NH,
i PARALLEL
;ﬁ% COMPUTING

ELSEVIER Parallel Computing 26 (2000) 1447-1458

www.elsevier.com/locate/parco

Adaptive AT? optimal algorithms on
reconfigurable meshes ™

M. Manzur Murshed ®*, Richard P. Brent °

& Computer Sciences Laboratory, Research School of Information Sciences and Engineering,
The Australian National University, Canberra ACT 0200, Australia
® Oxford University Computing Laboratory, Oxford OXI 30D, UK

Received 2 February 1999; received in revised form 13 March 2000; accepted 25 May 2000

Abstract

Recently self-simulation algorithms have been developed to execute algorithms on a re-
configurable mesh (RM) of size smaller than recommended in those algorithms. Optimal
slowdown, in self-simulation, has been achieved with the compromise that the resultant al-
gorithms fail to remain AT? optimal. In this paper, we introduce, for the first time, the idea of
adaptive algorithm which runs on RM of variable sizes without compromising the 472 opti-
mality. We support our idea by developing adaptive algorithms for sorting items and com-
puting the contour of maximal elements of a set of planar points on RM. © 2000 Published
by Elsevier Science B.V. All rights reserved.

Keywords: Parallel algorithm; Reconfigurable mesh; AT? optimality; Self-simulation

1. Introduction

It is well known that interprocessor communications and simultaneous memory
accesses often act as bottlenecks in present-day parallel machines. Bus systems have
been introduced to a number of parallel computers [10,11,22] to address this prob-
lem. A bus system is called reconfigurable if it can be dynamically changed according

* A preliminary version of this paper was presented at the 10th IASTED International Conference on
Parallel and Distributed Computing and Systems, Las Vegas, USA, 1998.
* Corresponding author. Present address: Gippsland School of Computing and Information Technology,
Monash University, Gippsland Campus, Churchill, Vic. 3842, Australia.
E-mail addresses: manzur.murshed@infotech.monash.edu.au, murshed@cslab.anu.edu.au (M. Manzur
Murshed), richard.brent@comlab.ox.ac.uk (R.P. Brent).

0167-8191/00/$ - see front matter © 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0167-8191(00)00060-0

1448 M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458

to either global or local information. Introduction of reconfigurable bus systems
reduces the virtual communication diameter of any network of processors to a
constant. This fact has greatly influenced researchers around the world and a large
collection of constant time algorithms have already been developed [16]. To realise
these constant time algorithms we need to use more processors than we usually use to
solve the same problems on ordinary meshes. In fact, we can easily observe that the
ratio of the number of processors used in a constant time algorithm to the number of
processors used in an ordinary mesh algorithm solving the same problem is poly-
nomial in problem size. Ben-Asher et al. [1] present the idea of self-simulation, where
the existing reconfigurable mesh (RM) algorithms are executed with slowdown on an
RM of size smaller than intended for those algorithms. A few self-simulation tech-
niques appear in [1,15] with optimal slowdown for various models of RM.

In this paper, we have pointed out that self-simulation even with optimal slow-
down compromises the AT? [20, Chapter 2] optimality of the resultant algorithm. To
overcome this limitation of self-simulation, we have presented a new idea of devel-
oping algorithms on RM which will be adaptive in the sense that these algorithms
can be executed on RM of various size keeping the A7 measures unaffected by the
size. To illustrate our idea, we have developed adaptive AT? optimal algorithms for
sorting items and computing the contour of maximal elements of a set of planar
points.

The paper is organized as follows. In the next section, we present the key issues
associated with RM, its self-simulation, and AT lower bounds. The idea of adaptive
optimal algorithm is developed in Section 3. In Section 4, we develop an adaptive
AT? optimal sorting algorithm. The problem of computing the contour of maximal
elements of a set of planar points is defined in Section 5 and an adaptive AT? optimal
algorithm to solve the problem is developed in the same section.

2. Preliminaries

For the sake of completeness, here, we briefly define RM, self-simulation of RM,
and AT? lower bounds. We then discuss AT? optimality issues associated with the
self-simulation of RM.

2.1. Reconfigurable mesh

The RM [22] is primarily a two-dimensional mesh of processors connected by
reconfigurable buses. In this parallel architecture, a processor element is placed at the
grid points as in the usual mesh connected computers. Processors of the RM of size
X x Y are denoted by PE; ;, 0<i < X, 0<j < Y, where processor PE resides in the
south-western corner. Each processor is connected to at most four neighboring
processors through fixed bus segments connected to four I/O ports E & W along
dimension x and N & S along dimension y. These fixed bus segments are building
blocks of larger bus components which are formed through switching, decided

M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458 1449

Fig. 1. A reconfigurable mesh of size 3 x 4.

[EWN,S] [EWN,S] [E.W.NS] [EWNS] [WN.E,S]
WS.EN] [EN,W,S] [ESWN] [ES,WN] [EN,WS]
[NWS,E] [ENW,S] [NES,W] [ESW,N] [EWNS]

Fig. 2. Possible internal connections between the four I/O ports of a processor.

entirely on local data, of the internal connectors (see Fig. 1) between the I/O ports of
each processor. The 15 possible interconnections of 1/O ports through switching are
shown in Fig. 2. Like all bus systems, the behaviour of RM relies on the assumption
that the transmission time of a message along a bus is independent of the length of
the bus.

An RM operates in the single instruction multiple data (SIMD) mode. Besides the
reconfigurable switches, each processor has a computing unit with a fixed number of
local registers. Other than the buses and switches the RM of size p x ¢ is similar to
the standard mesh of size p x ¢ and hence it has @(pq) area in VLSI embedding [20],
under the assumption that processors, switches, and links between adjacent switches
occupy unit area.

2.2. Self-simulation of RM

Introduction of reconfigurable buses reduces the virtual communicational diam-
eter of regular parallel architecture to a constant and thus leads to the simplest ar-
chitecture, the mesh. Can RM be the basis for the design of the next generation of
massively parallel computers? Perhaps the answer depends on the most fundamental
issue of self-simulation, i.e., simulation of large RMs by smaller ones.

We say that RM R; is simulated by R, with slowdown S if the result for any
algorithm A4; on R; is achieved through the execution of a step-by-step simulation
algorithm A, on R, in which each step of 4, is simulated with slowdown at most S.

1450 M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458

Obviously the self-simulation of an M x N RM by a P x Q RM is said to be optimal
if the slowdown is @((M/P)(N/Q)), P<M and Q<N.

Ben-Asher et al. [1] first present the concept of self-simulation for RM and de-
velop some self-simulation algorithms with optimal slowdown. In [15], we present
optimal self-simulation algorithms of some restricted RMs. Optimal slowdown in
self-simulation is the bottom line we can achieve but it tells a little of the optimality
of the resultant algorithm.

2.3. Lower bounds on area and time [20]

Consider the history of a bit of information in the space-time solid of Fig. 3. A bit
of information is read in at some time or place, it may then be combined with other
bits to form composite information and finally at some point, it may be discarded
completely, or it may be output at one or more points.

Three fundamentally different types of arguments can now be used to derive lower
bounds on the area and/or time. First, at most one bit can be input at any point in
the solid and this gives us a lower bound on the volume, A7. Second, consider a
cross-section, parallel to the area plane, of the solid. By arguing that a certain
amount of information must flow across this cross-section, we can sometimes obtain
lower bounds on the area of the cross-section, 4. Third, consider a cross-section of
the solid that is perpendicular to the area plane and also cuts across the shorter
dimension of the area plane. Now by arguing in the similar fashion, we can some-
times obtain lower bounds on the area of the cross-section, 7v/4, i.e., lower bounds
on AT?.

In many cases, lower bounds on 4 and AT appear to be “weak”, in the sense that
there do not appear to be circuits as good as these bounds imply might be possible.
Many “strong” lower bounds, that do match the best circuits we can construct, are
lower bounds on AT>.

Time T

Area A

Fig. 3. The space-time solid [20].

M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458 1451
2.4. AT? optimality issues with self-simulation of RM

Is the resultant algorithm in self-simulation of RM with optimal slowdown AT?
optimal?

We have a negative answer. Consider any problem of size n whose 4T? = Q(n?),
say, sorting of n elements of size logn bits each. Now, we have some sorting algo-
rithms [4,17,18] which can sort n elements on RM of size n x n in constant time.
Obviously the 472 measures of these algorithms are ©(n*) and thus these algorithms
are AT? optimal.

Suppose one of this 4T? optimal sorting algorithm is self-simulated, with optimal
slowdown ©(n?/m?), in an RM of size m x m, where m < n. The AT? measure of the
resultant sorting algorithm then becomes ©(n*/m?) which is not optimal for m < n.

On the other hand, we have many AT? optimal sorting algorithms [8,9,19] to sort
n elements on an ordinary mesh of size \/n X /n in O(y/n) time.

This anomaly suggests the development of adaptive algorithms which will remain
AT? optimal while running on RM of various sizes.

3. Adaptive 4 T? optimal algorithms

Let a problem £ of size n have I(n) information content [20, pp. 51-54]. If this
problem £ is realized in a VLSI circuit with aspect ratio o then, by Ullman [20, p. 57],
AT? lower bound of 2 will be Q(al?(n)). Now, consider an RM of size p x g, where
pqg ="k (n),1 <p<g<I*(n),and k > 1.

Let 2 be solved, AT? optimally, on an RM of size p x g in O(T) time. Then

pqT* =1%12(n)7

which implies

r=t0)_

q
Tk (1)

Observe that T is independent of ¢, the length of the larger side of the VLSI circuit.
Now,
T=1<p=1In).

Thus, development of constant time algorithm is feasible whenever p = I(n) for any
q = p. As we are interested in keeping the area at minimum, the minimum possible
value of ¢ should be considered. So,

T=1l<<=p=q=k=1I1(n). (2)

Lemma 1. To solve 2 AT? optimally in constant time, an RM of size at least
I(n) x I(n) is required.

1452 M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458

Again,
k=1—=T=q.

This implies that whenever the area of the VLSI circuit equals the information
content of the problem to be solved, the time of solution depends only on ¢, the
length of the larger side of the VLSI circuit. As we are interested in keeping the time
at minimum, the minimum possible value of ¢ should be considered. So, pg = I(n)
and p < g derive the following:

k=l<=p=q=T=+/In). (3)

Lemma 2. To solve ? AT? optimally on an RM of size \/I(n) x \/I(n) requires

Q(\/I(n)) time.

Lemma 2 has extra significance. Communication diameter of an ordinary mesh of

size \/I(n) x \/I(n) is ©(y/1(n)). Thus, the power of reconfigurability becomes
absolutely useless when 2 is tried to be solved AT? optimally on an RM of size
VI(n) x \/I(n).

We are interested in developing an adaptive algorithm to solve 2 on an RM of size
p % g, \/I(n) < p<q<I(n)such that the time required to solve £ is O(g/k), which is
AT? optimal, where k = pq/I(n). Obviously minimum 472 lower bound can only be
achieved when p = ¢. The algorithm is called adaptive as it remains optimal for all p
and gq.

4. Adaptive sorting algorithms

Here, we plan to develop adaptive algorithms which will connect the AT? optimal
sorting algorithm of Marberg and Gafni [9] on ordinary mesh to any constant time
sorting algorithm on RM. The algorithms presented in this section were developed in
[2] for a different architecture with different objective.

Lemma 3. Let s items be stored in some s processors of a linear array of m = s
processors with reconfigurable bus. Then, these items can be sorted in O(s) time.

Proof. A straightforward emulation of odd—even transposition sort [7, pp. 139-144]
solves the problem. [J

Lemma 4. Sorting m items in the first row of an RM of size m X m can be done in O(1)
time.

Proof. See in [4,17,18]. O

The algorithm of Marberg and Gafni [9] uses a fixed number of phases of row/
column sorting/rotating to sort ab items in O(a + b) time on a mesh of size a x b,

M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458 1453

where a > v/b. It is obvious that if @ % v/b, then b > \/a and thus sorting can be done
simply by transposing all row/column operations into column/row operations in the
algorithm.

4.1. Sorting of p items on an RM of size k x p, k<p

Let the RM of size k x p be divided into p/k submeshes of size k x k each and the
given p items in the first row be distributed in such a way that each processor PE; ,
0<i<kand0<j < p/k, receives an item. It is obvious that such a redistribution of
elements can be carried out in constant time using a column broadcast followed by a
row broadcast with bus splitting [12]. Now, the emulation of the sorting algorithm of
Marberg and Gafni [9] needs only the following basic operations:

If k> \/p/k

1. Sorting k items in a column using a submesh of size k x k.

2. Rotating /p/k items in a row using a submesh of size 1 x k\/p/k.

3. Sorting/rotating p/k items in a row using a submesh of size 1 x p.

4. Sorting \/p/k items in a column using a submesh of size \/p/k x k.
Else (= p/k > Vk)

5. Sorting p/k items in a row using a submesh of size 1 x p.

6. Rotating v/k items in a column using a submesh of size vk x k.

7. Sorting/rotating k items in a column using a submesh of size £ x k.

8. Sorting Vk items in a row using a submesh of size 1 x k.

The problem of rotation can always be transformed into a sorting problem without
any slowdown. A rotation, therefore, takes as much time as it does to sort. Now,
operations 1, 4, 6, and 7 can be done in O(1) time by Lemma 4. Using Lemma 3 it
can be shown that operation 2 can be done in O(/p/k) time and operations 3, 5, and
8 can be done in O(p/k) time. Hence follows:

Theorem 1. Given p items in the first row of an RM of size k X p, k < p, these items
can be sorted in O(p/k) time, which is AT* optimal.

4.2. Sorting of n items on an RM of size p X q, p< q and pqg = kn

Let the RM of size p x ¢ be divided into g/k submeshes of size p x k each as
suggested in Section 3 and the given n items in the first n/p columns be distributed in
such a way that each processor PE, 3, 0<i < p and 0 </ < q/k, receives an item. It
can easily be shown that such a redistribution can be carried out in O(n/p) = O(q/k)
time using only row broadcasts. Again, using the very similar techniques in Section
4.1, it can be shown that the emulation of the sorting algorithm of Marberg and
Gafni on this p x ¢ RM needs O(g/k) time as p<gq.

Theorem 2. Given n items in the first n/p columns of an RM of size p X q, p< q and
pq = kn, these items can be sorted in O(q/k) time, which is AT* optimal.

1454 M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458
5. Adaptive m-contour algorithms

Let the planar point at coordinate (i, j) be defined as P(i, ;). Again, let for any
point p, x(p) denote the x-coordinate and y(p) denote the y-coordinate of p, e.g.,

x(P(i,j)) = i and y(P(i,])) = j.

Definition 1. A point p dominates a point ¢ (denoted by ¢ < p) if x(¢) <x(p) and
¥(q) <y(p). (The relation “<” is naturally called dominance.)

Let S be a set of N planar points. To simplify the exposition of our algorithms, the
points in S are assumed to be distinct.

Definition 2. A point p € S is maximal if there is no other point ¢ € S with p < q.

We are interested in the contour spanned by the maximal elements of S, called the
m-contour of S which can be obtained by simply sorting the maximal elements in
ascending order of their x-coordinates (Fig. 4). Let the m-contour of a set S be
denoted as m(S).

We have mentioned two interesting observations on m-contour in our paper
[13,14] which are given below for the sake of completeness.

Lemma 5. Every m-contour is sorted in descending order of the y-coordinates.

Proof. Suppose the contrary holds. Then there exists at least one pair of maximal
elements p and ¢ such that y(p) < y(g) while x(p) <x(g), which contradicts with the
assumption that point p is maximal. [

Let for any set S of some planar points functions min, (S) and max,(S) denote the
minimum and maximum x-coordinates in the set, respectively. Let two more func-
tions min, (S) and max,(S) be defined similarly w.r.t. y-coordinate.

Lemma 6. Given K sets Sy, Si, ..., Sx_1 of planar points such that ¥Vt : 0<t <K —1,
max,(S;) < min,(Sy1), then Vi: 0<i<K —1, Vpem(S) Ay(p) > max,(m(S;)),
Yj > i, if and only if, p € m(Uf:)l S).

o non-maximal tpoin'(
e maximal poin

Fig. 4. m-contour of a set of planar points.

M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458 1455

Proof. The necessity part can be proved by arranging a contradiction of Lemma 5.
To prove the sufficiency part we take a point pem(S;), Ji: 0<i<
K—1Apd&m(f;ol S,). Then by the definition of maximality we get Jq € Uf:il S,
such that p < ¢, i.e., y(p) <y(g). O

The m-contour problem is also known as finding the maxima of a set of vectors
and has been extensively explored for serial computers in [5,6]. It is well known that
the time complexity for computing the contour of the maximal elements of n planar
points is @(nlogn) using a serial computer [6]. This lower boundary can be con-
cluded from the fact that the problem of sorting can be easily transformed into an m-
contour problem. The information content in computing m-contour of n planar
points is 2(n) and hence the 472 lower bound is 2(n?) [20, p. 56]. Dehne [3] gives an
AT? optimal algorithm for solving m-contour problem on a mesh of size /n X \/n in
O(4/n) time. In [13,14], we have presented three constant time m-contour algorithms
on RM of various dimensions. Using the result of optimal simulation of multi-di-
mensional RM by two-dimensional RM in [21], it can easily be shown that all the
three algorithms in [13,14] are AT? optimal.

We now plan to develop adaptive algorithms based on our 472 optimal constant
time m-contour algorithm presented in [13,14].

Given a binary sequence, b;, 0 <j < N, the prefix-and computation is to compute,
Vi: 0<i< N, bgAby A---Ab;. Similarly the prefix-or computation computes
boVb V---Vb, Vi: 0<i < N. Adapting the technique of bus splitting [12] it is
easy to show that:

Lemma 7. Given a binary sequence of length m in the only row of an RM of size 1 x m,
both the prefix-and and the prefix-or of the elements in the sequence can be computed in
O(1) time.

Proof. See in [12]. O

Lemma 8. Computing m-contour of m planar points in the first row of an RM of size
m X m can be done in O(1) time.

Proof. First, the points are sorted w.r.t. x-coordinate in constant time using Lemma
4. Using a column broadcast and a row broadcast, all the points are distributed in
such a way that each column represents possible /7 pair-wise comparisons of a single
point with the rest. The m-contour is then determined by computing the prefix-and of
the comparison values in O(1) time by Lemma 7. See in [13,14] for detail. O

5.1. Computing of the m-contour of p planar points on an RM of size k X p, k<p

Let the RM of size k x p be divided into p/k submeshes of size k x k each and the
given p planar points in the first row be distributed in such a way that each processor
PE; i, 0<i <k and 0<j < p/k, receives a point. It is obvious that such a redistri-
bution of elements can be carried out in constant time using a column broadcast

1456 M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458

followed by a row broadcast with bus splitting [12]. Now, we sort the points w.r.t. x-
coordinate in column-major order by Theorem 1 in O(p/k) time.

Let the points residing in column jk be denoted by the set S;, 0 < j < p/k. Clearly
these p/k sets of planar points follow the condition of Lemma 6, i.e.,
Vi 0<j<p/(k—1), max,(S;) < min,(S;11). The m-contours m(S;), 0<j < p/k,
are now computed in parallel using a submesh of size £ x k for each computation. By
Lemma 8 this operation takes only O(1) time. Now, we transfer the max,(m(S;))
values to the first row of the RM in a single step by bus-splitting [12] using Lemma 5.

The m-contour of the entire p points can now be computed in the following steps
using Lemma 6:

1. Iterate the following for t =0,1,..., [p/kK*] — 1
1.1. Copy max, (m(Su4;)) to processors PE; .., 0<i<k, 0<r <p/k for all
0<j < k, using a column broadcast then a row broadcast and finally a col-
umn broadcast.

1.2. Copy the y-coordinate of the point residing in processor PE;; to the proces-

sors PE; i, 0 <7 < k, for all 0 <j < p/k, 0<i < k, using a row broadcast.

1.3. Now in the jth submesh of size k x k, the ith row contains k max, values

paired with the y-coordinate of a particular point, say d. Now, apply Lemma
6 to eliminate d by computing prefix-or over the comparison values of at
most k pairs in constant time by Lemma 7.
It is very easy to show that the above iteration takes O([p/k?]) time and thus it can
be concluded that:

Theorem 3. Given p planar points in the first row of an RM of size k X p, k < p, the m-
contour of these points can be computed in O(p/k) time, which is AT* optimal.

5.2. Computing of the m-contour of n planar points on an RM of size p x q, p< q and
pq =kn

Let the RM of size p x ¢ be divided into ¢/k submeshes of size p x k each and the
given n planar points in the first n/p columns be distributed in such a way that each
processor PE, i, 0<i < p and 0<j < gq/k, receives a point. It can easily be shown
that such a redistribution can be carried out in O(n/p) = O(g/k) time using only row
broadcasts. Now, we sort the points w.r.t. x-coordinate in column-major order by
Theorem 2 in O(g/k) time.

Let the points residing in column jk be denoted by the set S;, 0 <j < ¢g/k. Clearly
these ¢/k sets of planar points follow the condition of Lemma 6, i.e.,
Vi 0<j<q/(k—1), max,(S;) < min,(S;11). The m-contours m(S;), 0<j < q/k,
are now computed in parallel using a submesh of size p x k for each computation. By
Theorem 3 this operation takes only O(p/k) time.

Now taking very similar steps as used in Section 5.1 it can be shown that:

Theorem 4. Given n planar points in the first n/p columns of an RM of size p X q, p<q
and pq = kn, the m-contour of these points can be computed in O(q/k) time, which is
AT? optimal.

M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458 1457
6. Conclusion

In this paper, we have shown that even with optimal slowdown, the resultant
algorithm fails to remain AT? optimal when the RM is self-simulated. To overcome
this, we have introduced, for the first time, the idea of adaptive algorithm which runs
on RM of variable sizes without compromising the 472 optimality. We have sup-
ported our idea by developing adaptive algorithms for sorting items and computing
the contour of maximal elements of a set of planar points on RM.

References

[1] Y.B. Asher, D. Gordon, A. Schuster, Efficient self-simulation algorithms for reconfigurable arrays, J.
Paral. Dist. Comput. 30 (1995) 1-22.

[2] B. Beresford-Smith, O. Diessel, H. ElGindy, Optimal algorithms for constrained reconfigurable
meshes, J. Paral. Dist. Comput. 39 (1996) 74-78.

[3] F. Dehne, O(n'/?) algorithms for the maximal elements and ECDF searching problem on a mesh-
connected parallelcomputer, Info. Proc. Lett. 22 (1986) 303-306.

[4] J.-W. Jang, V.K. Prasanna, An optimal sorting algorithm on reconfigurable mesh, J. Paral. Dist.
Comput. 25 (1995) 31-41.

[5] H.T. Kung, On the computational complexity of finding the maxima of a set of vectors, in: 15th
Annual IEEE Symposium on Switching and Automata Theory, 1974, pp. 117-121.

[6] H.T. Kung, F. Luccio, F.P. Preparata, On finding the maxima of a set of vectors, J. ACM 22 (1975)
469-476.

[7] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees Hypercubes,
Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[8] T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans. Comput. C 34 (1985)
344-354.

[9] J.M. Marberg, E. Gafni, Sorting in constant number of row and column phases on a mesh,
Algorithmica 3 (1988) 561-572.

[10] M. Maresca, Polymorphic processor arrays, IEEE Trans. Paral. Dist. Sys. 4 (1993) 490-506.

[11] R. Miller, V.K.P. Kumar, D.I. Reisis, Q.F. Stout, Data movement operations and applications on
reconfigurable VLSI arrays, in: Proceedings of the International Conference on Parallel Processing,
1988, pp. 205-208.

[12] R. Miller, V.K.P. Kumar, D.I. Reisis, Q.F. Stout, Parallel computations on reconfigurable meshes,
IEEE Trans. Comput. 42 (1993) 678-692.

[13] M.M. Murshed, R.P. Brent, Constant time algorithm for computing the contour of maximal elements
on the reconfigurable mesh, Paral. Proc. Lett. 8 (1998) 351-361.

[14] M.M. Murshed and R.P. Brent, Constant time algorithms for computing the contour of maximal
elements on the reconfigurable mesh, in: Proceedings of the 1997 International Conference on Parallel
and Distributed Systems, Seoul, Korea, 1997, pp. 172-177.

[15] M.M. Murshed and R.P. Brent, Algorithms for optimal self-simulation of some restricted
reconfigurable meshes, in: Proceedings of the Second International Conference on Computing
Intelligence and Multimedia Applications 1998, Gippsland, Australia, 1998, pp. 734-744.

[16] K. Nakano, A bibliography of published papers on dynamically reconfigurable architectures, Paral.
Proc. Lett. 5 (1995) 111-124.

[17] M. Nigam, S. Sahni, Sorting n numbers on n x n reconfigurable meshes with buses, J. Paral. Dist.
Comput. 23 (1994) 37-48.

[18] S. Olariu, J.L. Schwing, A novel deterministic sampling scheme with applications to broadcast-
efficient sorting on the reconfigurable mesh, J. Paral. Dist. Comput. 32 (1996) 215-222.

1458 M. Manzur Murshed, R.P. Brent | Parallel Computing 26 (2000) 1447-1458

[19] C. Thompson, H. Kung, Sorting on a mesh-connected parallel computer, Commun. ACM 20 (1977)
263-271.

[20] J.D. Ullman, Computational Aspects of VLS, Computer Science Press, Rockville, Maryland, 1984.

[21] R. Vaidyanathan, J.L. Trahan, Optimal simulation of multidimensional reconfigurable meshes by
two-dimensional reconfigurable meshes, Info. Proc. Lett. 47 (1993) 267-273.

[22] B.-F. Wang, G.-H. Chen, Constant time algorithms for the transitive closure and some related graph
problems on processor arrays with reconfigurable bus systems, IEEE Trans. Paral. Dist. Sys. 1 (1990)
500-507.

