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Abstract: The Reconfigurable Mesh (RM) at-
tracted criticism for its key assumption that a
message can be broadcast in constant time inde-
pendent of bus length. To account for this limit
Beresford-Smith et al. have recently proposed the k-
constrained RM model where buses of length at most
k, a constant, are allowed to be formed. Straightfor-
ward simulations of optimal RM algorithms on this
constrained RM model are found to be non-optimal.
This paper presents two optimal algorithms to com-
pute the contour of mazximal elements of a set of
planar points on the k-constrained RM. The first
algorithm solves this problem of size p in O(%) time
on an k-constrained RM of size k x p, k < p, and
the second algorithm solves this problem of size n
in O(%) time on an k-constrained RM of size px q,
p < ¢, and pg = kn.

Keywords: Reconfigurable mesh; Parallel algo-
rithm; AT? optimality; Computational geometry

1 Introduction

It is well-known that interprocessor communica-
tions and simultaneous memory accesses often act
as bottlenecks in present-day parallel machines.
Bus systems have been introduced recently to a
number of parallel machines to address this prob-
lem. Examples include the Bus Automaton [16],
the Reconfigurable Mesh (RM) [12], the content ad-
dressable array processor [20], and the Polymorphic
torus [11]. Among them RM draws much attention
because of its simplicity. A bus system is called
reconfigurable if it can be dynamically changed ac-
cording to either global or local information.

In the most common model of RM, it is assumed
that a message can be broadcast in constant time
along any bus independent of its length. This as-
sumption attracted criticism and cast a shadow of
doubt on the implementation of RM. Although in-
vestigations of bus delays in [8-10] has confirmed
that broadcast delay is very small, theoretically it
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cannot be correctly modelled by a constant inde-
pendent of bus length. To account for this limit,
Beresford-Smith et al. [2] has proposed the k-
constrained RM where buses of length at most &, a
constant, are allowed to be formed at any time.

In [2,5,6] it has been pointed out that straight-
forward simulations of RM algorithms on the k-
constrained RM compromise with AT? [17, chapter
2] optimality. To address this issue, optimal algo-
rithms have already been developed for sorting and
computing convex hull [2], broadcasting [5], and
multiplying sparse matrices [6] on the k-constrained
RM. In this paper we explore one further prob-
lem from a similar point of view. We present here
two optimal algorithms on the k-constrained RM
to compute the contour of the maximal elements
of a given set of planar points. The first algorithm
computes the M-contour (see Section 2.2) of p pla-
nar points on a k-constrained RM of size k x p in
O(%) time and the second algorithm computes the
M-contour of n planar points on a k-constrained
RM of size p x ¢ in O({) time, where p < ¢ and
pq = kn.

The paper is organised as follows. In the next
section we present the basic issues associated with
RM and its various models based on message propa-
gation delay. This section also presents definition of
the M-contour problem and its AT lower bounds.
Two AT? optimal M-contour algorithms on the k-
constrained RM are developed in Section 3. Sec-
tion 4 concludes the paper.

2 Preliminaries

For the sake of completeness, here we briefly de-
fine the reconfigurable mesh and its various models
based on message propagation delay in Section 2.1.
We give definition of the M-contour problem in
Section 2.2 and discuss some AT? lower bounds in
Section 2.3. Throughout the paper, we use ©() to
mean “order exactly,” O() to mean “order at most,”



and Q() to mean “order at least.”
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Figure 1: A reconfigurable mesh of size 3 x 4.
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2.1 The Reconfigurable Mesh

The reconfigurable mesh is primarily a two-
dimensional mesh of processors connected by re-
configurable buses. In this parallel architecture, a
processor is placed at the grid points as in the usual
mesh connected computers. Processors of the RM
of size X x Y are denoted by PE;;, 0 < i < X,
0 € j <Y where processor PEj resides in the
south-western corner. Each processor is connected
to at most four neighbouring processors through
fixed bus segments connected to four I/O ports
E & W along dimension  and N & S along di-
mension y. These fixed bus segments are building
blocks of larger bus components which are formed
through switching, decided entirely on local data,
of the internal connectors (see Figure 1) between
the I/O ports of each processor. The fifteen pos-
sible interconnections of I/O ports through switch-
ing are shown in Figure 2. The connection pat-
terns are represented as {pi,ps,...}, where each
of p; represents a group of switches connected to-
gether such that | J,, p; = {N,E, W, S}. For exam-
ple, {NS,E,W} represents the connection pattern
with ports N and S connected and ports E and W
unconnected.

(EWNS  {EWNS {EW NS} {EW,NS} {WNES}H
{WSEN} {ENW.S} {ESW N} {ESWN} {EN.WS}
{NWSE} {ENW,S} {NESW} {ESW,N} {EWNS}

Figure 2: Possible interconnections among four I/0
ports of a processor.

A reconfigurable mesh operates in the single in-
struction multiple data (SIMD) mode. Besides the
reconfigurable switches, each processor has a com-
puting unit with a fixed number of local registers.
A single time step of an RM is composed of the
following four substeps:

BUS substep. Every processor switches the in-
ternal connectors between I/0O ports by local
decision.

WRITE substep. Along each bus, one or more
processors on the bus transmit a message of
length bounded by the bandwidth of the fixed
bus segments as well as the switches. These
processors are called the speakers. It is as-
sumed that a collision between several speakers
will be detected by all the processors connected
to the bus and the transmitted message will be
discarded.

READ substep. Some or all the processors con-
nected to a bus read the message transmitted
by a single speaker. These processors are called
the readers.

COMPUTE substep. A constant-time local
computation is done by each processor.

Other than the buses and switches the RM of size
pxq is similar to the standard mesh of size px ¢ and
hence it has O(pq) area in VLSI embedding [17], un-
der the assumption that processors, switches, and
links between adjacent switches occupy unit area.

One critical factor in the complexity analysis
of reconfigurable algorithms is the time needed to
propagate a message over a bus. In the most com-
mon unit-time delay model [19], it is assumed that
in any configuration any message can be trans-
mitted along any bus in constant time, regard-
less of the bus length. Unfortunately this as-
sumption, based on which a large number of al-
gorithms with constant time complexity are de-
veloped, is theoretically false, as the speed of sig-
nals carrying information is bounded by the speed
of light. This partially explains why the recon-
figurable meshes have not gained wide acceptance
initially. Recently some VLSI implementations of
reconfigurable meshes have demonstrated that the
broadcast delay, though not a constant, is never-
theless relatively small in terms of machine cycles.
For example, only 16 machine cycles are required
to broadcast on a 10° processor YUPPIE (York-
town Ultra Parallel Polymorphic Image Engine)
[9,10]. GCN (Gated-Connection Network) [8] has
even shorter delays by adopting precharged circuits.
Broadcast delay can further be reduced by using op-
tical fibre for reconfigurable bus system and electri-
cally controlled directional coupler switches as pro-
posed in [1]. Although the above observations serve
the practical purposes, unit-time delay can never be
theoretically sound. To account for this theoretical
limit, two different models have been introduced in
the literature.

In the log-time delay model [13] it is assumed



that each broadcast takes ©(log s) time to reach all
the processors connected to a bus, where s is the
maximum number of switches in a minimum switch
path between two processors connected on the bus.

Beresford-Smith et al. [2] have recently proposed
the k-constrained model where it is assumed that in
any situation any message can propagate at most k
fixed bus segments and thus buses of length at most
k are allowed in any step, where k is a constant. We
use the notation RM’IZ to refer to a k-constrained
RM of area A.

A linear bus is a bus which never branches,
thereby excluding the connection patterns
{(NSE,W}, {NSW E}, {EWN,S}, {EWS,N},
and {NSEW}. Now, any RM algorithm which
uses only linear buses can be simulated by the
k-constrained RM by propagating signals k&
processors at a time.

Lemma 1 Any message can be broadcast over a
linear bus of length 1 in O(%) time on a k-
constrained RM. |

Beresford-Smith et al. [2] have shown in obvious
way that such a simulation loses AT? optimality
unless the area of the mesh is reduced. To ad-
dress this issue, AT? optimal algorithms have al-
ready been developed for sorting and computing
convex hull [2], broadcasting [5], and multiplying
sparse matrices [6] on the k-constrained RM.

Throughout this paper RM is assumed to be un-
constrained if not stated otherwise.

2.2 Problem Definition

Let the planar point at coordinate (4,7) be defined
as P(i,7). Again, let for any point p, z(p) denote
the z-coordinate and y(p) denote the y-coordinate

of p, e.g., z(P(i,5)) =i and y(P(i, 7)) = j.

Definition 1 A point p dominates a point q (de-

noted by ¢ < p) if 2(¢) < z(p) and y(q) < y(p).
(The relation “<7” is naturally called dominance.)

Let S be a set of N planar points. To simplify
the exposition of our algorithms, the points in S
are assumed to be distinct.

Definition 2 A point p € S is maximal if there is
no other point ¢ € S with p < q.

We are interested in the contour spanned by the
maximal elements of S, called the M-contour of
S which can be obtained by simply sorting the
maximal elements in ascending order of their z-
coordinates (Figure 3). Let the M-contour of a
set S be denoted as m(S).

A O non-maximal point
® maximal point

= X

Figure 3: M-contour of a set of planar points.

We have made two interesting observations on
M-contour in [14, 15] which are given below for the
sake of completeness.

Lemma 2 FEvery M-contour is sorted in descend-
ing order of the y-coordinates.

Proof. Suppose the contrary. Then there exists at
least one pair of maximal elements p and ¢ such that
y(p) < y(q) while z(p) < z(g), which contradicts
with the assumption that point p is maximal. H

Let for any set S of some planar points func-
tions min,(S) and max,(S) denote the minimum
and mazimum x-coordinates in the set respectively.
Let two more functions min,(S) and maz,(S) be
defined similarly w.r.t. y-coordinate.

Lemma 3 Given K sets Sg, S1, -..-Sk—1 of pla-
nar points such that Vi 0 <t < K -1,
max;(St) < ming(Siy1), thenVi: 0 <i < K —1,
Vp € m(S;) Ay(p) > maxy(m(S;)), Vj > i, if and
only if, p € m(Uf:Ol St).

Proof. The necessity part can be proved by ar-
ranging a contradiction of Lemma 2. To prove
the sufficiency part we take a point p € m(S;),
3:0<i<K-1Ap¢gmUry"S:). Then by
the definition of maximality we get Jq € Uf{:ﬁrl St
such that p < ¢, i.e., y(p) < y(q)-

The M-contour problem is also known as finding
the maxima of a set of vectors and has been ex-
tensively explored for serial computers in [7,8, 21].
Computation of maximal elements is important in
solving the Largest Empty Rectangle Problem [4]
where a rectangle R, and a number of planar points
S € R, are given and the problem is to compute the
largest rectangle r C R that contains no point in
S and whose sides are parallel to those of R. If R
is divided into four quadrants then the maximal el-
ements w.r.t. the northeast(NE), northwest(NW),



southwest(SW), and southeast(SE) directions, as
depicted in Figure 4, remain the only candidates
to be the supporting elements of the empty rectan-
gles lying in all the four quadrants.
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Figure 4: Importance of maximal elements in com-
puting largest empty rectangle.

It is well known that the time complexity for
computing the contour of the maximal elements of
n planar points is ©(nlogn) using a serial com-
puter [8]. This lower boundary can be concluded
from the fact that the problem of sorting can be
transformed into an M-contour problem of same
size. The AT? lower bound of M-contour problem
of size n, as shown in Section 2.3, is Q(n?). Dehne
[3] developed an AT? optimal algorithm for solv-
ing M-contour problem on a mesh of size \/n X v/n
in O(y/n) time. The authors [14,15] recently pre-
sented three constant time M-contour algorithms
on RM of various dimensions. Using the result of
optimal simulation of a multidimensional RM by a
2-dimensional RM in [18], it can easily be shown
that all the three algorithms in [14,15] are AT? op-
timal.

2.3 AT? Lower Bounds

Let a problem P of size n have I information con-
tent [17, pages 51-54]. If this problem P is realised
in a VLSI circuit with aspect ratio « then, by Ull-
man [17, page 57], AT? lower bound of solving P
will be Q(al?).

Problem of sorting n logn-bit numbers has in-
formation content I = Q(n). As the problem of
sorting n numbers can be transformed into a prob-
lem of computing the contour of maximal elements
of n planar points, it can be concluded that the
M-contour problem of size n has information con-
tent I = Q(n). Hence, the AT? lower bound of
computing M-contour of n planar points is Q(n?).

Let M-contour of p planar points on an RM’,jp
of size k x p, k < p, be done in O(T) time. This
solution will be AT? optimal if

: )
kpT? = =
P kpa

ie, T = £. Similarly, to compute M-contour of

n planar points, AT? optimally, on RMF _ of size
p X g, p < g, the solution time must be O(%).

For the sake of simplicity, we assume k& = r?,

p = k252, and q = k?t? wherer, s, and t are integers
and s <'t.

3 Optimal M-Contour Algo-
rithms on the k-constrained
RM

We first briefly outline a few published results
which are used in our algorithms.

Lemma 4 Given p items in the first row of an
RM’,zp of size kX p, k < p, these items can be sorted
in O(R) time, which is AT? optimal.

Proof. Seein [2]. |

Lemma 5 Given n items in the columns jk, 0 <
Jj< %, of an RMJ;” of size px q, p < q, these items
can be sorted in O(%) time, which is AT? optimal.

Proof. See in [2]'. |

Given a binary sequence, b;, j = 0,1,...,N —
1, the and computation is to compute by A by A
--+Aby_1. Similarly the or computation computes
boVbV---Vby_1. Adapting the technique of bus
splitting [13] it is easy to show that:

Lemma 6 Given a binary sequence of length k in
the only row of an RM’,@ of size 1 x k, both the and
and the or of the elements in the sequence can be
computed in O(1) time.

Proof. It is easy to check that the constant time
algorithm in [13] on an RM of size 1 x k uses only
horizontal buses of length at most k. Hence, the
same algorithm can be used for RM} of size 1 x k.

[ |

Lemma 7 Computing M-contour of k planar
points in the first row of an RM’,za of size k X k
can be done in O(1) time.

Proof. Again it is easy to check that the first algo-
rithm in [14, 15] on an RM of size k x k can compute
the M-contour of k£ planar points in constant time
using only linear buses of length O(k). Hence, the
same algorithm can be used for RM} of size k x k
to compute the same problem in O(1) time. |

fIn [2], n items are initially given in the first 2 columns
and in that case the proof presented in [2] is incomplete.
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Figure 5: All the passes of the pipelining operation discussed in Section 3.1. Here p = 27, k = 3, and the
propagation of maz,(m(S;)) is represented by integer ¢ for 0 < ¢ < 9. Note that for simplification, k is not

considered as r? for some integer r as assumed.

3.1 Optimal Computing of the M-

Contour of p Planar Points on
RMy, of Size k x p, k < p

First we sort the points w.r.t. z-coordinate by
Lemma 4 in O(%) time. Let the RM’,zp of size k X p
be divided into £ submeshes of size k x k each and
the given p planar points in the first row be dis-
tributed in such a way that each processor PE; ji,
0<i<kand0 < j <%, receives a point. Tt
is obvious that such a redistribution of elements
can be carried out in constant time using a column

broadcast followed by a row broadcast.

Let the points residing in column jk be denoted
by the set S;, 0 < j < £. Clearly these £ sets of
planar points follow the condition of Lemma 3, i.e.,
Vi:0<j<®—1,max,(S;) < ming(Sjy1). The
M-contours m(S;), 0 < j < £, are now computed
in parallel using a submesh of size k x k for each
computation. By Lemma 7 this operation takes
only O(1) time. Now, we transfer the maz, (m(S;))
values to the first row of the RMﬁp in the following
single RM step using Lemma 2:

1.  b: Any processor in column j containing a
point € m(S;) disconnects all port in-
terconnections while the rest of the pro-
cessors connect port N with S for all
0<j< 2.

w: Any processor in column j containing
a point € m(S;) now writes the y-
coordinate of the point to port S for all
0<j<?t

r: Every processor in the first row reads port
S in.

Here, the substeps are labelled as “b:”, “w:”, “r:”,
and “c:” to denote the BUS, WRITE, READ, and
COMPUTE substeps respectively. As the buses
formed in the above RM step are of length at most
k, this RM step can also be used as a single k-
constrained RM step.

Now, the M-contour of the entire p points can
be computed in the following RM phases:

L _1:

1. Tterate the following for t = 0,1,..., 5

1.1 Copy mazy(m(Sik4+v)) to processors
PEi,’U-H"kv 0<i<k,r=0,1,...,tk + v,
using a column broadcast then a row
broadcast and finally a column broadcast
forallv:0<v<k.

1.2 Copy the y-coordinate of the point re-
siding in processor PE;;; to the pro-
cessors PE; piir, 0 < r < k, using a
row broadcast, for all 0 < i < k and

0<j<k(t+1).



1.3 Now in the jth submesh of size k X
k, the ith row contains kK maz, values
paired with the y-coordinate of a partic-
ular point, say d. Now, apply Lemma 3
to eliminate d by computing the and over
the comparison values for all j : 0 < j <
k(t+1).

The bus length in the column broadcasts in
phase 1.1 is at most k while the same in the
row broadcast is at most p. Hence, by Lemma 1
phase 1.1 takes O(%) time on the k-constrained
RM. Phase 1.2 uses buses of length at most k£ and
thus it can be done in constant time. By Lemma 6
phase 1.3 takes O(1) time. It can then be concluded
that the above iteration takes O(# %) time which
is non-optimal.

Now, the ideas of pipelining can be applied to the
above iteration to achieve optimal time. Observe
that in the ¢-th iteration, data are moved from the
u-th submeshes of size k x k each, kt <u < k(t+1),
to all the v-th submeshes of size k x k each, 0 < v <
k(t +1). So, we can start all the iterations simul-
taneously without making any bus-access conflict
by pipelining data as shown in Figure 5. Obviously
such pipeline emulation of the above iteration takes
only O(%) steps as buses of length at most k are

configured. As J5 < %, it can be concluded that

Theorem 1 Given p planar points in the first row
of an RWkp of size k X p, k < p, the M-contour of
these points can be computed in O(%) time, which

is AT? optimal. [ |
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Figure 6: All the passes of the pipelining operation
discussed in Section 3.2. Here p = 4, ¢ = 16, and
k = 4 and C} is represented by a column of integer
jfor0<j<4.

3.2 Optimal Computing of the M-
Contour of n Planar Points on
RMﬁn of Size p x q, p<gq

Let the RMJ,, of size p x ¢ be divided into £ sub-
meshes of size p x k each and the given n planar
points in the first % columns be distributed in such
a way that each processor PE; ;;, 0 < ¢ < p and
0 <j < £, receives a point. It can easily be shown
that such a redistribution can be carried out in
O(%) = O(%) time using the ideas of pipelining
in the following way:

For 0 < j < {, let C; denote the contents of
column j in the initial condition. As we assume,
for the sake of simplicity, ¥ = 72 and ¢ = k?t2
where r and t are integers, we may conclude that
P = kt?. In the first pass, every C; moves from
column j to column j + 1, for 1 < j < { —1 and
Cg_y moves from column # — 1 to column kt* as
shown in Figure 6(pass 1). In the second pass, every
C; moves from column j 4+ 1 to column j + 2, for
1<j < {—2,Ca_p moves from column { —1 to
column kt* and Cg_; moves from column kt* to
column k(2 + 1) as shown in Figure 6(pass 2) and
so on. There should be at most { — 1 passes and
whenever any of Cjs reaches its destination column
in some pass, it will not take part in any of the
remaining passes.

Now, we sort the points w.r.t. z-coordinate in
column-major order by Lemma 5 in O(%) time.

Let the points residing in column jk be denoted
by the set S;, 0 < j < f. Clearly these { sets of
planar points follow the condition of Lemma 3, i.e.,
Vi:0<j<{—1,maz,(S;) < ming(Sjy1). The
M-contours m(S;), 0 < j < {, are now computed
in parallel using a submesh of size p x k for each
computation. By Theorem 1 this operation takes

only O(%) time.

Now taking very similar steps as used in Sec-
tion 3.1, the following can be concluded:

Theorem 2 Given n planar points in the first %

columns of an RM’ZH of size p X q, p < q, the M-
contour of these points can be computed in O(F)
time, which is AT? optimal. [ ]

4 Conclusion

In [2,5,6] it has been pointed out that straight-
forward simulations of RM algorithms on the k-
constrained RM compromise with AT? optimality.
To address this issue, we have developed two opti-
mal algorithms to compute the contour of maximal
elements of a set of planar points. The first algo-



rithm solves this problem of size p in O(%) time on
an k-constrained RM of size k X p, k < p, and the
second algorithm solves this problem of size n in
O(%) time on an k-constrained RM of size p x g,
p < g, and pq = kn.
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