
Further analysis of the Binary Euclidean algorithm

Richard P. Brent1

Oxford University

rpb@comlab.ox.ac.uk

4 November 1999

Abstract

The binary Euclidean algorithm is a variant of the classical Euclidean algorithm. It
avoids multiplications and divisions, except by powers of two, so is potentially faster than
the classical algorithm on a binary machine.

We describe the binary algorithm and consider its average case behaviour. In particular,
we correct some errors in the literature, discuss some recent results of Vallée, and describe a
numerical computation which supports a conjecture of Vallée.

1 Introduction

In §2 we define the binary Euclidean algorithm and mention some of its properties, history and
generalisations. Then, in §3 we outline the heuristic model which was first presented in 1976 [4].
Some of the results of that paper are mentioned (and simplified) in §4.

Average case analysis of the binary Euclidean algorithm lay dormant from 1976 until Brigitte
Vallée’s recent analysis [29, 30]. In §§5–6 we discuss Vallée’s results and conjectures. In §8 we
give some numerical evidence for one of her conjectures. Some connections between Vallée’s
results and our earlier results are given in §7.

Finally, in §9 we take the opportunity to point out an error in the 1976 paper [4]. Although
the error is theoretically significant and (when pointed out) rather obvious, it appears that no
one noticed it for about twenty years. The manner of its discovery is discussed in §9. Some open
problems are mentioned in §10.

1.1 Notation

lg(x) denotes log2(x). N,n, a, k, u, v are positive integers.

Val2(u) denotes the dyadic valuation of the positive integer u, i.e. the greatest integer j such
that 2j | u. This is just the number of trailing zero bits in the binary representation of u.

f, g, F, F̃ , G are functions of a real or complex variable, and usually f(x) = F ′(x), g(x) =
G′(x) etc. Often f, g are probability densities and F,G are the corresponding probability distri-
butions.

Warning: Brent [4], Knuth [20], and Vallée [27, 29, 30] use incompatible notation. Knuth uses
G(x) for our F̃ (x), and S(x) for our G(x). Vallée sometimes interchanges our f and g.

1Copyright c©1999, R. P. Brent. rpb183tr

1

2 The Binary Euclidean Algorithm

The idea of the binary Euclidean algorithm is to avoid the “division” operation r ← m mod n
of the classical algorithm, but retain O(log N) worst (and average) case.

We assume that the algorithm is implemented on a binary computer so division by a power
of two is easy. In particular, we assume that the “shift right until odd” operation

u← u/2Val2(u)

or equivalently

while even(u) do u← u/2

can be performed in constant time, although time O(Val2(u)) would be sufficient.

2.1 Definitions of the Binary Euclidean Algorithm

There are several almost equivalent ways to define the algorithm. It is easy to take account of
the largest power of two dividing the inputs, using the relation

GCD(u, v) = 2min(Val2(u),Val2(v)) GCD
(
u/2Val2(u), v/2Val2(v)

)
,

so for simplicity we assume that u and v are odd positive integers. Following is a simplified
version of the algorithm given in Knuth [20, §4.5.2].

Algorithm B

B1. t← |u− v|;
if t = 0 terminate with result u

B2. t← t/2Val2(t)

B3. if u ≥ v then u← t else v ← t;
go to B1.

2.2 History

The binary Euclidean algorithm is usually attributed to Silver and Terzian [25] or (indepen-
dently) Stein [26] in the early 1960s. However, it seems to go back much further. Knuth [20,
§4.5.2] quotes a translation of a first-century AD Chinese text Chiu Chang Suan Shu on how to
reduce a fraction to lowest terms:

If halving is possible, take half.

Otherwise write down the denominator and the numerator,
and subtract the smaller from the greater.

Repeat until both numbers are equal.

Simplify with this common value.

This is essentially Algorithm B. Hence, the binary algorithm is almost as old as the classical
Euclidean algorithm [11].

2

2.3 The Worst Case

Although this paper is mainly concerned with the average case behaviour of the binary Euclidean
algorithm, we mention the worst case briefly. At step B1, u and v are odd, so t is even. Thus,
step B2 always reduces t by at least a factor of two. Using this fact, it is easy to show that
lg(u + v) decreases by at least one each time step B3 is executed, so this occurs at most

blg(u + v)c

times [20, exercise 4.5.2.37]. Thus, if N = max(u, v), step B3 is executed at most

lg(N) + O(1)

times.

Even if step B2 is replaced by single-bit shifts

while even(t) do t← t/2

the overall worst case time is still O(log N). In fact, it is easy to see that (lg(u)+lg(v)) decreases
by at least one for each right shift, so the number of right shifts is at most 2 lg(N).

2.4 The Extended Binary Algorithm

It is possible to give an extended binary GCD algorithm which computes integer multipliers α
and β such that

αu + βv = GCD(u, v) .

Let n = dlg ue + dlg ve be the number of bits in the input. Purdy [22] gave an algorithm with
average running time O(n) but worst case of order n2. This was improved by Bojanczyk and
Brent [2], whose algorithm has worst case running time O(n).

Let g = GCD(u, v), u′ = u/g, v′ = v/g. In [2, §4] an algorithm is given for reducing the
fraction u/v to u′/v′ without performing any divisions (except by powers of two).

2.5 Parallel Variants and the Class NC

There is a systolic array variant of the binary GCD algorithm (Brent and Kung [7]). This takes
time O(log N) using O(log N) 1-bit processors. The overall bit-complexity is O((log N)2).

For n-bit numbers the systolic algorithm gives time O(n) using O(n) processors. This is
close to the best known parallel time bound (Borodin et al [3]).

It is not known if GCD is in the class NC.2 This is an interesting open problem because the
basic arithmetic operations of addition, multiplication, and division are in NC (see Cook [8, 9]).
Thus, the operation of computing GCDs is perhaps the simplest arithmetic operation which is
not known to be in NC.

It is conceivable that testing coprimality, i.e. answering the question of whether
GCD(u, v) = 1, is “easier” than computing GCD(u, v) in general. There is evidence that testing
coprimality is in NC (Litow [21]).

2NC is the class of problems which can be solved in parallel in time bounded by a polynomial in log L, where
L is the length of the input, using a number of processors bounded by a polynomial in L. Note that for the GCD
problem L = Θ(n) = Θ(log N), so we are asking for a time polynomial in log log N , not in log N .

3

3 A Heuristic Continuous Model

To analyse the expected behaviour of Algorithm B, we can follow what Gauss [15] did for the
classical algorithm. This was first attempted in [4]. There is a summary in Knuth [20, §4.5.2].

Assume that the initial inputs u0, v0 to Algorithm B are uniformly and independently dis-
tributed in (0, N), apart from the restriction that they are odd. Let (un, vn) be the value of
(u, v) after n iterations of step B3.

Let
xn =

min(un, vn)
max(un, vn)

and let Fn(x) be the probability distribution function of xn (in the limit as N → ∞). Thus
F0(x) = x for x ∈ [0, 1].

3.1 A Plausible Assumption

We make the assumption3 that Val2(t) takes the value k with probability 2−k at step B2. The
assumption is plausible because Val2(t) at step B2 depends on the least significant bits of u and
v, whereas the comparison at step B3 depends on the most significant bits, so one would expect
the steps to be (almost) independent when N is large. In fact, this independence is exploited
in the systolic algorithms [2, 6, 7] where processing elements perform operations on the least
significant bits without waiting for information about the most significant bits.

3.2 The Recurrence for Fn

Consider the effect of steps B2 and B3. We can assume that initially u > v, so t = u − v. If
Val2(t) = k then X = v/u is transformed to

X ′ = min

(
u− v

2kv
,

2kv

u− v

)
= min

(
1−X

2kX
,

2kX

1−X

)
.

It follows that X ′ < x iff
X <

1
1 + 2k/x

or X >
1

1 + 2kx
.

Thus, the recurrence for Fn(x) is

Fn+1(x) = 1 +
∑
k≥1

2−k
(

Fn

(
1

1 + 2k/x

)
− Fn

(
1

1 + 2kx

))
(1)

with initial condition F0(x) = x for x ∈ [0, 1].
It is convenient to define

F̃n(x) = 1− Fn(x) .

The recurrence for F̃n(x) is

F̃n+1(x) =
∑
k≥1

2−k
(

F̃n

(
1

1 + 2k/x

)
− F̃n

(
1

1 + 2kx

))
(2)

and F̃ 0(x) = 1− x for x ∈ [0, 1].
3Vallée does not make this assumption. Her results are mentioned in §§5–6. They show that the assumption

is correct in the limit as N →∞.

4

3.3 The Recurrence for fn

Differentiating the recurrence (1) for Fn we obtain (formally) a recurrence for the probability
density fn(x) = F ′

n(x):

fn+1(x) =
∑
k≥1

((
1

x + 2k

)2

fn

(
x

x + 2k

)
+
(

1
1 + 2kx

)2

fn

(
1

1 + 2kx

))
. (3)

It was noted in [4, §5] that the coefficients in this recurrence are positive, and that the recurrence
preserves the L1 norm of nonnegative functions (this is to be expected, since the recurrence maps
one probability density to another).

3.4 Operator Notation

The recurrence for fn may be written as

fn+1 = B2fn,

where the operator B2 is the case s = 2 of a more general operator Bs which is defined in (14)
of §5.4.

4 Conjectured and Empirical Results

In the 1976 paper [4] we gave numerical and analytic evidence (but no proof) that Fn(x) con-
verges to a limiting distribution F (x) as n→∞, and that fn(x) converges to the corresponding
probability density f(x) = F ′(x) (note that f = B2f so f is a “fixed point” of the operator B2).

Assuming the existence of F , it is shown in [4] that the expected number of iterations of
Algorithm B is ∼ K lg N as N →∞, where K = 0.705 . . . is a constant given by

K = ln 2/E∞ , (4)

and4

E∞ = ln 2 +
∫ 1

0

(∞∑
k=2

(
1− 2−k

1 + (2k − 1)x

)
− 1

2(1 + x)

)
F (x) dx . (5)

4.1 A Simplification

We can simplify the expressions (4)–(5) for K to obtain

K = 2/b , (6)

where

b = 2−
∫ 1

0
lg(1− x)f(x) dx . (7)

Using integration by parts we obtain an equivalent expression

b = 2 +
1

ln 2

∫ 1

0

1− F (x)
1− x

dx . (8)

For my direct proof of (7)–(8), see Knuth [20, §4.5.2]. The idea is to consider the expected change
in lg(uv) with each iteration of Algorithm B (to obtain the equivalent but more complicated
expression (5) we considered the expected change in lg(u + v)).

4We have corrected a typo in [4, eqn. (6.3)].

5

5 Another Formulation – Algorithm V

It will be useful to rewrite Algorithm B in the following equivalent form (using pseudo-Pascal):

Algorithm V { Assume u ≤ v }
while u 6= v do

begin
while u < v do

begin
j ← Val2(v − u);
v ← (v − u)/2j ;
end;

u↔ v;
end;

return u.

5.1 Continued Fractions

Vallée [30] shows a connection between Algorithm V and continued fractions of a certain form

u

v
=

1

a1 + 2k1

a2 +
2k2

. . . +
2kr−1

ar + 2kr

which by convention we write as

u

v
= 1/a1 + 2k1/a2 + 2k2/ . . . /(ar + 2kr) . (9)

Here aj is odd, kj > 0, and 0 < aj < 2kj (excluding the trivial case u = v = 1).

5.2 Some Details of Vallée’s Results

Algorithm V has two nested loops. The outer loop exchanges u and v. Between two exchanges,
the inner loop performs a sequence of subtractions and shifts which can be written as

v → u + 2b1v1;
v1 → u + 2b2v2;
· · ·

vm−1 → u + 2bmvm

with vm ≤ u.

If x0 = u/v at the beginning of an inner loop, the effect of the inner loop followed by an
exchange is the rational x1 = vm/u defined by

x0 =
1

a + 2kx1
,

where a is an odd integer given by

a = 1 + 2b1 + 2b1+b2 + · · ·+ 2b1+···+bm−1 ,

6

and the exponent k is given by
k = b1 + · · ·+ bm .

Thus, the rational u/v, for 1 ≤ u < v, has a unique binary continued fraction expansion of the
form (9). Vallée studies three parameters related to this continued fraction:

1. The height or the depth (i.e. the number of exchanges) r.

2. The total number of operations necessary to obtain the expansion (equivalently, the num-
ber of times step B2 of Algorithm B is performed): if p(a) denotes the number of “1”s in
the binary expansion of the integer a, it is equal to p(a1) + p(a2) + · · ·+ p(ar).

3. The total number of one-bit shifts, i.e. the sum of exponents of 2 in the numerators of the
binary continued fraction, k1 + · · ·+ kr.

5.3 Vallée’s Theorems

Vallée’s main results give the average values of the three parameters above: the average values
are asymptotically Ai lnN for certain computable constants A1, A2, A3 related to the spectral
properties of an operator V2 which is defined in (11) of §5.4. Clearly the constant K of §4 is
A2 ln 2.

5.4 Some Useful Operators

Operators Bs, Vs, Us, Ũs, useful in the analysis of the binary Euclidean algorithm, are defined
by

Bs[f](x) =
∑
k≥1

((
1

x + 2k

)2

f

(
x

x + 2k

)
+
(

1
1 + 2kx

)2

f

(
1

1 + 2kx

))
, (10)

Vs[f](x) =
∑
k≥1

∑
a odd,

0<a<2k

(
1

a + 2kx

)s

f

(
1

a + 2kx

)
, (11)

Us[f](x) =
∑
k≥1

(
1

1 + 2kx

)s

f

(
1

1 + 2kx

)
, (12)

Ũs[f](x) =
(

1
x

)s

Us[f]
(

1
x

)
. (13)

In these definitions s is a complex variable, and the operators are called Ruelle operators [24].
They are linear operators acting on certain function spaces. It is immediate from the definitions
that

Bs = Us + Ũs, (14)

The case s = 2 is of particular interest. B2 encodes the effect of one iteration of the inner “while”
loop of Algorithm V, and V2 encodes the effect of one iteration of the outer “while” loop. See
Vallée [29, 30] for further details.

5.5 History and Notation

B2 (denoted T) was introduced in [4], and was generalised to Bs by Vallée. Vs was introduced
by Vallée [29, 30]. We shall call

• Bs (or sometimes just B2) the binary Euclidean operator and

• Vs (or sometimes just V2) Vallée’s operator.

7

5.6 Relation Between the Operators

The binary Euclidean operator and Vallée’s operator are closely related, as Lemma 1 and The-
orem 1 show.

Lemma 1

Vs = VsŨs + Us.

Proof. From (11),

Vs[Ũs[f]](x) =
∑
k≥1

∑
a odd,

0<a<2k

(
1

a + 2kx

)s

Ũs[f]
(

1
a + 2kx

)

but, from (12) and (13),

Ũs[f](y) =
∑
m≥1

(
1

2m + y

)s

f

(
1

1 + 2m/y

)
.

On substituting y = 1/(a + 2kx) we obtain

Vs[Ũs[f]](x) =
∑
k≥1

∑
a odd,

0<a<2k

∑
m≥1

(
1

1 + 2ma + 2k+mx

)s

f

(
1

1 + 2ma + 2k+mx

)
.

Thus, to show that
Vs[f](x) = Us[f](x) + VsŨs[f](x)

it suffices to observe that the set of polynomials

{a′ + 2k′x | k′ ≥ 1, a′ odd, 0 < a′ < 2k′}

is the disjoint union of the two sets

{1 + 2kx | k ≥ 1}

and
{1 + 2ma + 2k+mx | k ≥ 1, m ≥ 1, a odd, 0 < a < 2k}.

To see this, consider the two cases a′ = 1 and a′ > 1. If 2k′ > a′ > 1 we can write a′ = 1 + 2ma,
k′ = k + m, for some (unique) odd a and positive k, m. ut

5.7 Algorithmic Interpretation

Algorithm V gives an interpretation of Lemma 1 in the case s = 2. If the input density of
x = u/v is f(x) then execution of the inner “while” loop followed by the exchange of u and
v transforms this density to V2[f](x). However, by considering the first iteration of this loop
(followed by the exchange if the loop terminates) we see that the transformed density is given
by

V2Ũ2[f](x) + U2[f](x),

where the first term arises if there is no exchange, and the second arises if an exchange occurs.

8

5.8 Consequence of Lemma 1

The following Theorem gives a simple relationship between Bs, Vs and Us.

Theorem 1

(Vs − I)Us = Vs(Bs − I) .

Proof. This is immediate from Lemma 1 and the definitions of the operators. ut

5.9 Fixed Points

It follows immediately from Theorem 1 that, if

g = U2f, (15)

then
(V2 − I)g = V2(B2 − I)f.

Thus, if f is a fixed point of the operator B2, then g = U2f is a fixed point of the operator
V2. (We can not assert the converse without knowing something about the null space of V2.)
From a result of Vallée [30, Prop. 4] we know that V2, acting on a certain Hardy space H2(D),
has a unique positive dominant simple eigenvalue 1, so g must be (a constant multiple of) the
corresponding eigenfunction (provided g ∈ H2(D)).

Lemma 2 If f is a fixed point of B2 and g is given by (15), then

f(1) = 2g(1) = 2
∑
k≥1

(
1

1 + 2k

)2

f

(
1

1 + 2k

)
.

Proof. This is immediate from the definitions of B2 and U2. ut

6 A Result of Vallée

Using her operator Vs, Vallée [30] proved that

K =
2 ln 2
π2g(1)

∑
a odd,
a>0

2−blg acG

(
1
a

)
(16)

where g is a nonzero fixed point of V2 (i.e. g = V2g 6= 0) and G(x) =
∫ x
0 g(t) dt . This is the

only expression for K which has been proved rigorously.

Because Vs has nice spectral properties, the existence and uniqueness (up to scaling) of g
can be established.

6.1 A Conjecture of Vallée

Let
λ = f(1) , (17)

where f is the limiting probability density (conjectured to exist) as in §4. λ and K are fun-
damental constants which are not known to have simple closed form expressions – to evaluate

9

them numerically we seem to have to approximate a probability density f(x) (or g(x)) or the
corresponding distribution F (x) (or G(x)). Vallée (see Knuth [20, §4.5.2(61)]) conjectured that

λ

b
=

2 ln 2
π2

,

where b is given by (7) or (8). Equivalently, from (6), her conjecture is that

Kλ =
4 ln 2
π2

. (18)

Vallée proved the conjecture under the assumption that the operator Bs satisfies a “spectral
gap” condition which has not been proved, but which is plausible because it is known to be
satisfied by Vs. Specifically, a sufficient condition is that the operator, acting on a suitable
function space, has a simple positive dominant eigenvalue λ1, and there is a positive ε such that
all other eigenvalues λj satisfy |λj | ≤ λ1 − ε.

7 Some Relations Between Fixed Points

In this section we assume that f is a fixed point of the operator B2, g = U2f as in §5.9 is a
fixed point of the operator V2, and both f and g are analytic functions (not necessarily regular
at x = 0). Using analyticity we extend the domains of f , g etc to include the positive real axis
(0, +∞). Let

F (x) =
∫ x

0
f(t) dt

and
G(x) =

∫ x

0
g(t) dt

be the corresponding integrals. By scaling, we can assume that

F (1) = 1

but, in view of (15), we are not free to scale g. (See (20) below.)
From the definition (12) of Us and (15), we have

g(x) =
∞∑

k=1

(
1

1 + 2kx

)2

f

(
1

1 + 2kx

)
,

so, integrating with respect to x,

G(x) =
∞∑

k=1

2−k
(

F (1)− F

(
1

1 + 2kx

))
.

This simplifies to

G(x) =
∞∑

k=1

2−kF̃

(
1

1 + 2kx

)
. (19)

Although our derivation of (19) assumes x ∈ [0, 1], we can use (19) to give an analytic continu-
ation of G(x). Allowing x to approach +∞, we see that there exists

lim
x→+∞

G(x) = G(+∞)

say, and
G(+∞) = 1 . (20)

10

We can use the functional equation (2) to extend the domain of definition of F̃ (x) to the
nonnegative real axis [0, +∞). It is convenient to work with F̃ (x) = 1− F (x) rather than with
F (x) because of the following result.

Lemma 3

F̃ (x) = G(1/x)−G(x)

and consequently
F̃ (1/x) = −F̃ (x) .

Proof. This is immediate from (2) and (19). ut

Lemma 4

G(x) =
∞∑

k=1

2−k
∑

a odd,

0<a<2k

(
G

(
1
a

)
−G

(
1

a + 2kx

))
.

Proof. Since g(x) is a fixed point of V2, we have

g(x) = V2[g](x)

=
∞∑

k=1

∑
a odd,

0<a<2k

(
1

a + 2kx

)2

g

(
1

a + 2kx

)
.

Integrating with respect to x and making the change of variable u = 1/(a + 2kx) gives

G(x) =
∞∑

k=1

2−k
∑

a odd,

0<a<2k

∫ 1/a

1/(a+2kx)
g(u)du ,

and the result follows. ut

Lemma 5

∞∑
k=1

2−k
∑

a odd,

0<a<2k

G

(
1
a

)
= 1 .

Proof. Let x→ +∞ in Lemma 4 and use (20). ut

The sum occurring in the following Lemma is the same as the sum in (16). To avoid confusion
we repeat that our normalisation of G is different from Vallée’s, but note that the right side of
(16) is independent of the normalisation of G because g(1) appears in the denominator.

Lemma 6 ∑
a odd,
a>0

2−blg acG

(
1
a

)
= 1 .

11

Proof. We can write Lemma 5 as ∑
a odd,
a>0

ca G

(
1
a

)
= 1 ,

where
ca =

∑
k≥1,

2k>a

2−k = 2−blg ac .

Thus, the sums occurring in Lemma 5 and Lemma 6 are identical. ut

Theorem 2 Under the assumptions stated at the beginning of this section, the expressions (16)
and (18) are equivalent.

Proof. This follows immediately from Lemmas 2 and 6. ut

Remarks. As noted above, Vallée proved (18) under an assumption about the spectrum of Bs.
Our proof of Theorem 2 is more direct. We are not able to prove the equivalence of (6) and (18),
but (as described in §8) it has been verified numerically to high precision.

8 Numerical Results

Using an improvement of the “discretization method” of [4], with Richardson extrapolation (see
§8.1) and the equivalent of more than 50 decimal places (50D) working precision, we computed
the limiting probability distribution F , then K (using (6) and (8)), λ = f(1), and Kλ. The
results were

K = 0.7059712461 0191639152 9314135852 8817666677
λ = 0.3979226811 8831664407 6707161142 6549823098

Kλ = 0.2809219710 9073150563 5754397987 9880385315

These are believed to be correctly rounded values.

The computed value of Kλ agrees with 4 ln 2/π2 to 40 decimals5, in complete agreement
with Vallée’s conjecture (18).

8.1 Some Details of the Numerical Computation

A consequence of Lemma 3 is that F̃ (e−y) is an odd function of y. This fact was exploited in
the numerical computations. By discretising with uniform stepsize h in the variable y we can
obtain K with error O(h2r+2) after r Richardson/Romberg [16, 18] extrapolations, because the
error has an asymptotic expansion containing only even powers of h.

In fact, we found it better to take a uniform stepsize h in the variable z =
√

y, i.e. make the
change of variables

x = exp(−z2)

because this puts more points near x = 0 and less points in the “tail”. We truncated at a point
zmax sufficiently large that exp(−z2

max) was negligible.
To obtain 40D results it was sufficient to take zmax = 11, h = zmax/215, r = 7, iterate

the recurrence for F̃n 81 times (using interpolation by polynomials of degree 2r + 1 where
necessary) to obtain F̃ ≈ F̃ 81 to O(h16) accuracy. Using the trapezoidal rule, we obtained K

5In fact the agreement is to 44 decimals.

12

by numerical quadrature to O(h2) accuracy, and then applied seven Richardson extrapolations
(using the results for stepsize h, 2h, 22h, · · · , 27h) to obtain K with error O(h16). Similarly, we
approximated λ = F ′(1) by

λ ≈ F̃ (exp(−h2))/h2

and then used extrapolation. Only three Richardson extrapolations were needed to obtain λ
with error O(h16) because the relevant asymptotic expansion includes only powers of h4.

8.2 Subdominant eigenvalues

In order to estimate the speed of convergence of fn to f (assuming f exists), we need more
information on the spectrum of B2. What can be proved ?

Preliminary numerical results indicate that the sub-dominant eigenvalue(s) are a complex
conjugate pair:

λ2 = λ3 = 0.1735± 0.0884i ,

with |λ2| = |λ3| = 0.1948 to 4D.
The appearance of a complex conjugate pair is interesting because in the classical case it

is known that the eigenvalues are all real, and conjectured that (when ordered in decreasing
absolute value) they alternate in sign [13].

8.3 Complexity of approximating K

We have several expressions for K which are conjectured to be equivalent. Which is best for
numerical computation of K ? Suppose we want to estimate K to n-bit accuracy, i.e. with error
O(2−n).

We could iterate the recurrence

gk+1(x) = V2[gk](x)

to obtain the principal fixed point g(x) of Vallée’s operator V2. However, the sum over odd a in
the definition of V2 appears to require the summation of exponentially many terms. Similarly,
the sum in (16) appears to require exponentially many terms (unless we can assume that g is
scaled so that Lemma 6 applies).

Thus, it seems more efficient numerically to approximate the principal fixed point f(x) of
the binary Euclidean operator B2 or the corresponding integral F (x) (or F̃ (x) = 1−F (x)), even
though the existence of f or F has not been proved.

It seems likely that f(x) is unbounded in a neighbourhood of x = 0, so it is easier numerically
to work with F̃ (x). In the sum (2), the terms are bounded by 2−k, so we need take only O(n)
terms to get n-bit accuracy. (If we used the recurrence (3) it would not be so clear how many
terms were required.)

Assuming that B2 has a positive dominant simple eigenvalue 1 (as seems very likely), conver-
gence of F̃ k(x) to F̃ (x) is linear, so O(n) iterations are required. We have to tabulate F (x) at a
sufficiently dense set of points that the value at any point can be obtained to sufficient accuracy
by interpolation. If the scheme of §8.1 is used, it may be sufficient to take h = O(1/n) and use
polynomial interpolation of degree O(n/ log n). (Here [20, ex. 4.5.2.25] may be relevant.)

The final step, of estimating the integral (8) and λ = f(1), can be done as in §8.1 with a
relatively small amount of work. Alternatively, we can avoid the computation of an integral
by using (18). However, the independent computation of K and λ provides a good check on
the numerical results, since it is unlikely that any errors in the computed values of K and/or λ
would be correlated in such a way as to leave the product Kλ unchanged.

Overall, the work required to obtain an n-bit approximation to K appears to be bounded
by a low-degree polynomial in n. Probably O(n4) bit operations are sufficient. It would be

13

interesting to know if significantly faster algorithms exist. For example, is it possible to avoid
the computation of F̃ (x) or a similar function at a large number of points ?

9 Correcting an Error

In [4] it was claimed that, for all n ≥ 0 and x ∈ (0, 1],

Fn(x) = αn(x) lg(x) + βn(x) , (21)

where αn(x) and βn(x) are analytic and regular in the disk |x| < 1. However, this is incorrect,
even in the case n = 1.

The error appeared to go unnoticed until 1997, when Knuth was revising Volume 2 in prepa-
ration for publication of the third edition. Knuth computed the constant K using recurrences for
the analytic functions αn(x) and βn(x), and I computed K directly using the defining integral
and recurrences for Fn(x). Our computations disagreed in the 14th decimal place ! Knuth found

K = 0.70597 12461 01945 99986 · · ·

but I found
K = 0.70597 12461 01916 39152 · · ·

We soon discovered the source of the error. It was found independently, and at the same
time, by Flajolet and Vallée.

The source of the error is illustrated by [4, Lemma 3.1], which is incorrect, and corrected in
[20, solution to ex. 4.5.2.29]. In order to explain the error, we need to consider Mellin transforms
(a very useful tool in average-case analysis [12]).

9.1 Mellin Transforms and Mellin Inversion

The Mellin transform of a function6 g(x) is defined by

g∗(s) =
∫ ∞

0
g(x)xs−1dx .

It is easy to see that, if
f(x) =

∑
k≥1

2−kg(2kx) ,

then the Mellin transform of f is

f∗(s) =
∑
k≥1

2−k(s+1)g∗(s) =
g∗(s)

2s+1 − 1
.

Under suitable conditions we can apply the Mellin inversion formula to obtain

f(x) =
1

2πi

∫ c+i∞

c−i∞
f∗(s)x−sds .

Applying these results to
g(x) = 1/(1 + x) ,

6The functions f and g here are not necessarily related to those occurring in other sections.

14

whose Mellin transform is

g∗(s) = π/ sinπs when 0 < Rs < 1 ,

we find

f(x) =
∑
k≥1

2−k

1 + 2kx
(22)

as a sum of residues of (
π

sinπs

)
x−s

2s+1 − 1
(23)

for Rs ≤ 0. This gives

f(x) = 1 + x lg x +
x

2
+ xP (lg x)− 2

1
x2 +

4
3
x3 − · · · , (24)

where

P (t) =
2π

ln 2

∞∑
n=1

sin 2nπt

sinh(2nπ2/ ln 2)
. (25)

9.2 The “Wobbles” Caused by P (t)

P (t) is a very small periodic function:

|P (t)| < 7.8× 10−12

for real t. In [4, Lemma 3.1], the term xP (lg x) in (24) was omitted. Essentially, the poles of
(23) off the real axis at

s = −1± 2πin

ln 2
, n = 1, 2, . . .

were ignored.7

Because of the sinh term in the denominator of (25), the residues at the non-real poles are
tiny, and numerical computations performed using single-precision floating-point arithmetic did
not reveal the error.

9.3 Details of Corrections

The function f(x) of (22) is called D1(x) in [4]. In (3.29) of [4, Lemma 3.1], the expression for
D1(x) is missing the term xP (lg x).

Equation (3.8) of [4] is (correctly)

Fn(x) = 1 + Dn(1/x)−Dn(x)

so in Corollary 3.2 the expression for F1(x) is missing a term −xP (lg x).

The statement following Corollary 3.2 of [4], that “In principle we could obtain F2(x), F3(x),
etc in the same way as F1(x)” is dubious because it is not clear how to handle the terms involving
P (lg x).

To quote Gauss [notebook, 1800], who was referring to F2(x) etc for the classical algorithm:

Tam complicatæ evadunt, ut nulla spes superesse videatur.8

Corollary 3.3 of [4], that Fn+1 6= Fn, is probably correct, but the proof given is incorrect
because it assumes the incorrect form (21) for Fn(x).

7In fact, the incorrect result was obtained without using Mellin transforms. If I had used them I probably
would have obtained the correct result!

8They come out so complicated that no hope appears to be left.

15

9.4 An Analogy

Ramanujan made a similar error when he gave a formula for π(x) (the number of primes ≤ x)
which essentially ignored the residues of xsζ ′(s)/ζ(s) arising from zeros of ζ(s) off the real axis.
For further details we refer to Berndt [1], Hardy [17], Riesel [23, Ch. 1–3] and the references
given there.

10 Conclusion and Open Problems

Since Vallée’s recent work [29, 30], analysis of the average behaviour of the binary Euclidean
algorithm has a rigorous foundation. However, some interesting open questions remain.

For example, does the binary Euclidean operator B2 have a unique positive dominant simple
eigenvalue 1? Vallée [30, Prop. 4] has proved the corresponding result for her operator V2. Are
the various expressions for K given above all provably correct ? (Only (16) has been proved.)
Is there an algorithm for the numerical computation of K which is asymptotically faster than
the one described in §8.1 ? How can we give rigorous error bounds on numerical approximations
to K ?

In order to estimate the speed of convergence of fn to f (assuming f exists), we need more
information on the spectrum of B2. What can be proved ? As mentioned in §8.2, numerical
results indicate that the sub-dominant eigenvalue(s) are a complex conjugate pair with absolute
value about 0.1948.

It would be interesting to compute the spectra of B2 and V2 numerically, and compare with
the classical case, where the spectrum is real and the eigenvalues appear to alternate in sign.

In order to give rigorous numerical bounds on the spectra of B2 and V2, we need to bound
the error caused by making finite-dimensional approximations to these operators. This may be
easier for V2 than for B2.

Acknowledgements

Thanks to:

• Don Knuth for encouraging me to correct and extend my 1976 results for the third edi-
tion [20] of Seminumerical Algorithms. Some of the results given here are described in [20,
§4.5.2].

• Brigitte Vallée for correspondence and discussions on her conjectures and results.

• Philippe Flajolet for his notes [12] on Mellin transforms.

• The British Council for support via an Alliance grant.

An abbreviated version of this report appeared as [5].

16

References

[1] Bruce C. Berndt, Ramanujan’s Notebooks, Parts I-III, Springer-Verlag, New York, 1985,
1989, 1991.

[2] Adam W. Bojanczyk and Richard P. Brent, A systolic algorithm for extended GCD com-
putation, Comput. Math. Applic. 14 (1987), 233–238.

[3] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computa-
tions, Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science, IEEE,
New York, 1982, 65–77.

[4] Richard P. Brent, Analysis of the binary Euclidean algorithm, New Directions and Recent
Results in Algorithms and Complexity (J. F. Traub, editor), Academic Press, New York,
1976, 321–355.

[5] Richard P. Brent, Twenty years’ analysis of the binary Euclidean algorithm, Proc. Oxford–
Microsoft Symposium in Celebration of the work of C. A. R. Hoare, Oxford, 13–15 Septem-
ber, 1999. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/
rpb183.dvi.gz. Final version to be published in the first volume of a series Cornerstones
in Computing (series editor Richard Bird), MacMillan, 2000.

[6] R. P. Brent and H. T. Kung, Systolic VLSI arrays for linear-time GCD computation, in
VLSI 83 (F. Anceau and E. J. Aas, editors), North-Holland, Amsterdam, 1983, 145–154.

[7] R. P. Brent and H. T. Kung, A systolic VLSI array for integer GCD computation,
in ARITH-7, Proc. Seventh Symposium on Computer Arithmetic (K. Hwang, editor),
IEEE/CS Press, 1985.

[8] Stephen A. Cook, An overview of computational complexity, Comm. ACM 26 (1983),
401–408.

[9] Stephen A. Cook, A taxonomy of problems with fast parallel algorithms, Information and
Control 64 (1985), 2–22.

[10] Hervé Daudé, Philippe Flajolet and Brigitte Vallée, An analysis of the Gaussian algorithm
for lattice reduction, Proc. ANTS’94, Lecture Notes in Computer Science 877, Springer-
Verlag, 1994, 144–158. Extended version in Combinatorics, Probability and Computing 6
(1997), 397–433.

[11] Euclid, Book VII. For an English rendition, see Knuth [20, §4.5.2]. For some relevant
pages of a Latin translation see http://www.univ-tln.fr/~langevin/NOTES/EUCLIDE/
Euclide.html

[12] Philippe Flajolet and Robert Sedgewick, The Average Case Analysis of Algorithms:
Mellin Transform Asymptotics, Report 2956, INRIA Rocquencourt, August 1996. http://
pauillac.inria.fr/algo/flajolet/Publications/anacombi4.ps.gz

[13] Philippe Flajolet and Brigitte Vallée, On the Gauss-Kuzmin-Wirsing constant, manuscript,
29 October 1995. http://pauillac.inria.fr/algo/flajolet/Publications/
gauss-kuzmin.ps.gz

[14] Philippe Flajolet and Brigitte Vallée, Continued fraction algorithms, functional operators
and structure constants, Theoretical Computer Science 194 (1998), 1–34. See also http://
www-rocq.inria.fr/algo/flajolet/Publications/RR2931.ps.gz

17

[15] Carl F. Gauss, Brief an Laplace vom 30 Jan. 1812, Carl Friedrich Gauss Werke, Bd. X1,
Göttingen, 371–374.

[16] Gene H. Golub and James M. Ortega, Scientific Computing and Differential Equations: An
Introduction to Numerical Methods, Academic Press, New York, 1992.

[17] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work,
Cambridge University Press, Cambridge, 1940.

[18] Peter Henrici, Elements of Numerical Analysis, John Wiley and Sons, New York, 1964.

[19] Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms (first edition). Addison-Wesley, Menlo Park, 1969.

[20] Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms (third edition). Addison-Wesley, Menlo Park, 1997.

[21] Bruce Litow, Parallel complexity of integer coprimality, manuscript, 11 March 1999.
http://www.cs.jcu.edu.au/~bruce/papers/coprime99.ps

[22] G. B. Purdy, A carry-free algorithm for finding the greatest common divisor of two integers,
Comput. Math. Applic. 9 (1983), 311–316.

[23] Hans Riesel, Prime Numbers and Computer Methods for Factorization, second edition,
Birkhäuser, Boston, 1994.

[24] David Ruelle, Thermodynamic Formalism, Addison Wesley, Menlo Park, 1978.

[25] Roland Silver and John Terzian, unpublished, 1962. See [19, §4.5.2].

[26] J. Stein, Computational problems associated with Racah algebra, J. Comput. Phys. 1
(1967), 397–405.

[27] Brigitte Vallée, Opérateurs de Ruelle–Mayer généralisés et analyse des algorithmes de Gauss
et d’Euclide, Acta Arithmetica 81 (1997), 101–144.

[28] Brigitte Vallée, Dynamique des fractions continues à contraintes périodiques, J. of Number
Theory 72 (1998), 183–235. http://www.info.unicaen.fr/~brigitte/Publications/
cfperi.ps

[29] Brigitte Vallée, The complete analysis of the binary Euclidean algorithm, Proc. ANTS’98,
Lecture Notes in Computer Science 1423, Springer-Verlag, 1998, 77–94.

[30] Brigitte Vallée, Dynamics of the binary Euclidean algorithm: functional analysis and
operators, Algorithmica 22 (1998), 660–685. http://www.info.unicaen.fr/~brigitte/
Publications/bin-gcd.ps

[31] Brigitte Vallée and Charly Lemée, Average-case analyses of three algorithms for comput-
ing the Jacobi symbol, preprint, Oct. 1998. http://www.info.unicaen.fr/~brigitte/
Publications/jacobi.ps

18

