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Abstra
t. Pseudo-random numbers are often required for simulationsperformed on parallel 
omputers. The requirements for parallel randomnumber generators are more stringent than those for sequential randomnumber generators. As well as passing the usual sequential tests on ea
hpro
essor, a parallel random number generator must give di�erent, in-dependent sequen
es on ea
h pro
essor. We 
onsider the requirementsfor a good parallel random number generator, and dis
uss generators forthe uniform and normal distributions. We also des
ribe a new 
lass ofgenerators for the normal distribution (based on a proposal by Walla
e).These generators 
an give very fast ve
tor or parallel implementations.Implementations of uniform and normal generators on ve
tor and ve
-tor/parallel 
omputers are dis
ussed.
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hard P. Brent1 Introdu
tionPseudo-random numbers have been used in Monte Carlo 
al
ulations sin
e theearliest days of digital 
omputers [32℄. In this paper we are 
on
erned here withrandom number generators (RNGs) on fast, modern 
omputers { typi
ally ei-ther ve
tor pro
essors or parallel 
omputers using ve
tor or pipelined RISC pro-
essors. What we say about ve
tor pro
essors often applies to pipelined RISCpro
essors with a memory hierar
hy (the ve
tor registers of a ve
tor pro
essor
orresponding to the �rst-level 
a
he of a RISC pro
essor).With the in
reasing speed of ve
tor pro
essors and parallel 
omputers, 
on-siderable attention must be paid to the quality of random number generators. Aprogram running on a super
omputer might use 108 random numbers per se
ondover a period of many hours or even months in the 
ase of QCD 
al
ulations,so 1014 random numbers might 
ontribute to the result. Small 
orrelations orother de�
ien
ies in the random number generator 
ould easily lead to spuriouse�e
ts and invalidate the results of the 
omputation.Appli
ations require random numbers with various distributions (uniform,normal, exponential, binomial, Poisson, et
.) but the algorithms used to gen-erate these random numbers usually require a good uniform random numbergenerator { see for example [2, 5, 14, 24, 34, 39℄. In this paper we 
onsider thegeneration of uniformly and normally distributed numbers.Pseudo-random numbers generated in a deterministi
 fashion on a digital
omputer 
an not be truly random. What is required is that �nite segments ofthe sequen
e behave in a manner indistinguishable from a truly random sequen
e.In pra
ti
e, this means that they pass all statisti
al tests whi
h are relevant tothe problem at hand. Sin
e the problems to whi
h a library routine will beapplied are not known in advan
e, random number generators in subroutinelibraries should pass a number of stringent statisti
al tests (and not fail any)before being released for general use.A sequen
e u0; u1; � � � depending on a �nite state must eventually be periodi
,i.e. there is a positive integer p su
h that un+p = un for all suÆ
iently large n.The minimal su
h p is 
alled the period.Following are some of the more important requirements for a good uniformpseudo-random number generator and its implementation in a subroutine library(the modi�
ations for a normal generator are obvious) {� Uniformity. The sequen
e of random numbers should pass statisti
al testsfor uniformity of distribution. In one dimension this is easy to a
hieve. Mostgenerators in 
ommon use are provably uniform (apart from dis
retisationdue to the �nite wordlength) when 
onsidered over their full period.� Independen
e. Subsequen
es of the full sequen
e u0; u1; � � � should be inde-pendent. For example, members of the even subsequen
e u0; u2; u4; � � � shouldbe independent of their odd neighbours u1; u3; � � �. Thus, the sequen
e ofpairs (u2n; u2n+1) should be uniformly distributed in the unit square. Moregenerally, random numbers are often used to sample a d-dimensional spa
e,so the sequen
e of d-tuples (udn; udn+1; : : : ; udn+d�1) should be uniformly



Ve
tor/Parallel Random Number Generation 3distributed in the d-dimensional 
ube [0; 1℄d for all \reasonable" values of d(
ertainly for all d � 6).� Long Period. As mentioned above, a simulation might use 1014 random num-bers. In su
h a 
ase the period pmust ex
eed 1014. For many generators thereare strong 
orrelations between u0; u1; � � � and um; um+1; � � �, where m = p=2(and similarly for other simple fra
tions of the period). Thus, in pra
ti
e theperiod should be mu
h larger than the number of random numbers whi
hwill ever be used.� Repeatability. For testing and development it is useful to be able to repeata run with exa
tly the same sequen
e of random numbers as was used inan earlier run [22℄. This is usually easy if the sequen
e is restarted from thebeginning (u0). It may not be so easy if the sequen
e is to be restarted fromsome other value, say um for a large integer m, be
ause this requires savingthe state information asso
iated with the random number generator.� Portability. Again, for testing and development purposes, it is useful to beable to generate exa
tly the same sequen
e of random numbers on two di�er-ent ma
hines, possibly with di�erent wordlengths. In pra
ti
e it will be ex-pensive to simulate a long wordlength on a ma
hine with a short wordlength,but the 
onverse should be easy { a ma
hine with a long wordlength (sayw = 64) should be able to simulate a ma
hine with a smaller wordlengthwithout loss of eÆ
ien
y.� Disjoint Subsequen
es. If a simulation is to be run on a ma
hine with severalpro
essors, or if a large simulation is to be performed on several indepen-dent ma
hines, it is essential to ensure that the sequen
es of random numbersused by ea
h pro
essor are disjoint. Two methods of subdivision are 
om-monly used. Suppose, for example, that we require 4 disjoint subsequen
esfor a ma
hine with 4 pro
essors. One pro
essor 
ould use the subsequen
e(u0; u4; u8; � � �), another the subsequen
e (u1; u5; u9; � � �), et
. This partition-ing method is sometimes 
alled \de
imation" or \leapfrog" [11℄. For eÆ
ien
yea
h pro
essor should be able to \skip over" the terms whi
h it does not re-quire. Alternatively, pro
essor j 
ould use the subsequen
e (umj ; umj+1; � � �),where the indi
es m0;m1;m2;m3 are suÆ
iently widely separated that the(�nite) subsequen
es do not overlap. This requires some eÆ
ient method ofgenerating um for large m without generating all the intermediate valuesu1; : : : ; um�1.� EÆ
ien
y. It should be possible to implement the method eÆ
iently so thatonly a few arithmeti
 operations are required to generate ea
h random num-ber and all ve
tor/parallel 
apabilities of the ma
hine are used. To minimisesubroutine 
all overheads, the random number routine should return an ar-ray of (optionally) several numbers at a time.Several re
ent reviews [4, 6, 11, 16, 22, 24, 28, 33℄ of uniform random numbergenerators are available. The most important 
on
lusion regarding uniform gen-erators is that good ones may exist, but are hard to �nd [33℄. Linear 
ongruentialgenerators with a \short" period (less than say 248) are 
ertainly to be avoided.Generalised (or \lagged") Fibona

i generators using the \ex
lusive or" oper-ation are also to be avoided; other generalised Fibona

i generators may be
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tory if the lags are suÆ
iently large (if they use the operation of additionthen the lags should probably be at least 1000). See, for example, [12, Table 2℄.Our re
ommendation, implemented as RANU4 on Fujitsu VP2200 and VPP300ve
tor/parallel pro
essors, is a generalised Fibona

i generator with very largelags, e.g. (79500; 132049) (see [21℄), and 
areful initialisation whi
h avoids anyinitial atypi
al behaviour and ensures disjoint sequen
es on parallel pro
essors.For further details see [6℄.In the interests of 
onserving spa
e, we refer the reader to the reviews 
itedabove for uniform generators, and 
on
entrate our attention on the less often
onsidered, but still important, 
ase of normal random number generation onve
tor/parallel pro
essors. \Classi
al" generators are 
onsidered in x2, and aninteresting new 
lass of \Walla
e" generators [40℄ is 
onsidered in x3.We do not attempt to 
over the important topi
 of testing random numbergenerators intended for use on ve
tor/parallel 
omputers. A good, re
ent sur-vey of this topi
 is [12℄. The user should always remember that a deterministi
sequen
e of pseudo-random numbers 
an not truly be random; all that testing
an do is inspire 
on�den
e that a generator is indistinguishable from randomin a parti
ular appli
ation [37, 38℄. In pra
ti
e, testing is essential to 
ull badgenerators, but 
an not provide any guarantees.2 Normal RNGs based on Uniform RNGsIn this se
tion we 
onsider some \
lassi
al" methods for generating normallydistributed pseudo-random numbers. The methods all assume a good sour
e ofuniform random numbers whi
h is transformed in some manner to a sequen
eof normally distributed random numbers. The transformation is not ne
essarilyone to one.The most well-known and widely used methods for generating normally dis-tributed random variables on sequential ma
hines [2, 5, 14, 20, 24, 26℄ involve theuse of di�erent approximations on di�erent intervals, and/or the use of \re-je
tion" methods [14, 24℄, so they often do not ve
torise well. Simple, \old-fashioned" methods may be preferable. In x2.1 we des
ribe two su
h methods,and in xx2.2{2.3 we 
onsider their eÆ
ient implementation on ve
tor pro
essors,and give the results of implementations on a Fujitsu VP2200/10. In xx2.4{2.5 we
onsider some other methods whi
h are popular on serial ma
hines, and showthat they are unlikely to be 
ompetitive on ve
tor pro
essors.2.1 Some Normal GeneratorsAssume that a good uniform random number generator whi
h returns uniformlydistributed numbers in the interval [0; 1) is available, and that we wish to samplethe normal distribution with mean � and varian
e �2. We 
an generate twoindependent, normally distributed numbers x, y by the following old algorithmdue to Box and Muller [31℄ (Algorithm B1):



Ve
tor/Parallel Random Number Generation 51. Generate independent uniform numbers u; v 2 [0; 1).2. Set r  �p�2 ln(1� u).3. Set x r sin(2�v) + � and y  r 
os(2�v) + �.The proof that the algorithm is 
orre
t is similar to the proof of 
orre
tnessof the Polar method given in Knuth [24℄.Algorithm B1 is a reasonable 
hoi
e on a ve
tor pro
essor if ve
torised squareroot, logarithm and trigonometri
 fun
tion routines are available. Ea
h normallydistributed number requires 1 uniformly distributed number, 0:5 square roots,0:5 logarithms, and 1 sin or 
os evaluation. Ve
torised implementations of theBox-Muller method are dis
ussed in x2.2.A variation of Algorithm B1 is the Polarmethod of Box, Muller and Marsagliades
ribed in Knuth [24, Algorithm P℄:1. Generate independent uniform numbers x; y 2 [�1; 1).2. Set s x2 + y2.3. If s 2 (0; 1) then go to step 4 else go to step 1 (i.e. reje
t x and y).4. Set r  �p�2 ln(s)=s, and return rx + � and ry + �.It is easy to see that, at step 4, (x; y) is uniformly distributed in the unit
ir
le, so s is uniformly distributed in [0; 1).A proof that the values returned by Algorithm P are independent, nor-mally distributed random numbers (with mean � and varian
e �2) is given inKnuth [24℄. On average, step 1 is exe
uted 4=� times, so ea
h normally dis-tributed number requires 4=� ' 1:27 uniform random numbers, 0.5 divisions, 0.5square roots, and 0.5 logarithms. Compared to Algorithm B1, we have avoidedthe sin and 
os 
omputation at the expense of more uniform random numbers,0.5 divisions, and the 
ost of implementing the a

eptan
e/reje
tion pro
ess.This 
an be done using a ve
tor gather. Ve
torised implementations of the Polarmethod are dis
ussed in x2.3.2.2 Ve
torised Implementation of the Box-Muller MethodWe have implemented the Box-Muller method (Algorithm B1 above) and severalre�nements (B2, B3) on a Fujitsu VP2200/10 ve
tor pro
essor at the AustralianNational University. The implementations all return double-pre
ision real results,and in 
ases where approximations to sin, 
os, sqrt and/or ln have been made,the absolute error is 
onsiderably less than 10�10. Thus, statisti
al tests usingless than about 1020 random numbers should not be able to dete
t any biasdue to the approximations. The 
alling sequen
es allow for an array of randomnumbers to be returned. This permits ve
torisation and amortises the 
ost of asubroutine 
all over the 
ost of generating many random numbers.Our method B2 is the same as B1, ex
ept that we repla
e 
alls to the librarysin and 
os by an inline 
omputation, using a fast, but suÆ
iently a

urate,approximation (for details see [7℄).Times, in ma
hine 
y
les per normally distributed number, for methods B1,B2 (and other methods des
ribed below) are given in Table 1. In all 
ases the
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i random number generator RANU4 (des
ribed in [6℄) wasused to generate the required uniform random numbers, and a large number ofrandom numbers were generated, so that ve
tor lengths were long. RANU4 gen-erates a uniformly distributed random number in 2.2 
y
les on the VP2200/10.(The 
y
le time of the VP2200/10 at ANU is 3.2 nse
, and two multiplies andtwo adds 
an be performed per 
lo
k 
y
le, so the peak speed is 1.25 G
op.)The Table gives the total times and also the estimated times for the fourmain 
omponents:1. ln 
omputation (a
tually 0.5 times the 
ost of one ln 
omputation sin
e thetimes are per normal random number generated).2. sqrt 
omputation (a
tually 0.5 times).3. sin or 
os 
omputation.4. other, in
luding uniform random number generation.Table 1. Cy
les per normal random number
omponent B1 B2 B3 P1 P2 R1ln 13.1 13.1 7.1 13.1 7.1 0.3sqrt 8.8 8.8 1.0 8.8 1.0 0.0sin/
os 13.8 6.6 6.6 0.0 0.0 0.0other 5.9 5.6 11.6 11.9 13.8 35.1total 41.6 34.1 26.3 33.8 21.9 35.4The results for method B1 show that the sin/
os and ln 
omputations arethe most expensive (65% of the total time). Method B2 is su

essful in redu
ingthe sin/
os time from 33% of the total to 19%.In Method B2, the 
omputation of p� ln(1� u) 
onsumes 64% of the time.An obvious way to redu
e this time is to use a fast approximation to the fun
tionf(u) =p� ln(1� u);just as we used a fast approximation to sin and 
os to speed up method B1.However, this is diÆ
ult to a

omplish with suÆ
ient a

ura
y, be
ause thefun
tion f(u) is badly behaved at both endpoints of the unit interval. Method B3over
omes this diÆ
ulty in the following way.1. We approximate the fun
tiong(u) = u�1=2f(u) =r� ln(1� u)u ;rather than f(u). Using the Taylor series for ln(1 � u), we see that g(u) =1 + u=4 + � � � is well-behaved near u = 0.



Ve
tor/Parallel Random Number Generation 72. The approximation to g(u) is only used in the interval 0 � u � � , where� < 1 is suitably 
hosen. For � < u < 1 we use the slow but a

urate libraryln and sqrt routines.3. We make a 
hange of variable of the form v = (�u + �)=(
u + Æ), where�; : : : ; Æ are 
hosen to map [0; � ℄ to [�1; 1℄, and the remaining degrees offreedom are used to move the singularities of the fun
tion h(v) = g(u) as faraway as possible from the region of interest (whi
h is �1 � v � 1). To bemore pre
ise, let � be a positive parameter. Then we 
an 
hoose� = 1�� ��+ 2�2 ;v = (�+ 1)� (�+ 2)u� 22(�+ 1)� (�+ 2)u� ;and the singularities of h(v) are at �(�+ 1).For simpli
ity, we 
hoose � = 1, whi
h experiment shows is 
lose to optimalon the VP2200/10. Then � = 8=9, v = (6u� 4)=(4� 3u), and h(v) has singular-ities at v = �2, 
orresponding to the singularities of g(u) at u = 1 and u =1.A polynomial of the form h0 + h1v + � � � + h15v15 
an be used to approximateh(v) with absolute error less than 2 � 10�11 on [�1; 1℄. About 30 terms wouldbe needed if we attempted to approximate g(u) to the same a

ura
y by a poly-nomial on [0; � ℄. We use polynomial approximations whi
h are 
lose to minimaxapproximations. These may easily be obtained by trun
ating Chebyshev series,as des
ribed in [10℄.It appears that this approa
h requires the 
omputation of a square root, sin
ewe really want f(u) = u1=2g(u), not g(u). However, a tri
k allows this squareroot 
omputation to be avoided, at the expense of an additional uniform randomnumber generation (whi
h is 
heap) and a few arithmeti
 operations. Re
all thatu is a uniformly distributed random variable on [0; 1). We generate two indepen-dent uniform variables, say u1 and u2, and let u  max(u1; u2)2. It is easy tosee that u is in fa
t uniformly distributed on [0; 1). However, u1=2 = max(u1; u2)
an be 
omputed without 
alling the library sqrt routine. To summarise, a non-ve
torised version of method B3 is:1. Generate independent uniform numbers u1; u2; u3 2 [0; 1).2. Set m max(u1; u2) and u m2.3. If u > 8=9 then3.1. set r  �p� ln(1� u) using library routines, else3.2. set v  (6u� 4)=(4� 3u), evaluate h(v) as des
ribed above, andset r  �mh(v).4. Evaluate s sin(2�u3 � �) and 
 
os(2�u3 � �) as in [7℄.5. Return � + 
rp2 and � + srp2, whi
h are independent, normalrandom numbers with mean � and standard deviation �.Ve
torisation of method B3 is straightforward, and 
an take advantage ofthe \list ve
tor" te
hnique on the VP2200. The idea is to gather those u > 8=9
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ontiguous array, 
all the ve
torised library routines to 
ompute an arrayof p� ln(1� u) values, and s
atter these ba
k. The gather and s
atter opera-tions introdu
e some overhead, as 
an be seen from the row labelled \other" inthe Table. Nevertheless, on the VP2200, method B3 is about 23% faster thanmethod B2, and about 37% faster than the straightforward method B1. Theseratios 
ould be di�erent on ma
hines with more (or less) eÆ
ient implementa-tions of s
atter and gather.Petersen [35℄ gives times for normal and uniform random number generatorson a NEC SX-3. His implementation normalen of the Box-Muller method takes55.5 nse
 per normally distributed number, i.e. it is 2.4 times faster than ourmethod B1, and 1.51 times faster than our method B3. The model of SX-3 usedby Petersen has an e�e
tive peak speed of 2.75 G
op, whi
h is 2.2 times the peakspeed of the VP2200/10. Considering the relative speeds of the two ma
hinesand the fa
t that the SX-3 has a hardware square root fun
tion, our results areen
ouraging.2.3 Ve
torised Implementation of the Polar MethodThe times given in Table 1 for methods B1{B3 
an be used to predi
t the bestpossible performan
e of the Polar method (x2.1). The Polar method avoids the
omputation of sin and 
os, so 
ould gain up to 6.6 
y
les per normal ran-dom number over method B3. However, we would expe
t the gain to be lessthan this be
ause of the overhead of a ve
tor gather 
aused by use of a reje
-tion method. A straightforward ve
torised implementation of the Polar method,
alled method P1, was written to test this predi
tion. The results are shown inTable 1. 13.8 
y
les are saved by avoiding the sin and 
os fun
tion evaluations,but the overhead in
reases by 6.0 
y
les, giving an overall saving of 7.8 
y
les or19%. Thus, method P1 is about the same speed as method B2, but not as fastas method B3.En
ouraged by our su

ess in avoiding most ln and sqrt 
omputations in theBox-Muller method (see method B3), we 
onsidered a similar idea to speed upthe Polar method. Step 4 of the Polar method (x2.1) involves the 
omputationof p�2 ln(s)=s, where 0 < s < 1. The fun
tion has a singularity at s = 0, butwe 
an approximate it quite well on an interval su
h as [1=9; 1℄, using a methodsimilar to that used to approximate the fun
tion g(u) of x2.2.Inspe
tion of the proof in Knuth [24℄ shows that step 4 of the Polar method
an be repla
ed by4a. Set r  �p�2 ln(u)=s,and return rx + � and ry + �where u is any uniformly distributed variable in (0; 1℄, provided u is independentof ar
tan(y=x). In parti
ular, we 
an take u = 1�s. Thus, omitting the 
onstantfa
tor �p2, we need to evaluate p� ln(1� s)=s, but this is just g(s), and we
an use exa
tly the same approximation as in x2.2. This gives us method P2. Tosummarise, a non-ve
torised version of method P2 is:



Ve
tor/Parallel Random Number Generation 91. Generate independent uniform numbers x; y 2 [�1; 1).2. Compute s x2 + y2.3. If s � 1 then go to step 1 (i.e. reje
t x and y) else go to step 4.4. If s > 8=9 then4.1. set r  �p� ln(1� s)=s using library routines, else4.2. set v  (6s�4)=(4�3s), evaluate h(v) as des
ribed in x2.2, andset r  �h(v).5. Return xrp2 + � and yrp2 + �, whi
h are independent, normalrandom numbers with mean � and standard deviation �.To ve
torise steps 1-3, we simply generate ve
tors of xj and yj values, 
om-pute sj = x2j + y2j , and 
ompress by omitting any triple (xj ; yj ; sj) for whi
hsj � 1. This means that we 
an not predi
t in advan
e how many normal ran-dom numbers will be generated, but this problem is easily handled by introdu
inga level of bu�ering.The se
ond-last 
olumn of Table 1 gives results for method P2. There is asaving of 11.9 
y
les or 35% 
ompared to method P1, and the method is 17%faster than the fastest version of the Box-Muller method (method B3). The
ost of logarithm and square root 
omputations is only 37% of the total, theremainder being the 
ost of generating uniform random numbers (about 13%)and the 
ost of the reje
tion step and other overheads (about 50%). On theVP2200/10 we 
an generate more than 14 million normally distributed randomnumbers per se
ond.2.4 The Ratio MethodThe Polar method is one of the simplest of a 
lass of reje
tion methods forgenerating random samples from the normal (and other) distributions. Otherexamples are given in [2, 5, 14, 24℄. It is possible to implement some of thesemethods in a manner similar to our implementation of method P2. For example,a popular method is the Ratio Method of Kinderman and Monahan [23℄ (alsodes
ribed in [24℄, and improved in [26℄). In its simplest form, the Ratio Methodis given by Algorithm R:1. Generate independent uniform numbers u; v 2 [0; 1).2. Set x p8=e(v � 12 )=(1� u).3. If �x2 ln(1�u) > 4 then go to step 1 (i.e. reje
t x) else go to step 4.4. Return �x+ �.Algorithm R returns a normally distributed random number using on average8=p�e ' 2:74 uniform random numbers and 1.37 logarithm evaluations. Forthe proof of 
orre
tness, and various re�nements whi
h redu
e the number oflogarithm evaluations, see [23, 24, 26℄. The idea of the proof is that x is normallydistributed if the point (u; v) lies inside a 
ertain 
losed 
urve C whi
h in turn isinside the re
tangle [0; 1℄� [�p2=e;+p2=e℄. Step 3 reje
ts (u; v) if it is outsideC.
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tion ln(1� u) o

urring at step 3 has a singularity at u = 1, but it
an be evaluated using a polynomial or rational approximation on some interval[0; � ℄, where � < 1, in mu
h the same way as the fun
tion g(u) of x2.2.The re�nements added by Kinderman and Monahan [23℄ and Leva [26℄ avoidmost of the logarithm evaluations. The following step is added:2.5. If P1(u; v) then go to step 4else if P2(u; v) then go to step 1else go to step 3.Here P1(u; v) and P2(u; v) are easily-
omputed 
onditions. Geometri
ally, P1
orresponds to a region R1 whi
h lies inside C, and P2 
orresponds to a regionR2 whi
h en
loses C, but R1 and R2 have almost the same area. Step 3 is onlyexe
uted if (u; v) lies in the borderline region R2nR1.Step 2.5 
an be ve
torised, but at the expense of several ve
tor s
atter/gatheroperations. Thus, the saving in logarithm evaluations is partly 
an
elled out byan in
rease in overheads. The last 
olumn (R1) of Table 1 gives the times forour implementation on the VP2200. As expe
ted, the time for the logarithm
omputation is now negligible, and the overheads dominate. In per
entage termsthe times are:1% logarithm 
omputation (using the library routine),17% uniform random number 
omputation,23% s
atter and gather to handle borderline region,59% step 2.5 and other overheads.Although disappointing, the result for the Ratio method is not surprising, be-
ause the 
omputations and overheads are similar to those for method P2 (thoughwith less logarithm 
omputations), but only half as many normal random num-bers are produ
ed. Thus, we would expe
t the Ratio method to be slightly betterthan half as fast as method P2, and this is what Table 1 shows.2.5 Other MethodsOn serial ma
hines our old algorithm GRAND [5℄ is 
ompetitive with the Ratiomethod. In fa
t, GRAND is the fastest of the methods 
ompared by Leva [26℄.GRAND is based on an idea of Von Neumann and Forsythe for generating sam-ples from a distribution with density fun
tion 
 exp(�h(x)), where 0 � h(x) � 1:1. Generate a uniform random number x 2 [0; 1), and set u0  h(x).2. Generate independent uniform random numbers u1; u2; : : : 2 [0; 1)until the �rst k > 0 su
h that uk�1 < uk.3. If k is odd then return x,else reje
t x and go to step 1.A proof of 
orre
tness is given in Knuth [24℄.It is hard to see how to implement GRAND eÆ
iently on a ve
tor pro
essor.There are two problems {
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tor/Parallel Random Number Generation 111. k is not bounded, even though its expe
ted value is small. Thus, a sequen
eof gather operations seems to be required. The result would be similar toPetersen's implementation [35℄ of a generator for the Poisson distribution(mu
h slower than his implementation for the normal distribution).2. Be
ause of the restri
tion 0 � h(x) � 1, the area under the normal 
urveexp(�x2=2)=p2� has to be split into di�erent regions from whi
h samplesare drawn with probabilities proportional to their areas. This 
ompli
atesthe implementation of the reje
tion step.For these reasons we would expe
t a ve
torised implementation of GRAND tobe even slower than our implementation of the Ratio method. Similar 
ommentsapply to other reje
tion methods whi
h use an iterative reje
tion pro
ess and/orseveral di�erent regions.3 Ve
torisation of Walla
e's Normal RNGRe
ently Walla
e [40℄ proposed a new 
lass of pseudo-random generators fornormal variates. These generators do not require a stream of uniform pseudo-random numbers (ex
ept for initialisation) or the evaluation of elementary fun
-tions su
h as log, sqrt, sin or 
os (needed by the Box-Muller and Polar methods).The 
ru
ial observation is that, if x is an n-ve
tor of normally distributed randomnumbers, and A is an n�n orthogonal matrix, then y = Ax is another n-ve
torof normally distributed numbers. Thus, given a pool of nN normally distributednumbers, we 
an generate another pool of nN normally distributed numbers byperforming N matrix-ve
tor multipli
ations. The inner loops are very suitablefor implementation on ve
tor pro
essors. The ve
tor lengths are proportional toN , and the number of arithmeti
 operations per normally distributed number isproportional to n. Typi
ally we 
hoose n to be small, say 2 � n � 4, and N tobe large.Walla
e implemented variants of his new method on a s
alar RISC worksta-tion, and found that its speed was 
omparable to that of a fast uniform generator,and mu
h faster than the \
lassi
al" methods 
onsidered in x2. The same per-forman
e relative to a fast uniform generator is a
hievable on a ve
tor pro
essor,although some 
are has to be taken with the implementation (see x3.6).In x3.1 we des
ribe Walla
e's new methods in more detail. Some statisti
alquestions are 
onsidered in xx3.2{3.5. Aspe
ts of implementation on a ve
torpro
essor are dis
ussed in x3.6, and details of an implementation on the VP2200and VPP300 are given in x3.7.3.1 Walla
e's Normal GeneratorsThe idea of Walla
e's new generators is to keep a pool of nN normally dis-tributed pseudo-random variates. As numbers in the pool are used, new normallydistributed variates are generated by forming appropriate 
ombinations of the
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h have been used. On a ve
tor pro
essor N 
an be large and thewhole pool 
an be regenerated with only a small number of ve
tor operations1.The idea just outlined is the same as that of the generalised Fibona

i gen-erators for uniformly distributed numbers { a pool of random numbers is trans-formed in an appropriate way to generate a new pool. As Walla
e [40℄ observes,we 
an regard the uniform, normal and exponential distributions as maximum-entropy distributions subje
t to the 
onstraints:0 � x � 1 (uniform)E(x2) = 1 (normal)E(x) = 1, x � 0 (exponential).We want to 
ombine n � 2 numbers in the pool so as to satisfy the relevant
onstraint, but to 
onserve no other statisti
ally relevant information. To simplifynotation, suppose that n = 2 (there is no problem in generalising to n > 2).Given two numbers x, y in the pool, we 
ould satisfy the \uniform" 
onstraintby forming x0  (x + y) mod 1;and this gives the family of generalised Fibona

i generators [6℄.We 
ould satisfy the \normal" 
onstraint by forming�x0y0� A�xy� ;where A is an orthogonal matrix, for exampleA = 1p2 � 1 1�1 1�or A = 15 � 4 3�3 4� :Note that this generates two new pseudo-random normal variates x0 and y0 fromx and y, and the 
onstraint x02 + y02 = x2 + y2is satis�ed be
ause A is orthogonal.Suppose the pool of previously generated pseudo-random numbers 
ontainsx0; : : : ; xN�1 and y0; : : : ; yN�1. Let �; : : : ; Æ be integer 
onstants. These 
on-stants might be �xed throughout, or they might be varied (using a subsidiaryuniform random number generator) ea
h time the pool is regenerated.One variant of Walla
e's method generates 2N new pseudo-random numbersx00; : : : ; x0N�1 and y00; : : : ; y0N�1 using the re
urren
e1 The pro
ess of regenerating the pool will be 
alled a \pass".
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 mod Ny�j+Æ mod N � (1)for j = 0; 1; : : : ; N � 1. The ve
tors x0 and y0 
an then overwrite x and y, andbe used as the next pool of 2N pseudo-random numbers. To avoid the 
opyingoverhead, a double-bu�ering s
heme 
an be used.3.2 Desirable ConstraintsIn order that all numbers in the old pool (x; y) are used to generate the newpool (x0; y0), it is essential that the indi
es�j + 
 mod Nand �j + Æ mod Ngive permutations of f0; 1; : : : ; N � 1g as j runs through f0; 1; : : : ; N � 1g. Ane
essary and suÆ
ient 
ondition for this is thatGCD(�;N) = GCD(�;N) = 1 : (2)For example, if N is a power of 2, then any odd � and � may be 
hosen.The orthogonal matrix A must be 
hosen so ea
h of its rows has at leasttwo nonzero elements, to avoid repetition of the same pseudo-random numbers.Also, these nonzeros should not be too small.For implementation on a ve
tor pro
essor it would be eÆ
ient to take � =� = 1 so ve
tor operations have unit strides. However, statisti
al 
onsiderationsindi
ate that unit strides should be avoided. To see why, suppose � = 1. Thus,from (1), x0j = a0;0xj+
 mod N + a0;1y�j+Æ mod N ;where ja0;0j is not very small. The sequen
e (zj) of random numbers returnedto the user is x0; : : : ; xN�1; y0; : : : ; yN�1;x00; : : : ; x0N�1; y00; : : : ; y0N�1; : : :so we see that zn is strongly 
orrelated with zn+� for � = 2N � 
.Walla
e [40℄ suggests a \ve
tor" s
heme where � = � = 1 but 
 and Æ vary atea
h pass. This is 
ertainly an improvement over keeping 
 and Æ �xed. However,there will still be 
orrelations over segments of length O(N) in the output, andthese 
orrelations 
an be dete
ted by suitable statisti
al tests. Thus, we do notre
ommend the s
heme for a library routine, although it would be satisfa
toryin many appli
ations.We re
ommend that � and � should be di�erent, greater than 1, and that 
and Æ should be sele
ted randomly at ea
h pass to redu
e any residual 
orrela-tions.
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h pass. Walla
e suggests randomly sele
ting from two prede�ned 4 � 4matri
es, but there is no reason to limit the 
hoi
e to two2. We prefer to 
hoose\random" 2 � 2 orthogonal matri
es with rotation angles not too 
lose to amultiple of �=2.3.3 The Sum of SquaresAs Walla
e points out, an obvious defe
t of the s
hemes des
ribed in xx3.1{3.2is that the sum of squares of the numbers in the pool is �xed (apart from thee�e
t of rounding errors). For independent random normal variates the sum ofsquares should have the 
hi-squared distribution �2� , where � = nN is the poolsize.To over
ome this defe
t, Walla
e suggests that one pseudo-random numberfrom ea
h pool should not be returned to the user, but should be used to ap-proximate a random sample S from the �2� distribution. A s
aling fa
tor 
anbe introdu
ed to ensure that the sum of squares of the � values in the pool (ofwhi
h � � 1 are returned to the user) is S. This only involves s
aling the matrixA, so the inner loops are essentially un
hanged.There are several good approximations to the �2� distribution for large �. Forexample, 2�2� ' �x+p2� � 1�2 ; (3)where x is N(0; 1). More a

urate approximations are known [1℄, but (3) shouldbe adequate if � is large.3.4 RestartingUnlike the 
ase of generalised Fibona

i uniform random number generators [8℄,there is no well-developed theory to tell us what the period of the output se-quen
e of pseudo-random normal numbers is. Sin
e the size of the state-spa
e isat least 22wN , where w is the number of bits in a 
oating-point fra
tion and 2Nis the pool size (assuming the worst 
ase n = 2), we would expe
t the period tobe at least of order 2wN (see Knuth [24℄), but it is diÆ
ult to guarantee this.One solution is to restart after say 1000N numbers have been generated, using agood uniform random number generator with guaranteed long period 
ombinedwith the Box-Muller method to re�ll the pool.3.5 Dis
arding Some NumbersBe
ause ea
h pool of pseudo-random numbers is, stri
tly speaking, determinedby the previous pool, it is desirable not to return all the generated numbers to2 Caution: if a �nite set of prede�ned matri
es is used, the matri
es should be multi-pli
atively independent over GL(n;R). (If n = 2, this means that the rotation angles(mod 2�) should be independent over the integers.) In parti
ular, no matrix shouldbe the inverse of any other matrix in the set.
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onstant parameter4, we 
an return a fra
tion 1=f of thegenerated numbers to the user and \dis
ard" the remaining fra
tion (1� 1=f).The dis
arded numbers are retained internally and used to generate the nextpool. There is a tradeo� between independen
e of the numbers generated andthe time required to generate ea
h number whi
h is returned to the user. Ourtests (des
ribed in x3.7) indi
ate that f � 3 is satisfa
tory.3.6 Ve
torised ImplementationIf the re
urren
e (1) is implemented in the obvious way, the inner loop will involveindex 
omputations modulo N . It is possible to avoid these 
omputations. Thus2N pseudo-random numbers 
an be generated by �+ � � 1 iterations of a loopof the form do j = low, highxp(j) = A00*x(alpha*j + jx) + A01*y(beta*j + jy)yp(j) = A10*x(alpha*j + jx) + A11*y(beta*j + jy)enddowhere low, high, jx, and jy are integers whi
h are 
onstant within the loopbut vary between iterations of the loop. Thus, the loop ve
torises. To generateea
h pseudo-random number requires one load (non-unit stride), one 
oating-point add, two 
oating-point multiplies, one store, and of order�+ �Nstartup 
osts. The average 
ost should is only a few ma
hine 
y
les per randomnumber if N is large and �+ � is small.On a ve
tor pro
essor with interleaved memory banks, it is desirable for thestrides � and � to be odd so that the maximum possible memory bandwidth 
anbe a
hieved. For statisti
al reasons we want � and � to be distin
t and greaterthan 1 (see x3.2). For example, we 
ould 
hoose� = 3; � = 5;provided GCD(��;N) = 1 (true if N is a power of 2). Sin
e �+ � � 1 = 7, theaverage ve
tor length in ve
tor operations is about N=7.Counting operations in the inner loop above, we see that generation of ea
hpseudo-randomN(0; 1) number requires about two 
oating-point multipli
ationsand one 
oating-point addition, plus one (non-unit stride) load and one (unit-stride) store. To transform the N(0; 1) numbers to N(�; �2) numbers with givenmean and varian
e requires an additional multiply and add (plus a unit-strideload and store) 5. Thus, if f is the throw-away fa
tor (see x3.5), ea
h pseudo-random N(�; �2) number returned to the user requires about 2f + 1 multipliesand f + 1 additions, plus f + 1 loads and f + 1 stores.3 Similar remarks apply to some uniform pseudo-random number generators [24, 27℄.4 We shall 
all f the \throw-away" fa
tor.5 Obviously some optimisations are possible if it is known that � = 0 and � = 1.
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e is limited by the multiply pipelines, it might be desirable toredu
e the number of multipli
ations in the inner loop by using fast Givens trans-formations (i.e. diagonal s
aling). The s
aling 
ould be undone when the resultswere 
opied to the 
aller's bu�er. To avoid problems of over/under
ow, expli
its
aling 
ould be performed o

asionally (e.g. on
e every 50-th pass through thepool should be suÆ
ient).The implementation des
ribed in x3.7 does not in
lude fast Givens transfor-mations or any parti
ular optimisations for the 
ase � = 0, � = 1.3.7 RANN4We have implemented the method des
ribed in xx3.5{3.6 in Fortran on theVP2200 and VPP300. The 
urrent implementation is 
alled RANN4. The imple-mentation uses RANU4 [6℄ to generate uniform pseudo-random numbers for initial-isation and generation of the parameters �; : : : ; Æ (see (1)) and pseudo-randomorthogonal matri
es (see below). Some desirable properties of the uniform ran-dom number generator are inherited by RANN4. For example, the pro
essor id isappended to the seed, so it is 
ertain that di�erent pseudo-random sequen
eswill be generated on di�erent pro
essors, even if the user 
alls the generator withthe same seed on several pro
essors of the VPP300.The user provides RANN4 with a work area whi
h must be preserved between
alls. RANN4 
hooses a pool size of 2N , where N � 256 is the largest power of 2possible so that the pool �ts within part (about half) of the work area. Theremainder of the work area is used for the uniform generator and to preserve es-sential information between 
alls. RANN4 returns an array of normally distributedpseudo-random numbers on ea
h 
all. The size of this array, and the mean andvarian
e of the normal distribution, 
an vary from 
all to 
all.The parameters �; : : : ; Æ (see (1)) are 
hosen in a pseudo-random manner,on
e for ea
h pool, with � 2 f3; 5g and � 2 f7; 11g. The parameters 
 and Æ are
hosen uniformly from f0; 1; : : : ; N � 1g. The orthogonal matrix A is 
hosen ina pseudo-random manner as A = � 
os � sin �� sin � 
os �� ;where �=6 � j�j � �=3 or 2�=3 � � � 5�=6. The 
onstraints on � ensure thatmin(j sin �j; j 
os �j) � 1=2. We do not need to 
ompute trigonometri
 fun
tions:a uniform generator is used to sele
t t = tan(�=2) in the appropriate range, andthen sin � and 
os � are obtained using a few arithmeti
 operations. The matrix Ais �xed in ea
h inner loop (though not in ea
h 
omplete pass) so multipli
ationsby 
os � and sin � are fast.For safety we adopt the 
onservative 
hoi
e of throw-away fa
tor f = 3(see x3.5), although in most appli
ations the 
hoi
e f = 2 (or even f = 1) issatisfa
tory and signi�
antly faster.Be
ause of our use of RANU4 to generate the parameters �; : : : ; Æ et
, it is mostunlikely that the period of the sequen
e returned by RANN4 will be shorter than
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e generated by RANU4. Thus,it was not 
onsidered ne
essary to restart the generator as des
ribed in x3.4.However, our implementation monitors the sum of squares and 
orre
ts for any\drift" 
aused by a

umulation of rounding errors.On the VP2200/10, the time per normally distributed number is approxi-mately (6:8f + 3:2) nse
, i.e. (1:8f + 1:0) 
y
les. With our 
hoi
e of f = 3 thisis 23.6 nse
 or 6.4 
y
les. The fastest version, with f = 1, takes 10 nse
 or 2.8
y
les. For 
omparison, the fastest method of those 
onsidered in [7℄ (the Polarmethod) takes 21.9 
y
les. Thus, we have obtained a speedup by a fa
tor ofabout 3.2 in the 
ase f = 3.Times on a single pro
essor of the VPP300 are typi
ally faster by a fa
tor ofabout two, whi
h is to be expe
ted sin
e the peak speed of a pro
essor on theVPP300 is 2.285 GFlop (versus 1.25 G
op on the VP2200/10). On the VPP300with P pro
essors, the time per normally distributed number is 11:4=P nse
 iff = 3 and 5:4=P nse
 if f = 1.Various statisti
al tests were performed on RANN4 with several values of thethrow-away fa
tor f . For example:{ If (x; y) is a pair of pseudo-random numbers with (supposed) normal N(0; 1)distributions, then u = exp(�(x2 + y2)=2) should be uniform in [0; 1℄, andv = artan(x=y) should be uniform in [��=2;+�=2℄. Thus, standard tests foruniform pseudo-random numbers 
an be applied. For example, we generatedbat
hes of (up to) 107 pairs of numbers, transformed them to (u; v) pairs,and tested uniformity of u (and similarly for v) by 
ounting the number ofvalues o

urring in 1; 000 equal size bins and 
omputing the �2999 statisti
.This test was repeated several times with di�erent initial seeds et
. The �2values were not signi�
antly large or small for any f � 1.{ We generated a bat
h of up to 107 pseudo-random numbers, 
omputed thesample mean, se
ond and fourth moments, repeated a number of times, and
ompare the observed and expe
ted distributions of sample moments. Theobserved moments were not signi�
antly large or small for any f � 3. Thefourth moment was sometimes signi�
antly small (at the 5% 
on�den
e level)for f = 1.A possible explanation for the behaviour of the fourth moment when f = 1is as follows. Let the maximum absolute value of numbers in the pool at onepass be M , and at the following pass be M 0. By 
onsidering the e�e
t of theorthogonal transformations applied to pairs of numbers in the pool, we see that(assuming n = 2), M=p2 �M 0 � p2M :Thus, there is a 
orrelation in the size of outliers at su

essive passes. The
orrelation for the subset of values returned to the user is redu
ed (although not
ompletely eliminated) by 
hoosing f > 1.
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lusions for Normal RNGWe showed that both the Box-Muller and Polar methods for normally distributedrandom numbers ve
torise well, and that it is possible to avoid and/or speed upthe evaluation of the fun
tions (sin, 
os, ln, sqrt) whi
h appear ne
essary. Onthe VP2200/10 our best implementation of the Polar method takes 21.9 ma
hine
y
les per normal random number, slightly faster than our best implementationof the Box-Muller method (26.3 
y
les).We 
onsidered the ve
torisation of some other popular methods for generat-ing normally distributed random numbers, and showed why su
h methods areunlikely to be faster than the Polar method on a ve
tor pro
essor.We showed that normal pseudo-random number generators based on Wal-la
e's ideas ve
torise well, and that their speed on a ve
tor pro
essor is 
lose tothat of the generalised Fibona

i uniform generators, i.e. only a small numberof ma
hine 
y
les per random number.Be
ause Walla
e's methods are new, there is little knowledge of their sta-tisti
al properties. However, a 
areful implementation should have satisfa
torystatisti
al properties provided distin
t non-unit strides �, � satisfying (2) areused, the sums of squares are varied as des
ribed in x3.3, and the throw-awayfa
tor f is 
hosen appropriately. The pool size should be fairly large (subje
t tostorage 
onstraints), both for statisti
al reasons and to improve performan
e ofthe inner loops. Walla
e uses 4�4 orthogonal transformations, but a satisfa
torygenerator is possible with 2� 2 orthogonal transformations.It may appear that we have 
on
entrated on ve
tor rather than parallel im-plementations. If this is true, it is be
ause ve
torisation is the more interestingand 
hallenging topi
. Parallelisation of random number generators is in a te
h-ni
al sense \easy" sin
e no 
ommuni
ation is required after the initialisation ondi�erent pro
essors. However, 
are has to be taken with this initialisation toensure independen
e (see x1), and testing of parallel RNGs should not ignorethis important requirement.A
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