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Abstract

A research agreement between the Australian Na-
tional University and Fujitsu Japan has led to the de-
velopment of a library of parallel mathematical subrou-
tines and the extension of the library of single pro-
cessor routines for the Fujitsu VPP300. The Fujitsu
VPP300 provides a very sophisticated architecture com-
bining vector processors in parallel by a crossbar switch.
Very high performance can be obtained if carefully de-
signed algorithms are used which exploit the full perfor-
mance of the hardware. New algorithms have been de-
veloped and performance results are provided for eigen-
value problems, linear solvers and fast Fourier and
wavelet transforms.

1. Introduction

With 13 vector processors, the Fujitsu VPP300 at
the Australian National University has a peak spead of
29 Gflop/s and a main memory of 14 Gbytes. Thus the
VPP300 is ideally suited to processing very large and
demanding simulation and data analysis tasks. Each
processor has a 7 ns cycle time and contains

e A scalar unit (SU) which has a long-instruction-
word (LIW) RISC CPU with a 100Mflop/s peak
performance. This unit simultaneously controls
scalar, vector and data transfer instructions.

e A vector unit (VU) with 1 load, 1 store, 1 add, 1
multiply, 1 divide pipe each completing 8 opera-
tions per cycle (except divide which does 8 opera-
tions in 7 cycles). It is also possible to chain load-
mult-add to get a peak performance of 2.2 Gflop/s
(actual matrix multiply implementations achieve
2.18Gflop/s). The vector unit also contains 128
kB of register space which can be configured as
256 registers with 64 words (a 64 bits) down to 8
registers with 2048 words each.
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¢ Memory (MSU) with 512MB of SDRAM memory
on 8 of the PEs and 2GB on the remaining 5 PEs.

e Data transfer unit (DTU) for direct memory ac-
cess data communication to the interprocessor net-
work.

The basic challenge of programming the Fujitsu
VPP300 is that both the memory and the processing
elements have a hierarchical nature. The memory hi-
erarchy with fast registers, local and global memory is
now well understood, and programming models based
on data locality are well established. On the lowest lev-
els the compilers are able to handle registers and local
memory while the programmer deals with the global
data access using either message passing or data paral-
lelism. The second hierarchy of the processing elements
is less well understood. Here one has at the lowest level
the segments of the pipelines which all run in parallel.
On the next level there are the processors which con-
sist of a collection of pipelines. The outermost level is
the multiprocessing system. Distribution of computa-
tional tasks between these levels whilst maintaining a
good load balance is a formidable challenge and vector-
parallel algorithms which can exploit parallelism on all
levels are few.

For this project the Fujitsu VPP300 has been pro-
grammed in VPP Fortran. This extension of Fortran
90 provides a concept of global memory which allows
access to the DTU and thus to the memory of other
processors. In addition, VPP Fortran provides direc-
tives to specify task parallelism and data distribution.

Thus a subroutine library, known as SSLITVPP, in
which the most frequent computational tasks are imple-
mented is of great importance for the user who wishes
to get the best performance from the Fujitsu VPP300
using their own programs. In addition, the subroutine
library contains a collection of implementation ideas
which can be made accessible to the user through pub-
lications and the SSLIIVPP library manual [12]. These



implementation ideas provide an implicit basic model
for vector-parallel programming. We would like to see
the following exposition as such a collection of imple-
mentation ideas.

The remaining sections contain a description of
parallel-vector matrix multiplication, and based on
this, the solution of dense linear systems. It is seen that
both operations are scalable achieving over 95 percent
efficiency for the matrix products and over 80 percent
efficiency for linear solvers. Similar high performance is
achieved for the fast Fourier transforms and wavelets.
The key here is the development of new algorithms with
very long vector lengths, stride one data access and
separate communication and computation. Multi-level
techniques for the iterative solution of sparse linear sys-
tems provide the basis for scalable solvers. Here, as for
many other algorithms, the parallelism of the algorithm
is shared by vector units and distributed across proces-
sors. In many cases, especially 2D problems, direct
solvers can be very competitive compared with itera-
tive solvers. A major issue is the exploitation of par-
allelism and vectorisation while keeping fill-in low. In
the final section we deal with eigenvalue solvers. The
algorithms discussed here are an example of mapping
different levels of parallelism to the different levels of
the hierarchy. The different eigenvalues provide a nat-
ural parallelism where vectorisation is implemented in
the basic tridiagonal solvers which need to be both fast
and stable.

Further information of the Fujitsu VPP library de-
veloped jointly by Fujitsu Japan and the ANU can be
found in [7, 6] and

http://anusf.anu.edu.au/Aread_Working_Notes

2. Matrix—Matrix Multiplication

Matrix multiplication is an essential part of any
dense linear algebra library. The SSLII parallel ma-
trix multiplication routine achieves completely scalable
performance by overlapping the required data transfer
between processors with the computation.

Let the n X n matrices A, B and C be partitioned
as A = (Al,AQ,...,Ap), B = (Bl,BQ,...,Bp) = (Bz'j),
C = (Cy,Cy,...,Cp)

where B; = (BY,, BT, ...,BPTZ-)T

and p is the number of processors. The matrices are
distributed such that A;, B; and C; are allocated to the
#th processor.

Then C' = A x B is calculated as

Ci =351 AjBji

On each processor the computation of C; = C; +
A;Bj; is done concurrently. The different A; on each

processor can be transferred to the adjacent processor
through the crossbar network until all the A;Bj; are
summed. These data transfers can be overlapped with
the computation with the use of an additional small
work area [12]. Scalability is achieved as shown in Table
1.

#PE | Order | Gflops | Ratio
2 10,000 | 4.325 | 0.98
4 10,000 | 8.636 | 0.98

6 10,000 | 12.92 | 0.98
8 10,000 | 17.19 | 0.97

10 | 10,000 | 21.53 | 0.98
15 | 10,000 | 31.62 | 0.95
20 | 10,000 | 42.42 | 0.96
25 | 10,000 | 52.27 | 0.95

Table 1: Performance of Matrix Multiplication
Ratio is observed Gflops to theoretical peak
(2.2G flops x #PE )

3. Dense Linear Systems

A linear equation solver which achieves high per-
formance on the VPP300 has been reported on in [26].
The high performance of this solver, based on an outer-
product algorithm, is due to the cyclic column block
layout of the data which simplifies communication, al-
lows for high vectorisation rates and facilitates overlap-
ping of communication and computation. The column-
wise block cyclic layout also achieves internal load bal-
ance when executed in parallel. The data partition-
ing is dynamically changed within the routine from the
input easy-to-use banded partition to the columnwise
block cyclic partition by parallel data transfer.

To factorize an n x n matrix A as A = LU a
recursive algorithm is used such that, after the k-
th block is decomposed into the LU decomposition
as (Lgk)T,Lgk)T)TUl(k) and the corresponding rowwise
block is updated by U = (L1)=1UP | the sub-
matrix is updated in outer product fashion as follows.
p is the number of processors.

A® = 4®) — Py

Lgk) is located on a processor and this block is par-
titioned into m pieces.

o = @7, L7, ryT

Uz(k) and A®) are redefined combining the parts on
each processor regardless of the cyclic layout.

k k k k
UQ( ) = (U2(1)7U2(2)aJU2(p)) ’



AW = (4P AP Al
A®) has m x p block structure.
A® = (AD)
Then Ag.“) is computed in parallel on each processor
using
k k k)7 r(k
Az(j) = Az(j) - L£2)U2(j)
At first Lg ) is distributed to each processor by data

transfer and then Lg’) is transferred to adjacent pro-
cessor along the ring to compute the next update con-
currently. This data transfer can be hidden behind the
computation.

This method reduces the total amount of data trans-
fer to about

1.5

log,(n)

of that required by broadcasting blocks of data.

Forward substitution and back substitution are par-
allelized after changing the columnwise banded distri-
bution into rowwise banded distribution.

Performance data in Table 2 and Table 3 show the
scalability of the linear equation solver.

The linear equation solver for a symmetric positive
definite matrix can be parallelized in a similar fashion
[26].

#PE | Order | Gflops | Ratio
2 15,000 | 3.788 | 0.86
4 20,000 | 7.562 | 0.86
6 25,000 | 11.26 | 0.85
8 30,000 | 15.02 | 0.85
10 | 32,000 | 18.65 | 0.85
15 | 37,000 | 27.33 | 0.82
20 | 42,000 | 36.12 | 0.82
25 | 47,500 | 44.89 | 0.81

Table 2: Performance of Linear Equation Solver. Ra-
tio is observed Gflops to theoretical peak (2.2G flops x
#PE)

To calculate the inverse of a dense, real matrix , the
Gauss-Jordan method is parallelized. In this method
each column vector is eliminated and then the original
matrix is reduced to a unit matrix. These operations
are accumulated on the unit matrix simultaneously and
finally produce the inverse of matrix. The array for the
storage of matrix is equally partitioned in the second
dimension.

The accumulation changes only the left part of ma-
trix where the column vectors have already been elimi-
nated and elimination and accumulation are done con-
currently.

#PE | Order | Gflops | Ratio
2 10,000 | 3.689 | 0.84
4 10,000 | 7.145 | 0.81
6 10,000 | 10.22 | 0.78
8 10,000 | 13.23 | 0.75
10 | 10,000 | 16.20 | 0.74
15 | 10,000 | 20.87 | 0.63
20 | 10,000 | 26.23 | 0.59
25 | 10,000 | 31.61 | 0.57

Table 3: Performance of Linear Equation Solver
Ratio is observed Gflops to theoretical peak
(2.2G flops x #PE )

To reduce the overhead of parallel execution and
BROADCAST, the elimination is done in columnwise
block. Namely the column vectors in a block are elim-
inated but not accumulated at first. The information
to be used in the elimination in a block, that is, col-
umn vectors to be eliminated are BROADCASTed to
all the processors. Using them, the elimination and ac-
cumulation in the remainder and the accumulation in
the block are done in parallel.

The exchange of the row vectors uses partial pivot-
ing. Therefore the inverse of matrix is obtained after
the exchange of column vectors according to the history
of the pivoting.

B = (PA)™! = A71P~! then A~! = BP where P
is the permutation matrix.

After changing the columnwise blocked partition
into rowwise blocked partition, which can be done by
parallel data transfer using an additional small work
area [12], these exchanges are done concurrently.

4. Wrap-around Partitioning

Wrap-around partitioning is the basis for vectoriz-
ing the narrow band linear equation solvers on the
VPP300. It comprises a reordering of (m x m sub-
blocks of) unknowns in a linear system into g blocks
of p (subblocks of) unknowns, the purpose being to
highlight groups of unknowns that can be eliminated
independently of one another. If these fall in regular
sequences then this enables vectorisation of the elimina-
tion process over p for each of the first g—1 partitioning
blocks [19]. Its natural formulation is for block bidiago-
nal matrices, but it is applicable also to narrow-banded
matrices by converting these to block bidiagonal form.
In the block bidiagonal case it has the advantages that
(a) wrap-around partitioning can be applied recursively
in conjunction with stable elimination methods - the fi-



nal subblock is solved sequentially when p becomes too
small for effective vectorization; and (b) it does not re-
quire p and g to be exact factors of n - this permits the
use of memory access strides which avoid contention
(stride three is recommended). Speed-ups of about
20 times scalar speed are obtained on the VPP300 for
small matrix subblock size m (m = 2 in the tridiagonal
case) and n > 1000. To illustrate the transformation
consider the case n = 16. An index array A details
the addressing information (in practice it would be re-
quired only for nonconstant stride access).

A+« {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
step 1: p(1) =5,¢(1) =3,0(1) =0

A« {1,4,7,10,13;2,5,8,11,14; 3,6,9,12,15; 16}
step 2: p(2) =2,¢(2) =3,0(2) =10

A« {1,4,7,10,13;2,5,8,11,14; 3,12; 6, 15;9, 16}

Note that there is a case of nonconstant stride in
step 2 which corresponds to the inexact factoring of n
in step 1. Here the index O points to the start of the
current transformation. A diagram is very helpful at
this point (see [19]).

5. Fast Fourier Transforms

Two dimensional fast Fourier transforms are basi-
cally implemented as a 2-stage process: first a multiple
1D FF'T is performed over the first dimension and then
a second multiple 1D FFT is performed over the sec-
ond dimension. The multiple transforms naturally split
across processors. However, in order to maintain this
“natural distribution” in the case of distributed mem-
ory computers such as the VPP300 the data has to be
redistributed between the two stages. This redistribu-
tion amounts to a personalised all-to-all communica-
tion. Using Swarztrauber’s ”4-step” method this idea
is also applied to the case of 1D data where again the
main work consists of two multiple 1D FFTs.

If this algorithm is used, all the communication
required is concentrated in the personalised all-to-all
communication step. Essentially, this step corresponds
to a matrix transpose. A big advantage of having all
the communication done in one or two steps which is a
standard procedure is the ease with which the software
can be maintained. Depending on whether the latency
is extremely large (like in networked computers) or not
(like on the VPP300) one can plug in a different subrou-
tine for the personalised all-to-all communication step.
Note that personalised all-to-all communication is an
MPI collective communication routine and the matrix
transpose is also part of the Fortran 90 standard.

The performance of the FFT relies heavily on the
availability of a very fast transpose routine. As the op-
eration count is low, the communication time is much
more important than, e.g., for the solution of linear
systems of equations. One could consider overlapping
the communication and computation. This, however,
only gives at most a factor of two speedup and this
only if the computation and communication times are
approximately equal. One important reason why this
overlapping was not implemented was that it substan-
tially increases the software complexity and thus the
maintainability and portability for a limited gain in
performance. This is particularly relevant as at this
stage the paradigm for distributed computing is still in
flux and thus porting between environments like MPI,
HPF and VPP Fortran should be an option for the user
of the library but also for the developer.

The long vector lengths and mainly stride 1 was
achieved through the 6 step algorithm described in [17]
and [18]. For the case of n = 2" and radix 2 the com-
plexity of this algorithm is larger than the 4nlog,(n)
required for the split-radix [10] algorithm [31]. How-
ever, by using a combination of radices 2,4,8 and 16,
the complexity is reduced to the same level as for split-
radix case. Radices 3/5/7 are also included and the
prime-factor idea is used repeatedly to get a very fast
method with long vector lengths [18]. The software de-
sign of the resulting FFT library is modular and essen-
tially based on three core functions: 1.Small Fourier
transforms (orders 2/3/4/5/8/16), 2. Matrix trans-
pose, and 3. Multiplication with a unitary diagonal
matrix. In addition, there are some auxiliary routines
and combinations of these routines required to enhance
performance and functionality [6]. Besides the lower
complexity, the higher radix routines have higher com-
putational density which leads to less memory traffic.

The one processor performance of the routines is
now compared with the performance of the correspond-
ing NAG routines [25]. In Figure 1 the performance of
the library routine based on the algorithm mentioned
above is displayed together with the performance of the
NAG routines “CO6ECFEF” and “CO6FCFE” which both
implement complex 1D FFTs. The routine CO6FCF
achieves slightly higher performance but requires more
storage space. (The times for this routine are denoted
by NAG* in the diagram.) It can be seen, however,
that the SSLII library routine is substantially faster
than the NAG routine. It is thought that the higher
performance is obtained almost exclusively using stride
one data access and maximally long vectors.

The multiple 1D FFT routines have been specifically
designed in NAG for efficiency on vector processors.
However, even here the Fujitsu SSLII library routines
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Figure 1: Performance of 1D Complex FFT Routines of
the Fujitsu SSL-II library and the NAG library.
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Figure 2: Performance of 1D Complex multiple FFT Rou-
tines of the Fujitsu SSL-II library and the NAG library.

implementing the algorithm described here have a clear
performance advantage as can be seen from Figure 2

The performance of the 1D FFT is computed as
5nlog,(n)/t where n is the problem size and t is the
time required. From Figure 3 it can be seen that
close to expected peak performance is achieved for large
enough problem sizes on one processor. Furthermore,
in Figure 4 the speedup of the parallel algorithm com-
pared with execution on one processor shows the scal-
ability of the algorithm. Further work on FFTs is re-
ported on in [21].

6. Wavelet Transforms

Wavelets yield very good and sparse approximations
for most practically occurring functions and data sets
and are thus ideally suited for compression [8]. We con-
sider 2D wavelet transforms which can be represented
as matrix-matrix products

Y = Wy XWE (1)

where X € RV*M ig the data matrix and Wy (and
Wr) are the wavelet transform matrices. These are not
formed explicitly, instead the fast wavelet transform is
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Figure 3: Performance of a 1D complex FFT on one
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Figure 4: Scalability of FFT on the VPP300.



used which forms the matrix vector product Wy as a
succession of steps of the form

o}

J
Ok Crt2i-
0

o~
Il

The parallel implementation of (1) depends on the dis-
tribution of the data X and the result Y to the proces-
Sors.

The wavelet transforms can be done in a similar way
as the fast Fourier transforms. As for Fourier trans-
forms, the amount of communication required for the
intermediate transposition step is relatively high as the
computational density is low. However, due to the lo-
cal nature” of the wavelets, an alternative is feasible
which does not rely on a transposition step. This re-
duces the amount of communication but requires an
introduction of a ”distributed wavelet transform” and
is also more complex from the point of view of soft-
ware maintenance. A comparison of the performance
of these two approaches can be obtained from Table 1.

On the Fujitsu VPP 300 a wavelet transform with
D = 10 coeflicients gave the following performance:

P | M=N | replicated combined

1| 512 | 1.3 Gflop/s | 1.3 Gflop/s
2 | 1024 | 1.3 Gflop/s | 2.8 Gflop/s
4 | 2048 | 2.3 Gflop/s | 5.9 Gflop/s
8 | 4096 | 3.8 Gflop/s | 11.8 Gflop/s

In the “replicated” column the performance of the
replicated, FFT-like algorithm is displayed and in the
“combined” column the performance of the algorithm
which uses horizontal blocking for X and vertical block-
ing for Y is given.

7. Sparse Matrix—Vector multiplication
The multiplication of a sparse and large coefficient
matrix A of order N with a vector z is the basic op-
eration in routines for the solution of large systems of
linear systems and eigenvalue problems. In SSLII two
storage formats for sparse matrices are considered: the
diagonal storage scheme, which is suitable for problems
with a regular structure, and the ELLPACK format for
unstructured problems.

For the diagonal storage scheme only diagonals of
the matrix A containing non—zero elements are stored
in the two-dimensional array MAT, where the diagonals
are extended by zeros in order to make all diagonals
the same length. The integer array IOFF marks the
distance of the diagonal from main diagonal. The cal-
culation of the matrix—vector product z = z + A - y
is executed by ND general linked triad operations with

Mflop/s
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Figure 5: Performance of the matrix-vector multiplica-
tion using the diagonal storage scheme.

vector length N, where the number of occupied diago-
nals ND is assumed to be very small (< 100):

DO ID=1,ND
DO IV=1,N

y X(IV)=X(IV)+MAT(IV,ID)*Y(IOFF (ID)+IV)
END DO

END DO

2

This operation needs three loads and one store oper-
ation per diagonal. By using strip mining of the IV-
loop and two-times unrolling of the ID-loop a strip (of
length 2048) of the result vector X can be kept in the
vector register, see [29]. Thus, except for the initial
load and final store operation for the result vector

t X, there are two load operations per diagonal. As
one load, the multiply and the add pipe can be chained
the operation (2) achieves maximal 1.1 Gflops. Only a
multi—functional load—store pipe instead of a pure store
pipe would achieve theoretical peak of 2.2 Gflops.

Figure 5 shows the performance for different num-
ber of diagonals due to finite difference discretizations
of order two for several spatial dimensions. The opti-
mal performance of 1.1 Gflops is almost reached for a
larger number of diagonals ND. For a smaller number of
diagonals the additional load operation for the output
vector as well as the costs for the filling of the pipes
create a significant overhead.

In many applications (eg. finite element problems)
the number of diagonals is very large but the number of
non—zero entries in the diagonals is rather small. In this
case the ELLPACK storage scheme is a better choice:
the non-zero entries in every row are stored in the two
dimensional array MAT and in addition the correspond-
ing column is stored in the two dimensional array COL.
The matrix vector multiplication looks similar to the
diagonal version (2) but with an indexed access to the
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Figure 6: Performance of the matrix-vector multiplica-
tion using the ELLPACK storage scheme.

input vector:

DO ID=1,ND
DO IV=1,N
X(IV)=X(IV)+MAT(IV,ID)*Y(ICOL(IV,ID))
END DO
END DO

3)

Figure 3 shows the performance for a matrix-vector
multiplication with ELLPACK format, where the test
matrices are identical to the matrices used for the mea-
surements in Figure 5. The maximal peak performance
is 500 Gflops which is achieved only for large values
of ND with the maximal number of non—zero entries
per row. As the additional index vector ICOL has to
be loaded and a non—continuous load operation needs
twice as long as a continuous load only a quarter of the
peak performance of 2.2 Gflops can be achieved.

Unfortunately the performance for operation (3) is
very unlikely to be met in a really unstructured situ-
ation as the performance depends dramatically on the
actual values of the index vector COL. It is not rare
that for a fixed ID the vector ICOL(1:N,ID) produces
directly consecutive access to the same memory bank
(e.g. by containing two successive identical entries).
Thus typically the curves in Figure 5 have heavy down-
wards deflections as low as 100 Mflop. However, in the
case of unstructured grids the usage of the ELLPACK
format allows faster matrix—vector multiplications as
the number of floating point operations is smaller than
for the diagonal storage scheme.

8. Iterative Solvers
For a given real N x N matrix A and given right hand
side b the solution vector z of the linear system

Az =b (4)

is sought. It is assumed that the number of unknowns
N is very large and the matrix A is sparse.

8.1 Conjugate Gradient Methods

Tterative methods of the conjugate gradient type
(CG) are robust and parameter—{ree algorithms to solve
these kind of problems on parallel and vector computers
in a highly efficient way are given in [32]. However,
there is no CG method that is optimal for all matri-
ces. Thus several CG methods have been implemented
in order to give the user the ability to select the best
method for the problem.

To solve linear systems with a symmetric positive
definite matrix, the preconditioned conjugate gradient
method has been implemented. Preconditioning meth-
ods using Neumann series and incomplete Cholesky fac-
torisation are available, see [7].

For the general case of a non-symmetric coefficient
matrix several methods have been implemented. The
truncated MGCR, (which is a modification of GMRES)
converges very fast but is not very robust since for a
good convergence the eigenvalues must have positive
real parts and be close to the real axis. A more robust
but slower method is TFQMR which can successfully
be applied to a matrix for which the spectrum is con-
tained in the positive half plane. For the general case
of scattered eigenvalues LSQR has been implemented.
It is very robust but on the other hand has ver slow
convergence.

All CG methods require scalar products and saxpy
operations, which are standard and highly efficient op-
erations on the VPP. In addition one matrix—vector
multiplication per iteration step has to be executed.
This operation is already discussed in section 7.. All
CG methods are available for the diagonal as well as
the ELLPACK storage scheme.

8.2 Multi-level Preconditioning

A special preconditioner for coefficient matrices aris-
ing from the discretisation of partial differential equa-
tions on rectangular grids was implemented using the
algebraic multi-level iteration (AMLI, see [4]). Com-
pared to classical multi—grid methods AMLI has a
wider application range as it uses only information
available from the given coefficient matrix. Moreover,
it is more robust than a classical multi-grid meth-
ods. Naturally for some special applications a classical
multi—grid method is faster, however the AMLI is still
competitive in most cases.

The coefficient matrix A has to be given in the diag-
onal storage scheme which means that the underlying



grid has to be rectangular but may have an arbitrary
spatial dimension. This assumption is made and widely
used in the implementation of the AMLI in order to get
a highly efficient preconditioner for the relevant case of
rectangular grids on the VPP, see below. The devel-
opment of a version for unstructured grids has been
started.

For the construction of the AMLI preconditioner the
coefficient matrix A is reduced to a smaller coefficient
matrix A by subdividing the matrix A into

Arr  Arc
A= . 5
[ Acr Acc ] 5)

The columns and rows of the sub—matrix A¢cc belong
to the so—called coarse unknowns of the reduced ma-
trix and those of the sub—matrix App to the unknowns
that are removed. The inverse of the matrix App is ap-
proximated by a diagonal matrix Drp, eg. calculated
from the condition DprpApre = e with e = (1,...,1).
The coarse level matrix AV is defined by block—wise
Gaussian elimination:

A(l) = AC’C - ACFDFFAFC . (6)

The reduction can be successively applied to the coarse
level matrices until a final level [ has been reached. On
the coarsest level [ a rather small linear system has to
be solved with less accuracy (2-3 digits). That can be
done very fast using iterative methods if the coefficient
matrix contains only a small number of occupied diag-
onals.

Within the CG iteration the preconditioner delivers
the image p = AMLI(0,r) of a given vector r by the
following recursive algorithm:

1 AMLI(k,7)

2 IF (k = ) THEN

3 SOLVE Ap=r

4 ELSE

5 : (re,re) < r

6 : qc (—'I"C—AC'FDFFTF (7)
- pc + AMLI(k+1,qc¢)

8 pr < Dpp(rr — Arcpc)

9 p + (pr,pc)
0 END IF
1 RETURN p .

The block forward substitution in step 6 and the block
backward substitution in step 8 needs matrix—vector
multiplications with the matrices Apc and Agp, re-
spectively.

In order to get efficient matrix—vector multiplica-
tions in the matrices should be stored using the diag-
onal storage scheme. This has to be considered in the
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Figure 7: Two coarse levels on a 7 x 7 grid.
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Figure 8: Enumeration of coarse and removed un-
knowns.

selection of the coarse level unknowns. The assumption
that the matrix A arises from a discretisation procedure
allows the recovery of the underlying rectangular grid
from the given diagonals. The unknowns of the coarse
level are selected by an alternating direction approach:
every second grid line (or more general hyperplane) is
removed in one fixed spatial direction where the spa-
tial direction is cyclically changed from one level to the
next. Figure 7 shows this strategy for a two dimen-
sional 7 x 7 grid, where in the first level grid lines are
removed in the x;—direction, in the second level in the
zo—direction and in the third level in the z;-direction
again.

The coarse level unknowns are enumerated in a nat-
ural manner by dropping the removed nodes. Then the
coarse level matrix mounted by formula (6) can be ef-
ficiently stored using the diagonal storage scheme In
most relevant cases the number of diagonals is even
equal to the number of diagonals in the original ma-
trix. Also there is less fill-in as the the sub—matrix
App is condensed to a diagonal matrix Dpp otherwise
more long-range couplings between coarse grid nodes
would be created. In the grid of the removed unknowns
an additional dummy grid line is put—up if the num-
ber grid node in the direction, in which grid lines have
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Figure 9: AMLI on one processor.

unknowns N [[ 0.5-10% [ 1-10% [ 2-10% | 4. 10°
processors NP 1 2 4 8
levels [ 4 5 5 6

time [sec] 6.11 7.53 10.1 13.5

Table 4: AMLI on several processors.

been removed, is odd, see Figure 8. By this trick the
number of diagonals in the sub—matrices Arr, Arc
and Acr becomes not larger than the number of diag-
onals in the given matrix. Thus these matrices can be
efficiently stored in the diagonal storage scheme.
Figure 9 shows the timings for the solution of lin-
ear systems which coefficient matrices arise from the
finite difference discretisation of the differential oper-
ator —VaV on a rectangular and equidistant grid on
the 3—dimensional unit cube. The function a jumps at
the surface of the unit sphere from 1 up to 10%. The
accuracy on the level of equation is 107%. The timing
includes the computing time for the assemblage of the
coarse level matrices. The number of levels is auto-
matically selected by balancing the computational ef-
fort for the solution of the linear system on the coarsest
level and the forward and backward substitutions. The
growth of the computing time with the number of un-
knowns is not worse than linear. It is emphasised that
in all cases the CG iteration with Jacobi preconditioner
was not successful within 10 minutes computing time.

8.3 DParallelisation

In the parallel version all vectors of the length N of
number of unknowns are stored distributed over the NP
processors, where every processor holds a vector por-
tion of the size % According to this data distribution
the vectorised loops over the number of unknowns is
split in order to execute the loop strips in parallel with
a vector length l\II\I_P on every processor. Communica-
tion is necessary to calculate the scalar products and
to gather vector portions from other processors in or-
der to build up the input vector for the matrix-vector

multiplication. In the forward and backward substi-
tution (step 6 and step 8 in algorithm (7)) communi-
cation is needed to separate and combine the coarse
and removed unknowns. The corresponding routines
produce vectors which can be directly used as input
vectors for the following matrix—vector multiplications,
with Acr and Apc, respectively. Thus only one com-
munication step per forward and per backward sub-
stitution is needed. Table 4 shows the timings when
solving the example problem on several number of pro-
cessors where the number of unknowns per processor

% is constant.

9. Sparse Cholesky Factorisation

Direct solution of large sparse symmetric positive
definite systems of linear equations has many impor-
tant applications in science and engineering. A normal
method consists of four steps. The first step is ma-
trix reordering. In this step the rows and columns of
the original matrix are reordered to achieve the fill re-
duction in the factor matrix. The second step is sym-
bolic factorisation which will generate a compact data
structure for the Cholesky factors. Since there is no
numerical computation involved, the computation in
these two steps is purely symbolic. The third and the
fourth steps are numerical Cholesky factorisation and
the solution of triangular systems.

On a conventional computer such as workstation the
time taken for symbolic computation (mainly the time
for matrix reordering) is usually considerably shorter
than the time required for numerical computation. The
algorithm design were mainly focused on the quality of
the matrix reordering in terms of fills, that is, how to
minimise the fills in the factor matrix to improve the
performance for numerical computation, but the time
spent for symbolic computation is considered as a less
important factor. On more advanced machines which
are equipped with vector computational units, how-
ever, the time for symbolic computation can be com-
parable to the time for numerical factorisation. There-
fore, other factors such as the cost of indirect address-
ing, the vector length and the time for symbolic com-
putation should also be considered in order to enhance
the overall performance.

Since the result of symbolic computation is very cru-
cial for achieving highly efficient sparse matrix solvers,
in the following we only describe the algorithm adopted
for symbolic computation on a single processor VPP300
and discuss the difficulties of parallelisation in the sym-
bolic computational steps.

The most commonly used algorithm for performing



reordering is the minimum degree algorithm [23]. This
algorithm adopts a bottom-up method that uses only
local information. For large size problems it may not
perform, in terms of fills, as good as nested dissection
and its variants which adopt a top-down method and
use global information. As we discussed previously,
however, the overall performance is not just determined
by the number of fills. In general cases the algorithms
using the top-down technique can take much longer
time to complete than the minimum degree ordering.
Thus we decide to use the minimum degree algorithm.

Two nodes z and y in an elimination graph are said
to become indistinguishable if they satisfy

Adj(z) U {z} = Adj(y) U {y}.

Indistinguishable nodes can be grouped together to
form a supernode and eliminated all at the same time.
To group indistinguishable nodes can reduce the re-
ordering complexity and the cost for indirect address-
ing during numerical computation. To achieve high
efficiency for direct sparse Cholesky factorisation on
modern vector computers, it is very important to ef-
fectively detect the indistinguishability during the ma-
trix reordering. The conventional multiple minimum
degree [23] includes a method to detect the indistin-
guishability. Though not expensive, the method is less
aggressive. To improve the performance we adopt a
greedy graph compression technique.

Many matrices have certain columns of identical
nonzero pattern before the reordering. Thus the graph
corresponding to an original sparse matrix may be com-
pressed into a smaller graph by grouping indistinguish-
able nodes. This graph compression [2] usually takes
only a small amount of time and the overall reordering
time can be reduced if the size of the original graph
can indeed be reduced.

We know that the graph compression applied at the
beginning of the reordering may improve the perfor-
mance. The question is whether the performance can
further be improved if the compression is also applied
during the reordering. In our algorithm with a greedy
graph compression we keep all the good features of the
original multiple minimum degree and the compressed
graph for preprocessing. At each step we also do graph
compression immediately after the degree update, that
is, we try to find more indistinguishable nodes from
those being just updated. Our experimental results
show that the performance has been improved signif-
icantly after adopting the greedy graph compression
technique [34].

Conventionally all logical zeros should be excluded
from the data structure for Cholesky factors to reduce
both the computational complexity and the size of stor-

Matrix Method 1 | Method 2 | Improvement
besstk17 1.84 1.58 14.1
besstk25 3.49 2.96 15.2
besstk30 5.91 4.95 16.2
besstk31 8.47 6.94 18.1
besstk32 8.19 6.83 16.6
besstk33 3.31 2.69 18.7
besstk35 4.83 3.87 19.9
besstk36 3.73 3.30 11.5
besstk37 4.06 3.56 12.3
c3dkt3m2 19.1 15.8 17.3
c3dkg4m?2 24.4 18.5 24.2
finan512 145 9.12 93.7

Table 5: Improvement in % with relaxed supernodes

age space. The problems are that the length of columns
can become very short and that the cost of indirect ad-
dressing be significantly increased. Our early experi-
mental results show that short vector length and indi-
rect addressing can cause performance problems on the
Fujitsu VPP300.

To alleviate these problems we adopt an idea of re-
laxed supernodes which is similar to that described [3].
With relaxed supernodes we intentionally include a
number of logical zeros in the factors by merging cer-
tain columns or supernodes together. This may result
in an increased complexity in numerical computation,
yet the overall performance can be enhanced because
short columns are made longer and the cost of indirect
addressing is decreased.

Some experimental results obtained on a single pro-
cessor VPP300 are presented in Table 5. We compared
two different methods. The same algorithm for numer-
ical factorisation and the solution of triangular systems
is used in both methods. The difference between the
two methods is that method one uses only the con-
ventional multiple minimum reordering algorithm and
does not apply the relaxed supernode algorithm, while
method two adopts both the greedy graph compression
and the relaxed supernodes with the number of allow-
able zero entries set to 200 (which is certainly not an
optimal number). It can be seen from the table that
the improvement of using method two are significant.

The primary goal of designing sequential matrix re-
ordering algorithms is simply to reduce the workload
and memory space for the numerical factorisation. For
parallel computing, however, we need algorithms which
can also be executed efficiently in parallel. Algorithms
based on the bottom-up technique such as multiple
minimum degree are sequential in nature and very diffi-
cult to be efficiently implemented on parallel machines.



Some efforts have been made to convert the sequential
nested dissection and its variants such as multisection
into parallel algorithms. However, algorithms based on
top-down technique are usually much more expensive
than the minimum degree in general cases. Although
some of these algorithms can be computed in paral-
lel, the results are not very exciting when the total
computational time is considered. Till now the success
in designing very efficient parallel algorithms for ma-
trix reordering is still limited. As the processing speed
for numerical computation continues to increase on ad-
vanced computing systems and more efficient parallel
numerical factorisation algorithms are developed, the
symbolic computation will become a bottleneck. Effi-
cient parallel implementation of symbolic computation
thus becomes a necessary and crucial step in parallel
computation of sparse linear systems.

For parallel reordering an efficient algorithm should
produce a good quality in terms of fills, take the prob-
lem of load balancing into consideration and show
the significant improvement in terms of time over the
fastest sequential reordering algorithm. It should also
be scalable, that is, the ordering time should be scaled
down with the increase in the number of processors.
That is a very challenging problem.

10. Eigenvalue Problems

The development and implementation of solution
techniques for eigenvalue problems has been under-
way only for a few years. We have developed routines
for tridiagonal, symmetric, and nonsymmetric matri-
ces. The necessity of striving for both vectorization
and parallelization in our routines has lead both to
novel implementations of known methods and to the
development of novel techniques for certain classes of
problems.

In the next few sections we consider the solution of
eigenvalue problems

Au = A\, (8)

under various assumptions as to specific properties of
A (symmetric, nonsymmetric) and/or structural char-
acteristics (tridiagonal, block bidiagonal, banded, etc.).
The routines are at varying stages of development, and
the amount of discussion devoted to each reflects this.

10.1 Tridiagonal EVPs

Consider the solution of the eigenvalue problem
Tu = Au,

where T is tridiagonal. We assume that T is irreducible
and symmetric. If T were irreducible, i.e. one of its

off-diagonal entries were zero - say the k-th, then the
matrix is separable into two tridiagonal matrices, of
sizes k and n — k, each of which is irreducible. If the
matrix were nonsymmetric then, under the assump-
tion that symmetrically-positioned off-diagonal terms —
tii+1 and t;1,; — have the same sign, it is symmetriz-
able via a diagonal similarity transformation, the el-
ements of which depend on square roots of ratios of
these off-diagonal entries. For the remainder of this
section it is assumed that T in above is an irreducible,
symmetric matrix.

Bisection and Multisection: One of the standard
techniques for computing selected eigenvalues of tridi-
agonal matrices is based on the so-called Sturm sign
count and bisection. This is the case, for example, for
the relevant routines in in the widely used LAPACK [1]
and Scalapack [5] software packages. Seeking brevity
we omit the details which can be found in, for example,
[28].

The main computational component of a typical im-
plementation of bisection is evaluation of the sign count
on () defined by the recursion

o) = (= =2}~ )
g;-1 ()\) ’
for i = 1,2,---,n. Zeros of o,(\) are eigenvalues of

T, and the number of times S;(A\) < 0,i=1,--- ,n, is
equal to the number of eigenvalues of T less than the
approximation .

The recurrence (9) is not vectorizable over the in-
dex i. However, evaluating (9) over m estimates \;,
j =1,---,m, engenders the possibility of interchang-
ing - and j-loops and vectorizing over j. This is the
fundamental idea behind multisection; it entails the
subdivision of an interval into greater than two subin-
tervals. Although this generally entails spurious com-
putation — many (adjacent) intervals may contain no
eigenvalues, the efficiency gained through vectoriza-
tion should offset the penalty imposed by spurious sign
count evaluation. Another way to enable vectorization,
in the case of computing more than one eigenvalue, is
to bisect multiple intervals; we refer to this as “multi-
bisection”.

In [30] it was shown that bisection is not optimal
on vector processors. The machines considered in that
study typically had values of n;;, of no more than
about 20. However, many of today’s vector proces-
sors have a considerably larger n; ;. On the VPP300
it is measured in the (lower) hundreds, and it turns
out that the larger is ny /o the less optimal is bisection
[14]. We illustrate the nonoptimality of bisection on
the VPP300 in Figure 10 where we plot the time to



compute one eigenvalue of a tridiagonal matrix of size
1000 as a function of the vector length, i.e. number of
multisection points. The tolerance is e = 3.0d-16, and,
as with all plots in this section, times are averages from
25 runs. The bisection time is circled; this is also the
time obtained using LAPACK.

0.12 ¢ ! -
time 008 | —
(secs)
0.04 -
0 | | |
0 64 128 192 256

m
Figure 10: Time vs. number of multisection points.

Obviously, bisection is not optimal. The optimal
multisection time, which is achieved using 70 points,
is approximately one-sixth the time for bisection. LA-
PACK and ScaLAPACK use bisection and hence are
considerably slower than our routine on the VPP300;
so much so in fact that the performance of one of our
symmetric eigensolvers (based on Householder reduc-
tion to tridiagonal form) is faster than their equiva-
lent routine. We note that the codes used there can
be modified so that they will perform multibisection
when r > 1 eigenvalues are requested and the differ-
ences in performance are reduced as r increases (since
multi-bisection becomes optimal [13]).

Once it has been decided that multisection is to be
used as opposed to bisection there still remains a crit-
ical question: What vector length — number of multi-
section points — should be used? This is considered in
detail in [13] for the computation of a single eigenvalue
or for r > 1 eigenvalues; here we only briefly elucidate
a few relevant points.

The optimal vector length is a function of the num-
ber r of eigenvalues and the desired accuracy e; de-
pendence on € is not noted in [30] but on the VPP300
for € € [3 x 10716,1077] we find mop € [47,250] [13].
These values of mqpt are roughly five to twenty times
those determined in [30], manifesting the effect of the
significantly larger n;/, of the VPP300 in comparison
to the computers used in that study.

Generally the optimum it is a minimal number of
points which will effect convergence in some number
v of multisection steps; using a few more points than
this minimum only results in additional operations on
each of the v steps. However, extensive performance
analysis, as performed in [13], reveals a vector length
performance anomaly: There is a noticeable increaase
— of 10-20% — in execution time in going from a vector
length of 64i+8 to 64i+9,4¢ =0,1,2,.... This is illus-

trated in Figure 11 where we plot the time to compute
one eigenvalue as a function of the number of multisec-
tion points m =1, ... ,1024. The plot “wraps around”
- the bottom curve is for m = 1,...,256, the next for
m = 257,...,512, etc. Precision is € = 3x 10719, Note
the slight increases in time for vector lengths falling on
the dotted lines at m = 64i + 9.
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Figure 11: Time vs. vector lengths m = 1,...,1024.
i = 0 for the bottom curve, i = 1 for the next, etc.
Dotted lines are for m = 64¢ + 9.

The point to be made is that only by initiating a
detailed performance analysis was this odd behaviour
noticed. Although the savings is relatively small — typ-
ically 10-20% — avoidance of these vector lengths is
still worthwhile, particularly in the case of developing
library-quality software which may be used over a long
period of time, in which case even small savings in ex-
ecution time may cumulatively offset the time required
to perform the analysis.

Parallelization Issues: Eigenvectors are calculated
via the standard technique of inverse iteration (see, e.g.,
[33]). Letting A; denote a converged eigenvalue, choose
v° and iterate
(T — NIk =%, k=1,2,---.

Usually one step suffices. Vectorization is enabled using
wrap-around partitioning [11, 19] as discussed Section
4.

If all eigenvalues are distinct, computation of eigen-
pairs is embarassingly parallel. However, eigenvec-
tors corresponding to multiple or clustered eigenvalues
generally require orthogonalization, a communication-
intensive operation for eigenvectors distributed on dif-
ferent PEs.

Ways around this include computing all eigenvalues
on each PE or distributing the computation and initiat-
ing all-to-all communication afterwards; in either case
complete spectral information is available to all PEs
and work allocation can be decided. Our approach en-
tails a distributed computation and the communication
of only a few integer values (sign counts). We detect
clustering during the multisection refinement. Once the
subinterval width is the size of the user-defined cluster
tolerance the smallest and largest sign counts on each



n LAPACK new old1 old2
2068 72.00 38.73 | 125.8 | 113.19
2254 92.88 48.51 | 153.03 | 135.97
4709 766.63 397.73 834 687

Table 6: Symmetric eigensolver - one PE.

n new ScaLAPACK
2068 | 19.87 70 - 87
2254 | 24.88 100 - 115
4709 | 295.38 | Execution aborted

Table 7: Symmetric eigensolver - four PEs.

PE are communicated to the PEs which were initially
allocated eigenvalues with those indices, and the deci-
sion as to which PE is to keep the clustered eigenval-
ues is made; this PE then refines these eigenvalues to
the desired accuracy and computes corresponding in-
variant subspaces. This process will generally result
in load-imbalance, the effect worsening as cluster size
increases; if clusters extend across more than two PEs
some will drop entirely from the computation.

10.2 Symmetric EVPs

Since the methods we have adopted for symmetric
(and Hermitian) EVPs are relatively standard, we do
not describe them in detail. Each uses the tridiagonal
eigensolver just described, and often the overall perfor-
mance of the symmetric eigensolvers benefit from the
efficiency of that highly optimized routine.

The primary method we use for symmetric and Her-
mitian matrices is based on the usual Householder re-
duction to tridiagonal form; the reduction is paral-
lelized using a panel-wrapped storage scheme [9]. In
Tables 10.2 and 10.2 we tabulate some performance
data obtained for the solution of a problem from quan-
tum chemistry [15] on one and four PEs, respectively.

The data in colums labelled ‘old1’ and ‘old2’ are for
previous symmetric eigensolvers which were included
in SSLITVP, the former based on the QL method, the
latter on bisection and inverse iteration. The efficiency
of the new routine is evident.

ScaLAPACK times depend on the choice of block
size. Most of the superiority of our implementation is
due to that of the tridiagonal eigensolver.

For sparse matrices we use a Lanczos method. Per-
formance depends primarily on efficient matrix-vector
multiplication; the routine uses a diagonal storage for-
mat, loop unrolling, and a block distribution of matrix
columns for parallelization. The (reduced) tridiagonal
eigenproblem is solved redundantly on each processor.

Another routine is based on a new one-sided reduction
algorithm see [20].

10.3 Nonsymmetric EVPs

The nonsymmetric eigensolvers are still at an early
stage of development. For this reason no performance
are data are given. We merely give a short summary
of work in progress.

An implementation of an Arnoldi method is under-
way. Thus far we have incorporated restarting, an
implicit deflation scheme, and shift-invert transforma-
tion. In order to be better able to compute multi-
ple/clustered eigenvalues, a block version is also being
developed; for the block version matrix-vector multi-
plication is replaced by matrix-matrix multiplication
enabling the use of level-3 BLAS.

Since the projected eigensystems should be small,
it is probably not worthwhile parallelizing their eigen-
solution, and we will focus instead on parallelization
of the reduction, as was done for the Lanczos solver.
This is also the approach taken with P_ARPACK [24],
a parallel implementation of the popular Arnoldi soft-
ware package ARPACK [22].

Another technique we use for nonsymmetric EVPs
is based on the use of Newton’s method. It is in essence
an inverse iteration technique, and matrix inversion is
effected using the highly efficient linear solver described
previously. The method is capable not only of the usual
quadratic convergence rate of Newton’s method, but
of higher-order convergence in certain circumstances.
This is the case, for example, for a separate version
of this routine designed specifically for block bidiago-
nal matrices; it uses the wrap-around partitioning tech-
niques of 4.. For more details on the method, conver-
gence rates, and detailed discussion of issues such as
deflation see [27]; the presentation there is in terms of
generalized EVPs.

Although Newton methods are ultimately capable of
quadratic — and even third-order — convergence, there
are problems when good initial data are unavailable,
and this is often the case when solving EVPs. On
the other hand, Arnoldi methods seem nearly always
to move in the right direction at the outset, but may
stall or breakdown as the iteration continues; many
heuristics are required to develop an efficient and ro-
bust Arnoldi eigensolver. In a sense the Newton and
Arnoldi procedures have orthogonal difficulties, New-
ton methods suffering at the outset and ultimately per-
forming very well, and Arnoldi methods starting off
well but perhaps running into difficulties as the itera-
tion proceeds. Hence we are considering a composite
method: The Arnoldi method is used to obtain initial
eigenestimates for the Newton-based procedures. Work



on this method has only recently commenced, but re-
sults appear promising [16].
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