of K\ agrees with 41n2/7? to 40 decimals. Details of the
numerical computation are given in [2].

8 Some Relations Between Fixed Points

In this section we assume that f is a fixed point of the operator B2, g = Uz f as
in §5.7 is a fixed point of the operator Vs, and both f and g are analytic functions
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(not necessarily regular at z = 0). Using analyticity we extend the domains of f,
g etc to include the positive real axis (0, 4+00). Let

Fz) = /0 " F(t) dt and G(z) = /0 " o(t) dt

be the corresponding integrals. By scaling, we can assume that F'(1) =1 but then
we are not free to scale g (see (12) and (13) below).
From the definition (5) of U, we have

0= (1) 7 (19

k=1

S0, integrating with respect to z and simplifying,

Glz) = gzkﬁ (ﬁ) . (1)

Although our derivation of (11) assumes z € [0,1], we can use (11) to give an
analytic continuation of G(z). Allowing z to approach +oo, we see that there
exists limg 4o G(z) = G(+00) say, and

G(+o00) =1. (12)

From the definitions of By and U5, we have

s =200 =23 (725) /(13 - (13)

E>1

Using these results, it is easy to prove:

Theorem 2 Under the assumptions stated at the beginning of this section, the
expressions (9) and (10) are equivalent. O

Remarks. As noted in §6.1, Vallée proved (10) under an assumption about the
spectrum of B,. Our proof of Theorem 2 (given in detail in [2]) is more direct. We
are not able to prove the equivalence of (2) and (10), but (as described in §7) it
has been verified numerically to 40D.

9 Correcting an Error

In my 1976 paper I claimed that, for all n > 0 and z € (0, 1],

Fo(z) = an(z)1g(2) + Ba(2) , (14)

where a,(z) and §,(z) are analytic and regular in the disk |z| < 1. However, this
is incorrect, even in the case n = 1.

The error appeared to go unnoticed until 1997, when Knuth was revising
Volume 2 in preparation for publication of the third edition. Knuth computed the
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constant K using recurrences for the analytic functions a,(z) and B,(z), and I
computed K directly using the defining integral and recurrences for F,(z). Our
computations disagreed in the 14th decimal place ! Knuth found

K =0.70597 12461 01945 99986 - - -
but I found
K =0.70597 12461 01916 39152 --

After a flurry of emails we tracked down the error. It was found independently,
and at the same time (within 24 hours), by Flajolet and Vallée.

The source of the error is illustrated by [1, Lemma 3.1], which is wrong (and
corrected in the solution to ex. 4.5.2.29 of Knuth[9, third edition]). In order to
explain the error, we need to consider Mellin transforms (a very useful tool in
average-case analysis, see [3]).

9.1 Mellin Transforms and Mellin Inversion

The Mellin transform of a function g(x) is defined by g*(s) = fooo g(z)z*~tdz. Tt
is easy to see that, if f(z) = 45, 27%9(2*z), then the Mellin transform of f is

ﬂﬂzgfmmf®=£§%-

Under suitable conditions we can apply the Mellin inversion formula to obtain

1 c+ioco
(@ =g [ Feds.
2mi c—100
Applying these results to g(z) = 1/(1 + z), whose Mellin transform is

9*(s) =7/sinms when 0 < Rs < 1, we can express
fl@) =Y 27"/(1+2*)
E>1

as a sum of residues of

™ =%
(sinws) 25+l — 1 (15)
for Rs < 0. This gives

2 4
f(x):1+$lgm+;+mP(lga})—im2+§x3—--- ) (16)

where

P sin 2nnt

Pt)=— e
®) In2 &~ sinh(2n7?/1n 2)

(17)
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9.2 The “Wobbles” Caused by P(t)

P(t) is a very small periodic function: |P(t)] < 7.8 x 107'2 for real ¢t. In [1,
Lemma 3.1], the term zP(lgz) in (16) was omitted. Essentially, the poles of (15)
off the real axis at s = —1 £+ 2min/In2, (n = 1,2,...) were ignored.

Because of the sinh term in the denominator of (17), the residues at the non-
real poles are tiny, and numerical computations performed using single-precision
floating-point arithmetic did not reveal the error.

9.3 Details of Corrections

The function f(z) above is called Dy(z) in [1]. In (3.29) of Lemma 3.1 of that
paper, the expression for D (z) is missing the term zP(lgz).
Equation (3.8) of the paper is (correctly)

F,(z) =1+ D,(1/x) — Dp(x)

so in Corollary 3.2 the expression for Fj(x) is missing a term —zP(lg z).

The statement following Corollary 3.2, that “In principle we could obtain
Fy(z), F3(z), etc in the same way as Fy(z)” is dubious because it is not clear how
to handle the terms involving P(lg z).

Corollary 3.3, that F,y1 # F,, is probably correct, but the proof given is
incorrect because it assumes the incorrect form (14) for F,(z).

10 Conclusion and Open Problems

Since Vallée’s recent work [12, 13], analysis of the average behaviour of the binary
Euclidean algorithm has a rigorous foundation. However, some interesting open
questions remain.

For example, does the binary Euclidean operator By have a unique positive
dominant simple eigenvalue 17 Vallée [13, Prop. 4] has proved the corresponding
result for her operator Vs. Are the various expressions for K given above all prov-
ably correct (only (9) has been proved) 7 Is there an algorithm for the numerical
computation of K which is asymptotically faster than the one we used to obtain
the results of §77

In order to estimate the speed of convergence of f,, to f (assuming f exists),
we need more information on the spectrum of By. What can be proved ? Prelimi-
nary numerical results indicate that the sub-dominant eigenvalue(s) are a complex
conjugate pair: Aa = Az = 0.1735 + 0.08844, with |A2| = |A3| = 0.1948 to 4D.

It would be interesting to compute the spectra of B2 and Vs numerically, and
compare with the classical case, where the spectrum is real and the eigenvalues
appear to alternate in sign [4].

In order to give rigorous numerical bounds on the spectra of By and Vs, we
need to bound the error caused by making finite-dimensional approximations to
these operators. This may not be so difficult for V2 as for Bs.
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