Serial Simulation of Reconfigurable Mesh, an Image
Understanding Architecture®

M. Manzur Murshed!
Computer Sciences Lab, Research School of Information Sciences & Engg.
The Australian National University, Canberra ACT 0200, Australia
E-mail: murshed@cslab.anu.edu.au

Richard P. Brent
Oxford University Computing Laboratory, Oxford, OX1 3QD, England
E-mail: Richard.Brent@comlab.ox.ac.uk

Abstract

There has recently been an interest in Reconfigurable
Mesh (RM) because of its simplicity and dynamic na-
ture. Among many applications, RM can be viewed
as a part of a powerful image understanding archi-
tecture for supporting real time image understand-
ing applications. This paper defines a programming
model for the general RM which is expressed by
means of a programming language, called RPC (Re-
configurable Parallel C). The paper also presents a
serial simulator, RMSIM (Reconfigurable Mesh SIM-
ulator), which permits to study RPC programs writ-
ten for a subnetwork of 3-D RM, known as mesh
of meshes, where buses can be formed only in 2-D
space. RMSIM is an easy-to-use simulator capable
of simulating any RPC program in different azis-
orientations within restricted regions. To enhance
the debugging facilities, RMSIM is equipped with o
snapshotter to generate BTEX pictures of any planar
segment of the simulated mesh at any step of program
execution.

Keywords: Reconfigurable mesh; Image process-
ing; Simulation; Parallel programming; Program-
ming language

1 Introduction

It is well-known that interprocessor communications
and simultaneous memory accesses often act as bot-
tlenecks in present-day parallel machines. Bus sys-
tems have been introduced recently to a number of
parallel machines to address this problem. Examples
include the Bus Automaton [17], the Reconfigurable
Mesh (RM) [14, 20], the Content Addressable Array
Parallel Processor (CAAPP) [22], and the Polymor-

*A preliminary version of this work appeared in [16].
fCorresponding author.

phic Torus [12]. A bus system is called reconfigurable
if it can be dynamically changed according to either
global or local information.

Among many applications, RM can be viewed as a
part of a powerful image understanding architecture
for supporting real time image understanding appli-
cations and research in knowledge-based computer
vision [22]. Recently, constant time algorithms have
been developed on RM for a number of image pro-
cessing problems [4, 6, 7, 8, 14, 15].

Research on reconfigurable mesh has concentrated
mainly on the development of computation mod-
els and on the implementation of experimental sys-
tems. The experimental systems YUPPIE [10, 11]
and GCN [18] have mainly focused on the efficient
implementation of the hardware supporting reconfig-
urability, and have not produced any programming
model.

The lack of a programming model, in particu-
lar, makes the development of RM algorithms very
difficult; the algorithms are usually formulated as
sequences of steps involving the manipulation of
switches that control reconfiguration and neither au-
tomatic validation nor simulation can be done. On
the contrary, a programming model supporting a
high level language and a simulator would allow for
the automatic validation of the algorithms and for
the automatic performance evaluation of the pro-
grams.

Maresca [12] has expressed his concern that the
general RM is so flexible and powerful that it has
turned out to be impossible to derive high level
programming models preserving such flexibility and
power. Maresca, therefore, has pruned the flexibility
and power of the general RM in defining a new recon-
figurable mesh architecture, Polymorphic Processor
Arrays (PPA), for which a programming model has
been proposed as a basis for the design of a paral-
lel programming language, called PPC (Polymorphic

Parallel C), and a compiler/simulator has been im-
plemented [12].

PPC is a well defined programming model but it
addresses only the issues concerning PPA. Recently,
Ben-Asher et al. [1, 2, 3] have proposed a systematic
approach in expressing RM algorithms where each
step of an algorithm is divided into four substeps in
sequence as discussed in Section 2. This has moti-
vated us to define a programming model of the gen-
eral RM and to write a serial simulator, RMSIM (Re-
configurable Mesh SIMulator) to support the model.
The RM programming model is expressed by means
of a programming language, called RPC (Reconfig-
urable Parallel C). RMSIM, written in ANSI C, can
simulate a subnetwork of a 3-dimensional reconfig-
urable mesh known as mesh of meshes (Section 2).
This simulator has an in-built interpreter to execute
RPC programs. The interpreter is capable of execut-
ing a program in different axis-orientations within
restricted regions. In defining RPC, we have con-
centrated on making the effort of transforming the
algorithms into equivalent programs straightforward
and easy. To aid in debugging, RMSIM is capable
of generating WTEX picture of any planar segment of
the mesh, at any step, while executing a program.

This paper is organized as follows. In the next sec-
tion we present the computational model of RM. Sec-
tion 3 defines a programming model for RM. Issues of
serial accessing of processing elements are addressed
in Section 4. In Section 5 we briefly describe the de-
bugging facilities of RMSIM. Section 6 concludes the

paper.

Figure 1: A 3 x 4 reconfigurable mesh.

2 RM Computational Model

The Reconfigurable MESH (RMESH) [14] and the
Processor Array with a Reconfigurable Bus System
(PARBS) [20] gained wide acceptence in the litera-
ture as RM computational models. Li and Stout [9]
have demonstrated that PARBS is probably more
powerful than RMESH by showing the performance
difference of the computation of exclusive-or (XOR)
on PARBS and RMESH models. We, therefore, con-
sider PARBS to be the RM computational model in
the rest of this paper.

The reconfigurable mesh is primarily a two-
dimensional mesh of processors connected by recon-
figurable buses. In this parallel architecture, a pro-
cessor element (PE) is placed at the grid points as
in the usual mesh connected computers. Each PE is
connected to at most four neighbouring PEs through
fixed bus segments connected to four I/O ports E
& W along dimension z and N & S along dimen-
sion y. These fixed bus segments are the building
blocks of larger bus components which are formed
through switching, decided entirely on local data,
of the internal connectors (see Figure 1) between
the I/0O ports of each PE. The possible fifteen in-
terconnections of I/O ports through switching are
shown in Figure 2. The connection patterns are rep-
resented as {p1,p2, ...}, where each of p; represents
a group of switches connected together such that
Uvipi = {N,E,W,S}. For example, {NS,E, W}
represents the connection pattern with ports N and
S connected and ports E and W unconnected. Like
all bus systems, the behaviour of RM relies on the
assumption that the transmission time of a message
along a bus is independent of the length of the bus

[3]-

{EWNS {EWNS {EW NS} {EWNS} {WN.ESH
{WSEN} {ENW.S} {ESW.N} {ESWN} {EN.WS}
{NWSE} {ENW,S} {NESW} {ESW,N} {EWNS}

Figure 2: Possible fifteen internal connections be-
tween the four I/O ports of a PE.

A reconfigurable mesh operates in the single-
instruction multiple-data (SIMD) mode. Besides the
reconfigurable switches, each PE has a computing
unit with a fixed number of local registers. A single
time step of an RM is composed of the following four
substeps:

BUS substep. Every PE switches the internal con-
nectors between I/0 ports by local decision.

WRITE substep. Along each bus, one or more
PEs on the bus transmit a message of length
bounded by the bandwidth of the fixed bus seg-
ments as well as the switches. These PEs are
called the speakers. A bus is called to be in
ambiguous state when there are more than one
speakers. In the most common ezclusive write
model, the ambiguous state is considered to be
an error state. The common write model [15, 4]
allows multiple processors broadcasting simul-
taneously to the same bus so long as they all

broadcast the same message. Otherwise, the
ambiguous state is considered to be an error
state. In both the models it is assumed that
the error state is detectable by the processors
and the bus carries arbitrary value. The most
powerful concurrent write model [23] also allows
multiple processors broadcasting simultaneously
to the same bus and the bus always carries the
wired-or of all the messages.

READ substep. Some or all the PEs connected to
a bus read the message transmitted through.

COMPUTE substep. A constant-time local com-
putation is done by each PE.

Reconfigurable meshes of higher dimension can be
constructed in a similar way. A number of inter-
esting algorithms [3, 5, 13, 19, 21] have appeared in
the literature for multi-dimensional RMs. In most
of the cases [3, 5, 13, 21], 3-D RM with two addi-
tional ports U and D along dimension z was con-
sidered because of a subnetwork of it, known as
mesh of meshes, where buses can be formed only
in 2-D space. In a mesh of meshes, not all the
six ports, N,S,E, W, U, D, can participate simul-
taneously in configuring dynamic interconnections.
Only the ports on the same plane can be inter-
connected and all the possible 15 interconnections
among each set of ports {E, W, N, S} on XY -plane,
{E,W,U,D} on XZ-plane, and {N,S,U,D} on
Y Z-plane are allowed. To overcome the implementa-
tion issues, optimal simulation of higher dimensional
RMs by 2-D ones is addressed in [19].

3 RM Programming Model

RMC is an extension of ANCI C. In fact, RM-
SIM is implemented as an ANCI C library preserv-
ing Object Oriented Programming (OOP) principles
through data hiding. Like C, RPC is designed to be
small. RPC programs, therefore, are assumed to be
dependent extensively on library programs which are
not the intregal part of the core of the language.

3.1 Initialisation and Basic Assump-
tions

Initialisation of the RM system to be sim-
ulated is carried out by calling the function
SetGlobalDim() in the main(). SetGlobalDim()
sets size Nx X Ny x Nz of the simulated RM, regN
number of registers per PE, and bus write mode
(exclusive|common | concurrent).

To locate a PE into the simulated mesh of meshes,
3-D Cartesian coordinates are used. Let PE, , . de-
note the PE at the coordinate (z,y,2). In every

Support planes

N~ z
X
Base plane
X

Figure 3: XY_Z axis-orientation.

RPC program, the XY -plane is assumed to be the
base plane while the planes perpendicular to it act
as the supporting planes. Let this axis-orientation
be called XY_Z as shown in Figure 3. Possible five
other axis-orientations YX Z, YZ X, ZY X, ZXY,
and XZY play important role in program reusabil-
ity as discussed in Section 3.5.

An RPC program also assumes that it will be exe-
cuted in a restricted region of the simulated mesh
defined by the constants Sx, Sy, Sz, Ex, Ey, Ez,
which includes only the processing elements PE, , .,
min(Sx,Ex) < z < max(Sx,Ex), min(Sy,Ey) < y <
max(Sy,Ey), min(Sz,Ez) < z < max(Sz,Ez). This
assumption also helps in program reusability which
is discussed in Section 3.5.

: :Program Name

w

Start_of Program Statement;

beGin_of Every Step Statement;
Bus Statement;

Write Statement;

Read Statement;

Compute Statement;

Finish_of Every Step Statement;

Q0@

E:: End of Program Statement;

Figure 4: RPC program layout in execution se-
quence.

3.2 Program Layout

The layout of an RPC program is given in Figure 4.
This layout also shows the sequence of execution.
The S::, G::, C::, F::, and E:: statements are
optional. Every B:: statement starts a step and
the G::(F::) statement is executed at the begin-
ning(end) of each step. The statements can be simple
or compler. As in C, a complex statment is recur-
sively defined as a sequence of simple or complex
statements enclosed in curly braces.

3.3 Data Structure

RPC assumes data width of the simulated mesh to
be the sizeof (double). The registers are consid-

ered as double variables and the bandwidth of the
buses and ports are assumed to be the data width.
It is programmer’s responsibilty to interpret the con-
tent of a register otherwise, if other simple data types
e.g. int, char, etc. are to be used. In a similar way
complex data types can also be handled. Rigisters
are indexed from 0 to regN — 1. To enforce data hid-
ing, registers are accessed only through the following
two functions:

o SetReg(reg, val) — sets the content of register
reg with val.

e GetReg(reg, val) —gets the content of register
reg.

3.4 Data Communication

Data communication in RPC is supported by four
primitives, available in the form of the following func-
tions:

e Bus(set_1, set_2, ...) — selects the connec-
tion pattern {set_1, set_2, ...} as the in-
terconnection of I/O ports. There can at
most be six parameters and each parameter is
a string of characters drawn from the alpha-
bet {E,W,N,S,U,D} such that |J,,; set_i =
{E,W,N,S,U,D} and Vi : Vj # i : set_iN
set_j = {}. As RMSIM simulates only a mesh
of meshes, it carries no meaning if a parame-
ter contains characters from all the three sets
{E,W}, {N,S}, and {U,D}.

e Write(prt, val) — writes the val on the bus
connected to the port prt.

e Read(prt) — reads the content of the bus con-
nected to the port prt.

e Error(prt) — returns 1 if the bus connected to
the port prt is in error state; returns 0 other-
wise.

3.5 Program Reusability

Like many other programming languages, RPC is ca-
pable of using previously written programs into a
new program through subroutine calls. Many RM
algorithms appeared in the literature containing ref-
erences to other published algorithms. This simpli-
fied the description of those algorithms significantly.
The capability of reusing programs enables a pro-
grammer to convert those algorithms into programs
in similar straightforward fashion.

Program reusability in RPC is sup-
ported by the function Call(Prog Name,
Requested Axis orientation, sx, ex, sy,
ey, sz, ez). Reusability of program through this
function depends on the following key issues:

Call Stack — It is assumed that each PE is
equipped with an internal stack to preserve the
values of Sx, Sy, Sz, Ex, Ey, Ez when a subrou-
tine call is made to another program.

z z X
y X z
XY z 7wz > vz x
X y y
y X z
Z Z
Y X XY XZ_Y

Figure 5: Possible six axis-orientations.

Axis-orientation Mapping — It has already been
mentioned in Section 3.1 that while a pro-
gram is written, RPC assumes XY_Z to be
the axis-orientation. But during a subroutine
call a program can be executed in any of the
possible six axis-orientations as shown in Fig-
ure 5. RPC allows nesting of subroutine calls
and the axis-orientation is selected accordingly.
Suppose the current axis-orientation and the
Requested_Axis_orientation be YZ X and
XZY, RPC will then select YX_Z as the resul-
tant axis-orientation.

The example RPC program (Figure 6) of com-
puting the ranks of N distinct numbers on an
N x N x N mesh of meshes exemplifies the
axis-orientation mapping. Let the number n;
be stored in PFE;99, 0 < ¢ < N. Now a row
broadcast after a column broadcast is done to
distribute the numbers in the XY -plane so that
PE; o, 0 <14,j < N, receives the pair (n;,n;)
and then produces 1, if n; > n;, or 0, otherwise.
Ranks are now computed by simply Calling the
program PrefixSumin YZ X axis-orientation in
every YZ-planes to add the comparison values
along each column.

Region Mapping — Enhancement in the power
of program reusability through axis-orientation
mapping cannot be realised completely if no way
is allowed to Call a program in a restricted area
of the mesh of meshes e.g. in the previous ex-
ample of computing ranks each Call of the pro-
gram PrefixSum uses a specific YZ-plane rather
than using the entire mesh of meshes. RPC as-
sumes that a program will be executed in a re-
stricted region of the simulated mesh defined by
the constants Sx, Sy, Sz, Ex, Ey, Ez as mentioned
in Section 3.1. Hence, defining a restricted re-
gion in program Calling is as simple as assigning
Sx = sx, Ex = ex, and so on.

::PrefixSum

B: : Bus(llNS", I|E" . llw", I|UII, IlDll, III|) H
W:: if(y == Sy && z == Sz)

Write(N, GetReg(0));
R:: Read(N, 0);

B:: if (GetReg(0) == 0)

Bus(llen , I|NII , I|SII , IIU" , IIDII , I|ll) H

else Bus("wN"’ ||ESI|’ "U") "D"’ ||I|, V|I|) ;

W:: if(x == Sx && y == Sy && z == Sz)

if (GetReg(0) == 0)

Write(E, 99);

else Write(N, 99);

R:: Read(E, 1);

B:: if(z == Sz)
Bus(IINSII, I|EII’ l|wl|’ IIU") IIDII’ l|ll) ;
W:: if(z == Sz && GetReg(l) == 99)
Write(S, y-Sy);
R:: if(y == Sy && z == Sz)
Read(S, 1);

::Rank

B: H Bus("NSl', I|E’|) l|wl|, ||U|l, ||D||, ||||) ;
W:: if(y == Sy && z == Sz)

Write(N, GetReg(0));
R:: Read(N, 0);

B: : Bus(lle", "N", IIS", ||U|l, ||D||, ||I|) ;
W:: if(x ==y && z == Sz)
Write(E, GetReg(0));
R:: Read(E, 1);
C:: { SetReg(2, GetReg(0));
if (GetReg(0) > GetReg(1))
SetReg(0, 1);
else SetReg(0, 0); }

B:: ;
Wi
R:: ;
C:: if(y == Sy && z == Sz) {
Call(PrefixSum, YZ_X, Ey, Sy, Sz,
Ez, x, x);
SetReg(0, GetReg(2));
}

Figure 6: An RPC program to compute the ranks of
some distinct numbers [21].

4 Serial Accessing of PEs in
RMSIM

RPC assumes that a program will be executed in all
the processors in parallel. But being a serial simula-
tor, RMSIM assumes the following order in accessing
PEs sequentially:

Loop along 3rd axis
Loop along 2nd axis
Loop along 1st axis

Actual axes to be considered in place of 1st, 2nd,
and 3rd axes are resolved according to the current
axis-orientation. In ZX'Y axis-orientation 1st, 2nd,
and 3rd axes are taken as z, z, and y axes. The step
of each loop is either 1 or -1 depending on Sx’s and
Ex’s. For example, the region defined in Figure 7 will
generate the following loop structure if the current
axis-orientation is XY_Z:

(Ex,Ey,Ez) = Z

S—) A
Restricted
region T
—~—— Original
T meshof
&= meshes
412) 1
X—= ——t—t

Figure 7: A restricted region in a 5 x 5 x 5 mesh of
meshes.

for z = 2to 3 step 1
fory =1to 3step 1
for x = 4 to 1 step -1

5 Debugging in RMSIM

RMSIM generates run time error codes while inter-
preting a program if problem occurs. Besides this
standard technique, RMSIM is also equipped with
a snapshotter which can be used to generate BTEX
picture of the bus configurations, along any plane of
the simulated mesh of meshes, at any step of pro-
gram execution. The generated pictures are scalable
and can show the content of the registers of each PE.

6 Conclusion

This paper defines a programming model for the gen-
eral RM which is expressed by means of a program-
ming language, called RPC (Reconfigurable Parallel
C). The paper also presents a serial simulator, RM-
SIM (Reconfigurable Mesh SIMulator), which can
simulate a subnetwork of 3-D RM known as mesh of
meshes. Besides simulating, RMSIM provides a pro-
gram interpreter which can execute RPC programs
in any possible axis-orientation within an enclosed
region. RMSIM can generate snapshots of any pla-
nar segment of the simulated mesh in IXTEX picture
format.

Technical Reference

This software is available by
ftp: cslab.anu.edu.au in the
/pub/Manzur/RMSIM (free distribution).

anonymous
directory

References

[1]

[2]

[4]

[6]

[8]

[9]

[10]

[11]

[12]

Yosi Ben Asher, Dan Gordon, and Assaf Schus-
ter. Efficient self-simulation algorithms for re-
configurable arrays. Journal of Parallel and Dis-
tributed Computing, 30:1-22, 1995.

Y. Ben-Asher, K. J. Lange, D. Peleg, and
A. Schuster. The complexity of reconfiguring

network models. Information and Computation,
121:41-58, 1995.

Y. Ben-Asher, D. Peleg, R. Ramaswami, and
A. Schuster. The power of reconfiguration.
Journal of Parallel and Distributed Computing,
13:139-153, 1991.

Prabir Bhattacharya. Connected component la-
beling for binary images on a reconfigurable
mesh architecture. Journal of Systems Archi-
tecture, 42:309-313, 1996.

Yen-Cheng Chen and Wen-Tsuen Chen. Con-
stant time sorting on reconfigurable meshes.
IEEE Transactions on Computers, 43:749-751,
1994.

Kuo-Liang Chung and Horn-Yi Lin. Hough
transform on reconfigurable meshes. Computer
Vision and Image Understanding, 61:278-284,
1995.

Ju-Wook Jang, Heonchul Park, and Viktor K.
Prasanna. A fast algorithm for computing a his-
togram on reconfigurable mesh. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 17:97-106, 1995.

Jing-Fu Jeno and Sartaj Sahni. Reconfig-
urable mesh algorithms for the hough transform.
Journal of Parallel and Distributed Computing,
20:69-77, 1994.

H. Li and Q. F. Stout. Reconfigurable SIMD

magssively parallel computers. Proc. IEEE,
79:1345-1351, 1991.

Hungwen Li and Massimo Maresca.
Polymorphic-torus network. IEEE Trans-

actions on Computers, 38:1345-1351, 1989.

M. Maresca and H. Li. Connection autonomy
in SIMD computers: a VLSI implementation.
Journal of Parallel and Distributed Computing,
7:302-320, 1989.

Massimo Maresca. Polymorphic processor ar-
rays. IEEE Transactions on Parallel and Dis-
tributed Systems, 4:490-506, 1993.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Mark S. Merry and Johnnie Baker. A con-
stant time sorting algorithm for a three dimen-
sional reconfigurable mesh and reconfigurable
network. Parallel Processing Letters, 5:401-412,
1995.

Russ Miller, V. K. Prasanna Kumar, Dionisios I.
Reisis, and Quentin F. Stout. Data movement
operations and applications on reconfigurable
VLSI arrays. In Proc. International Conference
on Parallel Processing, pages 205-208, 1988.

Russ Miller, V. K. Prasanna-Kumar, Dioni-
sios I. Reisis, and Quentin F. Stout. Parallel
computations on reconfigurable meshes. IEEFE
Transactions on Computers, 42:678-692, 1993.

M. Manzur Murshed and Richard P. Brent. RM-
SIM: a serial simulator for reconfigurable mesh
parallel computers. Technical Report TR-CS-
97-06, Joint Computer Science Tech. Report Se-
ries, The Australian National University, April
1997.

J. Rothstein. Bus automata, brains, and men-
tal models. IEEE Trans. Syst. Man Cybern,
18:522-531, 1988.

D. B. Shu and J. G. Nash. The gated intercon-
nection network for dynamic programming. In
S. K. Tewsburg et al., editors, Concurrent Com-
putations, pages 645-658. Plenum, New York,
1988.

Ramachandran Vaidyanathan and Jerry L. Tra-
han. Optimal simulation of multidimensional re-
configurable meshes by two-dimensional recon-
figurable meshes. Information Processing Let-
ters, 47:267-273, 1993.

Biing-Feng Wang and Gen-Huey Chen. Con-
stant time algorithms for the transitive closure
and some related graph problems on processor
arrays with reconfigurable bus systems. IEEE
Transactions on Parallel and Distributed Sys-
tems, 1:500-507, 1990.

Biing-Feng Wang, Gen-Huey Chen, and Ferng-
Ching Lin. Constant time sorting on a processor
array with a reconfigurable bus system. Infor-
mation Processing Letters, 34:187-192, 1990.

C. C. Weems et al. The image understanding
architecture. Internat. J. of Comput. Vision,
2:251-282, 1989.

Charles C. Weems et al. The image understand-
ing architecture. International Journal of Com-
puter Vision, 2:251-282, 1989.

