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ABSTRACT

Recently self-simulation algorithms have been devel-
oped to execute algorithms on a reconfigurable mesh
(RM) of size smaller than recommended in those al-
gorithms. Optimal slowdown, in self-simulation, has
been achieved with the compromise that the resultant
algorithms fail to remain AT? optimal. In this paper
we introduce, for the first time, the idea of adaptive
algorithm which runs on RM of variable sizes with-
out compromising the AT? optimality. We support
our idea by developing adaptive algorithms for sorting
items and computing the contour of mazimal elements
of a set of planar points on RM.

1 INTRODUCTION

It is well-known that interprocessor communications
and simultaneous memory accesses often act as bottle-
necks in present-day parallel machines. Bus systems
have been introduced to a number of parallel comput-
ers [10, 11, 22] to address this problem. A bus system is
called reconfigurable if it can be dynamically changed
according to either global or local information. In-
troduction of reconfigurable bus systems reduces the
virtual communication diameter of any network of pro-
cessors to a constant. This fact has greatly influenced
researchers around the world and a large collection of
constant time algorithms have already been developed
[16]. To realise these constant time algorithms we need
to use more processors than we usually use to solve the
same problems on ordinary meshes. In fact, we can
easily observe that the ratio of the number of proces-
sors used in a constant time algorithm to the number
of processors used in an ordinary mesh algorithm solv-
ing the same problem is polynomial in problem size.
Ben-Asher et al. [1] present the idea of self-simulation
where the existing RM algorithms are executed with
slowdown on an RM of size smaller than intended for
those algorithms. A few self-simulation techniques ap-
pear in [1, 15] with optimal slowdown for various mod-
els of RM.

In this paper, we have pointed out that self-
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simulation even with optimal slowdown compromises
the AT? [20, chapter 2] optimality of the resul-
tant algorithm. To overcome this limitation of self-
simulation, we have presented a new idea of develop-
ing algorithms on RM which will be adaptive in the
sense that these algorithms can be executed on RM
of various size keeping the AT? measures unaffected
by the size. To illustrate our idea we have developed
adaptive AT? optimal algorithms for sorting items and
computing the contour of maximal elements of a set of
planar points.

The paper is organized as follows. In the next
section we present the key issues associated with RM
and of its self-simulation. The idea of adaptive optimal
algorithm is developed in Section 3. In Section 4 we
develop an adaptive AT? optimal sorting algorithm.
The problem of computing the contour of maximal el-
ements of a set of planar points is defined in Section 5
and an adaptive AT? optimal algorithm to solve the
problem is developed in the same section.

2 PRELIMINARIES

For the sake of completeness, here we briefly define
the reconfigurable mesh and self-simulation of RM and
then describe the optimality issues associated with
self-simulation.

Figure 1: A reconfigurable mesh of size 3 x 4.
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2.1 RECONFIGURABLE MESH

The reconfigurable mesh [22] is primarily a two-
dimensional mesh of processors connected by recon-
figurable buses. In this parallel architecture, a pro-



cessor element is placed at the grid points as in the
usual mesh connected computers. Processors of the
RM of size X x Y are denoted by PE;;, 0 <i < X,
0 < j <Y where processor PEj o resides in the south-
western corner. Each processor is connected to at
most four neighboring processors through fixed bus
segments connected to four I/O ports E & W along
dimension £ and N & S along dimension y. These
fixed bus segments are building blocks of larger bus
components which are formed through switching, de-
cided entirely on local data, of the internal connectors
(see Figure 1) between the I/O ports of each proces-
sor. The fifteen possible interconnections of I/O ports
through switching are shown in Figure 2. Like all bus
systems, the behaviour of RM relies on the assumption
that the transmission time of a message along a bus is
independent of the length of the bus.
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Figure 2: Possible internal connections between the
four I/0O ports of a processor.

A reconfigurable mesh operates in the single in-
struction multiple data (SIMD) mode. Besides the
reconfigurable switches, each processor has a comput-
ing unit with a fixed number of local registers. Other
than the buses and switches the RM of size p x q is
similar to the standard mesh of size p x ¢ and hence it
has O(pq) area in VLSI embedding [20], under the as-
sumption that processors, switches, and links between
adjacent switches occupy unit area.

2.2 SELF-SIMULATION OF RM

Introduction of reconfigurable buses reduces the vir-
tual communicational diameter of regular parallel ar-
chitecture to a constant and thus leads to the sim-
plest architecture, the mesh. Can reconfigurable mesh
be the basis for the design of the next generation
of massively parallel computers? Perhaps the an-
swer depends on the most fundamental issue of self-
simulation, i.e., simulation of large RMs by smaller
ones.

We say that reconfigurable mesh R; is simulated
by Rs with slowdown S if the result for any algorithm
A; on Ry is achieved through the execution of a step-
by-step simulation algorithm A, on Ry in which each
step of A; is simulated with slowdown at most S. Ob-
viously the self-simulation of an M x N RM by a P x @

RM is said to be optimal if the slowdown is © (% %),
P<MandQ<N.

Ben-Asher et al. [1] first present the concept
of self-simulation for RM and develop some self-
simulation algorithms with optimal slowdown. In [15]
we present, optimal self-simulation algorithms of some
restricted reconfigurable meshes. Optimal slowdown
in self-simulation is the bottom line we can achieve
but it tells a little of the optimality of the resultant
algorithm.

2.2.1 AT? OPTIMALITY ISSUE

Is the resultant algorithm in self-simulation of RM
with optimal slowdown AT? optimal?

We have a negative answer. Consider any problem
of size n whose AT? = Q(n?), say, sorting of n elements
of size logn bits each. Now, we have some sorting
algorithms [4, 18, 17] which can sort n elements on
RM of size n x n in constant time. Obviously the AT
measures of these algorithms are ©(n?) and thus these
algorithms are AT? optimal.

Suppose one of this AT? optimal sorting algo-
rithm is self-simulated, with optimal slowdown @(:1—22),
in an RM of size m x m where m < n. The AT? mea-
sure of the resultant sorting algorithm then becomes
@(:1—42) which is not optimal for m < n.

On the other hand, we have many AT? optimal
sorting algorithms [8, 9, 19] to sort n elements on an
ordinary mesh of size v/n X y/n in O(y/n) time.

This anomaly suggests the development of adap-
tive algorithms which will remain AT? optimal while
running on RM of various sizes.

3 ADAPTIVE AT? OPTIMAL ALGO-
RITHMS

Let a problem P of size n have I(n) information con-
tent [20, pages 51-54]. If this problem P is realized in a
VLSI circuit with aspect ratio a then, by Ullman [20,
page 57], AT? lower bound of P will be Q(al?(n)).
Now, consider an RM of size p X ¢ where pqg = kI(n),
1<p<q<I*n),and k > 1.

Let P be solved, AT? optimally, on an RM of size
p x g in O(T) time. Then

pgT? = gIQ(n) .
p

Which implies
In) ¢
T="-->=2=. 1
p k (1)

Observe that T is independent of ¢, the length of the



larger side of the VLSI circuit. Now,
T=1&p=1In).

Thus, development of constant time algorithm is fea-
sible whenever p = I(n) for any ¢ > p. As we are
interested in keeping the area at minimum, the mini-
mum possible value of ¢ should be considered. So,

T=1ep=q=k=1I(n). (2)

Lemma 1 To solve P AT? optimally in constant
time, an RM of size at least I(n) x I(n) is required. O

Again,
k=1eT=gq.

This implies that whenever the area of the VLSI circuit
equals the information content of the problem to be
solved, the time of solution depends only on g, the
length of the larger side of the VLSI circuit. As we
are interested in keeping the time at minimum, the
minimum possible value of ¢ should be considered. So,
pg = I(n) and p < ¢ derive the following;:

k=1ep=q=T=+I(n). (3)

Lemma 2 To solve P AT? optimally on an RM of

size v/I(n) x \/I(n) requires ( I(n)) time. O

Lemma 2 has extra significance. Communication

diameter of an ordinary mesh of size v/I(n) x \/I(n)
is © (\/I (n)) Thus, the power of reconfigurability
becomes absolutely useless when P is tried to be solved

AT? optimally on an RM of size \/I(n) x y/I(n).

We are interested in developing an adaptive algo-
rithm to solve P on an RM of size p x q, \/I(n) <
p < g < I(n) such that the time required to solve P is
O (4), which is AT? optimal, where k = k5. Obvi-
ously minimum AT? lower bound can only be achieved
when p = q. The algorithm is called adaptive as it re-
mains optimal for all p and gq.

4 ADAPTIVE SORTING ALGORI-
THMS

Here we plan to develop adaptive algorithms which will
connect the AT? optimal sorting algorithm of Marberg
and Gafni [9] on ordinary mesh to any constant time
sorting algorithm on RM. The algorithms presented in
this section were developed in [2] for a different archi-
tecture with different objective.

Lemma 3 Let s items are stored in some s processors
of a linear array of m > s processors with reconfig-
urable bus. Then these items can be sorted in O(s)
time.

Proof. A straightforward emulation of odd-even
transposition sort [7, pages 139-144] solves the prob-
lem. O

Lemma 4 Sorting m items in the first row of an RM
of size m X m can be done in O(1) time.

Proof. Seein [4, 17, 18]. O

The algorithm of Marberg and Gafni [9] uses a
fixed number of phases of row /column sorting /rotating
to sort ab items in O(a+b) time on a mesh of size a x b
where a > v/b. If a # v/b then b > y/a and thus sorting
can be done simply by transposing all row/column op-
erations into column/row operations in the algorithm.

4.1 SORTING OF p ITEMS ON AN RM OF
SIZE k xp, k<p

Let the RM of size k x p be divided into £ submeshes
of size k x k each and the given p items in the first
row be distributed in such a way that each processor
PE; j;,0<i<kand 0 <j < %, receives an item. It
is obvious that such a redistribution of elements can
be carried out in constant time using a column broad-
cast followed by a row broadcast with bus splitting
[12]. Now, the emulation of the sorting algorithm of
Marberg and Gafni [9] needs only the following basic
operations:

Ifk> /%

1. Sorting k items in a column using a submesh
of size k x k.

2. Rotating \/g items in a row using a submesh
of size 1 x ky/E.

3. Sorting/rotating ¥ items in a row using a
submesh of size 1 x p.

4. Sorting \/g items in a column using a sub-
mesh of size /2 x k.

Else (= 2 > Vk)

5. Sorting % items in a row using a submesh of
size 1 X p.

6. Rotating v/k items in a column using a sub-
mesh of size vk x k.

7. Sorting/rotating k items in a column using
a submesh of size k x k.

8. Sorting /% items in a row using a submesh
of size 1 x kVk.

The problem of rotation can always be trans-
formed into a sorting problem without any slowdown.
A rotation, therefore, takes as much time as it does



to sort. Now, Operations 1, 4, 6, and 7 can be done
in O(1) time by Lemma 4. Using Lemma 3 it can be
shown that operation 2 can be done in O(,/Z) time
and operations 3, 5, and 8 can be done in O(%) time.
Hence follows:

Theorem 1 Given p items in the first row of an RM
of size k x p, k < p, these items can be sorted in O(%)
time, which is AT? optimal. O

4.2 SORTING OF n ITEMS ON AN RM OF
SIZE pxq, p<q AND pq = kn

Let the RM of size p x q be divided into { submeshes
of size p x k each as suggested in Section 3 and the
given n items in the first % columns be distributed
in such a way that each processor PE; ji, 0 < i < p
and 0 < j < {, receives an item. It can easily be
shown that such a redistribution can be carried out in
O(3) = O() time using only row broadcasts. Again,
using the very similar techniques in Section 4.1, it can
be shown that the emulation of the sorting algorithm
of Marberg and Gafni on this p x ¢ RM needs O(%)

time as p < q.

Theorem 2 Given n items in the first 2 columns of
an RM of size p x q, p < q and pq = kn, these items
can be sorted in O(L) time, which is AT? optimal. O

5 ADAPTIVE M-CONTOUR ALGO-
RITHMS

Let the planar point at coordinate (4,7) be defined as
P(i,7). Again, let for any point p, z(p) denote the z-
coordinate and y(p) denote the y-coordinate of p, e.g.,
z(P(i,j)) = i and y(P(i, j)) = J.

Definition 1 A point p dominates a point g (denoted

byq < p)ifz(q) < z(p) and y(q) < y(p). (The relation
“<” is naturally called dominance.)

A o non-maximal point
e maximal poin

Figure 3: m-contour of a set of planar points.

Let S be a set of N planar points. To simplify
the exposition of our algorithms, the points in S are
assumed to be distinct.

Definition 2 A point p € S is maximal if there is no
other point ¢ € S with p < q.

We are interested in the contour spanned by the
maximal elements of S, called the m-contour of S
which can be obtained by simply sorting the maxi-
mal elements in ascending order of their z-coordinates
(Figure 3). Let the m-contour of a set S be denoted
as m(S).

We have mentioned two interesting observations
on m-contour in our paper [13, 14] which are given
below for the sake of completeness.

Lemma 5 Every m-contour is sorted in descending
order of the y-coordinates.

Proof. Suppose the contrary holds. Then there exists
at least one pair of maximal elements p and g such that
y(p) < y(q) while z(p) < z(q), which contradicts with
the assumption that point p is maximal. O

Let for any set S of some planar points functions
ming(S) and maz,(S) denote the minimum and maz-
imum z-coordinates in the set respectively. Let two
more functions min,(S) and maz,(S) be defined sim-
ilarly w.r.t. y-coordinate.

Lemma 6 Given K sets So, S1, ...Sk—1 of planar
points such that ¥t : 0 < t < K — 1, maz,(S:) <
ming(Si+1), then Vi : 0 < i < K —1, Vp €
m(S;) A y(p) > maxy(m(S;)), Y§ > 4, if and only
. K-1

if, p € m(U;—y Se)-

Proof. The necessity part can be proved by arranging
a contradiction of Lemma 5. To prove the sufficiency
part we take a point p € m(S;), i :0<i < K—1Ap ¢
m( f(:?)l St). Then by the definition of maximality we

get 3g € Uj; 11 S: such that p < g, i.e., y(p) < y(q).
]

The m-contour problem is also known as finding
the maxima of a set of vectors and has been extensively
explored for serial computers in [5, 6]. It is well known
that the time complexity for computing the contour of
the maximal elements of n planar points is ©(nlogn)
using a serial computer [6]. This lower boundary can
be concluded from the fact that the problem of sorting
can be easily transformed into an m-contour problem.
The information content in computing m-contour of n
planar points is Q(n) and hence the AT? lower bound
is Q(n?) [20, page 56]. Dehne [3] gives an AT? op-
timal algorithm for solving m-contour problem on a
mesh of size \/n X /n in O(y/n) time. In [13, 14] we
have presented three constant time m-contour algo-
rithms on RM of various dimensions. Using the result
of optimal simulation of multidimensional RM by two



dimensional RM in [21], it can easily be shown that all
the three algorithms in [13, 14] are AT? optimal.

We now plan to develop adaptive algorithms
based on our AT? optimal constant time m-contour
algorithm presented in [13, 14].

Given a binary sequence, b;, 0 < j < N, the
prefiz-and computation is to compute, Vi : 0 <47 < N,
bo Aby A --- Ab;. Similarly the prefiz-or computation
computes bg Vb V---Vb;, Vi:0<i< N. Adapting
the technique of bus splitting [12] it is easy to show
that:

Lemma 7 Given a binary sequence of length m in the
only row of an RM of size 1 X m, both the prefix-and
and the prefiz-or of the elements in the sequence can
be computed in O(1) time.

Proof. See in [12]. O

Lemma 8 Computing m-contour of m planar points
in the first row of an RM of size m X m can be done
in O(1) time.

Proof. First the points are sorted w.r.t. z-coordinate
in constant time using Lemma 4. Using a column
broadcast and a row broadcast, all the points are dis-
tributed in such a way that each column represents
possible m pair-wise comparisons of a single point with
the rest. The m-contour is then determined by com-
puting the prefix-and of the comparison values in O(1)
time by Lemma 7. See in [13, 14] for detail. 0

5.1 COMPUTING OF THE M-CONTOUR
OF p PLANAR POINTS ON AN RM OF
SIZE kxp, k<p

Let the RM of size k x p be divided into £ submeshes
of size k x k each and the given p planar points in
the first row be distributed in such a way that each
processor PE; jr, 0 <i < kand 0 < j < %, receives
a point. It is obvious that such a redistribution of
elements can be carried out in constant time using a
column broadcast followed by a row broadcast with
bus splitting [12]. Now, we sort the points w.r.t. -
coordinate in column-major order by Theorem 1 in
O(%) time.

Let the points residing in column jk be denoted
by the set S;, 0 < j < 2. Clearly these £ sets of planar
points follow the condition of Lemma 6, i.e., Vj : 0 <
Jj < ®—1, mazr.(S;) < ming(Sj;1). The m-contours
m(S;), 0 < j < £, are now computed in parallel using
a submesh of size k x k for each computation. By
Lemma 8 this operation takes only O(1) time. Now,
we transfer the maz,(m(S;)) values to the first row

of the RM in a single step by bus-splitting [12] using
Lemma 5.

The m-contour of the entire p points can now be
computed in the following steps using Lemma, 6:

1. Iterate the following for t = 0,1,...,[&] — 1:

1.1 Copy mazy(m(Sw+;)) to  processors
PE;jirk, 0 < i < k, 0 < 7 < £, for
all 0 < j < k, using a column broadcast
then a row broadcast and finally a column

broadcast.

1.2 Copy the y-coordinate of the point resid-
ing in processor PE;;; to the processors
PE;jyr, 0 <7 < k, for all 0 < j < 2,
0 < < k, using a row broadcast.

1.3 Now in the jth submesh of size k& x k, the
ith row contains k maz, values paired with
the y-coordinate of a particular point, say
d. Now, apply Lemma 6 to eliminate d by
computing prefix-or over the comparison val-
ues of at most k£ pairs in constant time by
Lemma 7.

It is very easy to show that the above iteration takes
O([%]) time and thus it can be concluded that:

Theorem 3 Given p planar points in the first row of
an RM of size k x p, k < p, the m-contour of these
points can be computed in O(%) time, which is AT?
optimal. O

5.2 COMPUTING OF THE M-CONTOUR
OF n PLANAR POINTS ON AN RM OF
SIZE pxq, p<q AND pq = kn

Let the RM of size p x q be divided into § submeshes
of size p x k each and the given n planar points in
the first % columns be distributed in such a way that
each processor PE;j;, 0 < i < pand 0 < j < {,
receives a point. It can easily be shown that such
a redistribution can be carried out in O(%) = 0(%)
time using only row broadcasts. Now, we sort the
points w.r.t. z-coordinate in column-major order by
Theorem 2 in O(%) time.

Let the points residing in column jk be denoted
by the set S;, 0 < j < £. Clearly these { sets of planar
points follow the condition of Lemma 6, i.e., Vj : 0 <
J < -1, maz.(S;) < min,(Sj4+1). The m-contours
m(S;), 0 < j < £, are now computed in parallel using
a submesh of size p x k for each computation. By
Theorem 3 this operation takes only O(%) time.

Now taking very similar steps as used in Sec-
tion 5.1 it can be shown that:



Theorem 4 Given n planar points in the first 2

X P
columns of an RM of size p X q, p < q and pqg = kn
the m-contour of these points can be computed in O(F

time, which is AT? optimal.

~—

|

6 CONCLUSION

In this paper we have shown that even with opti-
mal slowdown, the resultant algorithm fails to remain
AT? optimal when the reconfigurable mesh is self-
simulated. To overcome this, we have introduced, for
the first time, the idea of adaptive algorithm which
runs on RM of variable sizes without compromising
the AT? optimality. We have supported our idea by
developing adaptive algorithms for sorting items and
computing the contour of maximal elements of a set of
planar points on RM.
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