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Abstract

The binary Euclidean algorithm is a variant of
the classical Euclidean algorithm. It avoids
divisions and multiplications, except by powers
of two, so is potentially faster than the classical
algorithm on a binary machine.

I will describe the binary algorithm and
consider its average case behaviour. In
particular, I will describe the recent discovery of
an error which I made in 1976, discuss some
recent results of Brigitte Vallée, and describe a
numerical computation which verifies a
conjecture of Vallée to 40 decimal places.
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Introduction — Quicksort etc

Why a paper on average-case analysis of
algorithms ?

Tony Hoare and I both have an interest in
Euclidean algorithms, and, since the publication
of his 1962 paper on Quicksort, Tony can hardly
deny an interest in the average-case analysis of
algorithms. Although Tony proved the
correctness of Quicksort in his usual thorough
and convincing manner, the real significance of
Quicksort is its excellent average case
behaviour. Tony was well aware of this: a large
part of his 1962 paper is devoted to the average
case analysis of quicksort.

Personally, I prefer Heapsort, since (unlike
Quicksort) it has guaranteed worst case time
bound O(nlogn) to sort n items. After the
Proceedings paper was written, it emerged in a
tea-room conversation that Tony was closely
involved in the discovery of Heapsort. He and
Williams were in the same room; Williams
found heapsort then Tony found a quicker sort!



The Topic - --

In any case, given Tony’s interest in average
case analysis, my conclusion was that I should
consider the average case behaviour of
Euclidean algorithms. Fortunately, thanks to
Don Knuth and Brigitte Vallée, I had
something (relatively) new to say about the
binary (not the classical) Euclidean algorithm.

Notation
lg(z) denotes logy(z).
N,n,u,v are positive integers.

Valy(u) denotes the dyadic valuation of the
positive integer u, i.e. the greatest integer j
such that 27 | u.

The Binary Euclidean Algorithm

The idea of the binary Euclidean algorithm is to
avoid the “division” operation r < m mod n of
the classical algorithm, but retain O(log N)
worst (and average) case.

We assume that the algorithm is implemented
on a binary computer so division by a power of
two is easy. In particular, we assume that the
“shift right until odd” operation

U u/2va12(“)

or equivalently
while even(u) do u + u/2

can be performed in constant time, although
time O(Vala(u)) would be sufficient.

Definition

There are several almost equivalent ways to
define the algorithm. It is easy to take account
of the largest power of two dividing the inputs,
so for simplicity we assume that v and v are odd
positive integers.

Following is a simplified version of the
algorithm given in Knuth, §4.5.2.

Algorithm B

Bl. t « |u—vf;
if t = 0 terminate with result u

B2. t « t/2Vak(®)

B3. if u > v then u « ¢ else v « t;
go to B1.

History

The binary Euclidean algorithm is attributed to
Silver and Terzian (unpublished, 1962) and
Stein (1967). However, it seems to go back
almost as far as the classical Euclidean
algorithm. Knuth (§4.5.2) quotes a translation
of a first-century AD Chinese text Chiu Chang
Suan Shu on how to reduce a fraction to lowest
terms:

If halving is possible, take half.

Otherwise write down the
denominator and the numerator,
and subtract the smaller from the
greater.

Repeat until both numbers are
equal.

Simplify with this common value.

This looks very much like Algorithm B!



A Heuristic Continuous Model

To analyse the expected behaviour of
Algorithm B, we can follow what Gauss did for
the classical algorithm. This was first attempted
in my 1976 paper!' and there is a summary in
Knuth (Vol. 2, third edition, §4.5.2).

Assume that the initial inputs ug, vg to
Algorithm B are uniformly and independently
distributed in (0, N), apart from the restriction
that they are odd. Let (uy,v,) be the value of
(u,v) after n iterations of step B3.

Let .
min(y,, vy,)

max(Un, Un)

and let F,(z) be the probability distribution
function of z, (in the limit as N — 0o). Thus
Fy(z) =z for z € ]0,1].

'R. P. Brent, Analysis of the Binary Euclidean Algo-
rithm, New Directions and Recent Results in Algorithms
and Complezity, (J. F. Traub, editor), Academic Press,
New York, 1976, 321-355.

Plausible Assumption

We make the plausible (but not proved)
assumption? that Valy(t) takes the value k with
probability 27% at step B2.

It is plausible because Valy(¢) at step B2
depends on the least significant bits of u and v,
whereas the comparison at step B3 depends on
the most significant bits, so one would expect
the steps to be (almost) independent.

2Vallée does not need to make this assumption. Her
results will be mentioned later.

10

The Recurrence for F),

Consider the effect of steps B2 and B3. We can
assume that u > v sot=u—v. If Vala(t) = k
then X = v/u is transformed to

k
;o . [u—v 2%
X = m1n<2kv ’—u—v>
[(1-X 2kX
= mn|——,—— .
26X '1-X

It follows that X' < z iff

1 1
X< or X> .
1+25/z 7 7 142k

Thus, the recurrence for Fy(z) = 1 — F,(z) is

Fria(z) =
2o (7 () -7 (7))

and Fo(z) = 1— 2 for z € [0,1].
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The Recurrence for f,

Differentiating the recurrence for ﬁn we obtain
(formally) a recurrence for the probability

density f,(z) = F.(z) = —ﬁln(x)

fani(®) = > <x4i2k>2f" <xf2k>

E>1

> (1 +12kz>2f" <1 +12k:c) '

E>1

Operator Notation

The recurrence for f,, may be written as

fn+1 = B?fnv

where the operator By is the case s = 2 of a
more general operator B which will be defined
later.

12



Conjectured and Empirical Results

In my 1976 paper I gave numerical and analytic
evidence that F,(z) converges to a limiting
distribution F(x) as n — oo, and that fy(x)
converges to the corresponding probability
density f(z) = F'(z) (note that f = Baf so f is
a “fixed point” of the operator Bs).

Assuming the existence of F, it is shown in my
1976 paper that the expected number of
iterations of Algorithm B is ~ Klg N as
N — o0, where K = 0.705. .. is a constant
defined by

K=In2/E,

and

FEyp =2+

/01 <§: <1+1(;k2:k1)x) _ 2(11@) F(z) do .

k=2
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A Simplification
We can simplify the expression for K to obtain

K=2/b,

where

b:Q—/Ollg(l—x)f(x)dx.

Using integration by parts we obtain an
equivalent expression

1 [11-F(x)
b=2+13), T & (1)

For my direct proof of (1), see Knuth, third
edition, §4.5.2.
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Another Formulation — Algorithm V

It will be useful to rewrite Algorithm B in the
following equivalent form (using pseudo-Pascal):

Algorithm V { Assume u < v }

while u # v do
begin
while v < v do
begin
J + Vala(v — u);
v (v—u)/2%;
end;
U > v;
end;
return u.

Continued Fractions

Vallée (Algorithmica, 1998) shows a connection
between Algorithm V and continued fractions of

a certain form:

U
;:1/a1—|—2k1/a2—|—2k2/.../aT+2kT,

where q; is odd, k; > 0, and 0 < a; < 2k;

15

Some Useful Operators

Operators Bs, Us, Us, Vs, useful in the analysis
of the binary Euclidean algorithm, are defined
on suitable function spaces by

@) =3 (190) 7 (5590) @

E>1
ain@ =) wn(3). o

By =Us +Us, )
M=% 3 (;i9m) 7 (o)

(4)
In these definitions s is a complex variable, and
the operators are called Ruelle operators. They
are linear operators acting on certain function
spaces.

The case s = 2 is of particular interest. Bo
encodes the effect of one iteration of the inner
“while” loop of Algorithm V, and V5 encodes
the effect of one iteration of the outer “while”
loop.

16



History and Notation

Bs (denoted T') was introduced in my 1976
paper and was generalised to Bs by Vallée.
Vs was introduced by Vallée. We shall call

e By the binary Fuclidean operator and

e V, Vallée’s operator.

Relation Between the Operators

The operators are closely related, as the
following results show.

Lemma 1

Vs = Vs + Us.

An algebraic proof of Lemma 1 is given in the
Proceedings.

17

Algorithmic interpretation

Algorithm V gives an interpretation of

Lemma 1 in the case s = 2. If the input density
of z =wu/v is f(z) then execution of the inner
“while” loop followed by the exchange of v and
v transforms this density to V[f](z). However,
by considering the first iteration of this loop
(followed by the exchange if the loop
terminates) we see that the transformed density
is given by

Valhs[f)(z) + Us[f](2),

where the first term arises if u < v without an
exchange, and the second arises if an exchange
occurs.

18

Consequence of Lemma 1

The following Theorem gives a simple
relationship between By, V, and Us. The proof
is immediate from Lemma 1 and the definitions
of the operators.

Theorem 1

Vs —TUs =Vs(Bs — T) .

19

Fixed Points

It follows immediately from Theorem 1 that, if

g:u2f7

then
(V2 —1)g=Va2(B2 - I)f.

Thus, if f is a fixed point of the operator Bo,
then g is a fixed point of the operator Vs. From
a recent result of Vallée we know that Vo,
acting on a certain Hardy space #%(D), has a
unique positive dominant simple eigenvalue 1,
so g must be (a constant multiple of) the
corresponding eigenfunction (provided

g € H*(D)). Also, from the definitions of By
and Us, we have

which is useful for proving the consistency of
two of the expressions for K given below.

20



Some Recent Results of Vallée

Using her operator Vg, Vallée recently proved
that

21n2

1
K— o-ligal (,)
m2g(1) zd‘; a

a>0

where g is a nonzero fixed point of V3 (i.e.

g ="Vag #0) and G(z) = [ g(t) dt . This is the
only expression for K which has been rigorously
proved.

Because Vg can be proved to have nice spectral
properties, the existence and uniqueness (up to
scaling) of g can be proved rigorously.

Warning: Knuth uses G(z) for our

F(z) =1— F(z) ! Unfortunately Knuth and
Vallée use incompatible notation. We have
followed Vallée, with the exception that we do
not assume the normalisation G(1) = 1.
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A Conjecture of Vallée

Let A = f(1), where f is the limiting probability
density (conjectured to exist) as above. Vallée
(see Knuth, third edition, §4.5.2(61))
conjectured that

A 2In2

b a2’

or equivalently that

4In2
= (5)

Vallée proved the conjecture under the

assumption that the operator B, satisfies a
certain spectral condition.

22

Numerical Results

Using an improvement of the “discretization
method” of my 1976 paper, and the MP
package with the equivalent of more than 50
decimal places (50D) working precision, we
computed the limiting probability density f,
then K, A = f(1), and K\. The results were

0.7059712461 0191639152 9314135852 8817666677
0.3979226811 8831664407 6707161142 6549823098
0.2809219710 9073150563 5754397987 9880385315

A
KX

These are believed to be correctly rounded
values.

Vallée’s conjecture (5) is that
KX=4In2/x?.

The computed value of K\ agrees with 41n 2 /7r2
to 40 decimals!
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Correcting an Error

In my 1976 paper I claimed that, for all n > 0
and z € (0,1],

Fu(z) = an(2) lg(z) + Ba(2) , (6)
where a,(z) and B,(z) are analytic and regular

in the disk |z| < 1. However, this is incorrect,
even in the case n = 1.

The error appeared to go unnoticed until 1997,
when Don Knuth was revising Volume 2 in
preparation for publication of the third edition.
Knuth computed the constant K using
recurrences for the analytic functions o, (z) and
Bn(z), and I computed K directly using the
defining integral and recurrences for Fy,(z).

Our computations disagreed in the 14th decimal
place ! Knuth found

K = 0.70597 12461 01945 99986 - - -
but I found

K =0.70597 12461 01916 39152 - -

24



Some Detective Work

After a flurry of emails we tracked down the

error. It was found independently, and at the
same time (within 24 hours), by Flajolet and
Vallée.

The source of the error is illustrated by
Lemma 3.1 of my 1976 paper, which is wrong
(and corrected in the solution to ex. 4.5.2.29 of
Knuth, third edition).

The Mellin transform of a function g(z) is
defined by

o0
g5 = [ gla)a*da.
0
It is easy to see that, if

(z) = 27Fg(2*x),

k>1

then the Mellin transform of f is

Z 9- s+1 g*(s)

s+1 _
k>1 2 1

25

Mellin Inversion

Under suitable conditions we can apply the
Mellin inversion formula to obtain
1 c+ioco
= — * “Sds .
J@) =5 [ r(s)a s
Applying these results to g(z) = 1/(1 + ),
whose Mellin transform is g*(s) = 7/ sinns
when 0 < Rs < 1, we find
27k
f(x) = Z 1+ 2k

E>1
as a sum of residues of
T x°
for Rs < 0. This gives

2 4 .
x :1+zlgx+z+zP lgz)— 2?4+ -2%—
2 1 3

where

2n i sin 2nrt

F sinh(2n72/1n2)
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The “Wobbles” Caused by P(t)

P(t) is a very small periodic function:
|P(t)| < 7.8 x 10712

for real . In Lemma 3.1 of my 1976 paper,
the term zP(lgz) was omitted.

Essentially, the poles off the real axis at

i
s=—1+"  p—19,. ..
In2

were ignored?®.

Because the residues at the non-real poles are
tiny (thanks to the sinh term in the
denominator) numerical computations
performed using single-precision floating-point
arithmetic did not reveal the error.

3In fact, the incorrect result was obtained without us-
ing Mellin transforms. If T had used them I probably
would have obtained the correct result!
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The Moral of this Tale

Computing results to (unreasonably) high
precision by more than one method can be
useful.

Small discrepancies should be explained, not
ignored !

28



Conclusion and Open Problems

Since Vallée’s recent work, analysis of the
average behaviour of the binary Euclidean
algorithm has a rigorous foundation. However,
some interesting open questions remain.

For example, does the binary Euclidean
operator By have a unique positive dominant
simple eigenvalue 1?7 Vallée has proved the
corresponding result for her operator Vs.

In order to estimate the speed of convergence of
fn to f (assuming f exists), we need more
information on the spectrum of B2. What can
be proved ? Preliminary numerical results
indicate that the sub-dominant eigenvalue(s)
are a complex conjugate pair:

Ao = g = 0.1735 + 0.08841 ,

with |)\2| = |)\3| =0.1948 to 4D.

Vallée has proved related results for some other
algorithms (variants of the Euclidean algorithm,
algorithms for computing the Jacobi symbol),
but many analogous questions remain open.
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