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Abstract

Recently we have introduced the idea of adaptive al-
gorithms which runs on reconfigurable meshes of vari-
able sizes and aspect ratios without compromaising
AT? optimality. We have also supported our idea by
developing adaptive algorithms for sorting and com-
puting maxima. In this paper we develop a new adap-
tive sorting algorithm which has lower constant asso-
ciated with the highest order term in the complexity
order than our previously published adaptive sorting
algorithm.

1 Introduction

It is well known that interprocessor communications
and simultaneous memory accesses often act as bot-
tlenecks in present-day parallel machines. To address
this problem, dynamically reconfigurable bus systems
have been introduced recently to a number of paral-
lel architectures [7] of which the reconfigurable mesh
[12] has drawn considerable interest. Among many
applications, the reconfigurable mesh can be viewed
as a part of a powerful image understanding architec-
ture for supporting real time image understanding ap-
plications and research in knowledge-based computer
vision [13].

The virtual communication diameter of a reconfig-
urable mesh of any size is O(1) which is exploited by
many researchers to develop constant time algorithms
[7]. To realise these constant time algorithms we need
to use more processors than we usually use to solve
the same problems on ordinary meshes. In fact, we
can easily observe that the ratio of the number of pro-
cessors used in a constant time algorithm to the num-
ber of processors used in an ordinary mesh algorithm
solving the same problem is polynomial in problem
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size. Ben-Asher et al. [1] have presented the idea of
self-simulation where the existing reconfigurable mesh
algorithms are executed with slowdown on a reconfig-
urable mesh of size smaller than intended for those
algorithms. A few self-simulation techniques appear
in [1, 6] with optimal slowdown for various models of
reconfigurable mesh.

In [5] we have pointed out that self-simulation, even
with optimal slowdown, compromises the AT? [11]
optimality of the resultant algorithm. To overcome
this limitation of self-simulation, we have presented a
new idea of developing algorithms on reconfigurable
meshes which will be adaptive in the sense that these
algorithms can be executed on reconfigurable meshes
of variable sizes and aspect ratios while keeping the
AT? measures unaffected. To illustrate our idea we
have developed adaptive AT? optimal algorithms for
sorting items and computing the contour of maximal
elements of a set of planar points in [5].

In this paper, we develop a new adaptive sorting al-
gorithm based on Schnorr and Shamir’s efficient sort-
ing algorithm (see Section 2.2) on ordinary meshes.
The constant factor of the highest order term in the
complexity order of Schnorr and Shamir’s algorithm
is much lower than that of Marberg and gafni’s rotate-
sort [4] algorithm based on which our previous adap-
tive sorting algorithm was developed in [5]. We, there-
fore, claim that the adaptive sorting algorithm devel-
oped here is more efficient than the adaptive sorting
algorithm presented in [5].

The paper is organised as follows. The computa-
tional model of the reconfigurable mesh and the sort-
ing algorithm of Schnorr and Shamir are presented
in Section 2. In Section 3 we formally define the
idea of adaptive algorithms and then present a generic
adaptive algorithm. In the framework of this generic
adaptive algorithm, we further develop a new efficient
adaptive sorting algorithm in Section 4.



2 Preliminaries

For the sake of completeness, we briefly describe
the reconfigurable mesh in Section 2.1 and present
Schnorr and Shamir’s sorting algorithm on ordinary
meshes in Section 2.2.

Figure 1: A reconfigurable mesh of size 3 x 4.

2.1 The Reconfigurable Mesh

The reconfigurable mesh [12] is primarily a two-
dimensional mesh of processors connected by reconfig-
urable buses. In this parallel architecture, a processor
is placed at the grid points as in the usual mesh con-
nected computers. Processors of the reconfigurable
mesh of size X x Y are denoted by PF; ;, 0 <i < X,
0 < j <Y where processor PEj o resides in the south-
western corner. Each processor is connected to at
most four neighbouring processors through fixed bus
segments connected to four I/O ports E & W along
dimension z and N & S along dimension y. These
fixed bus segments are building blocks of larger bus
components which are formed through switching, de-
cided entirely on local data, of the internal connectors
(see Figure 1) between the I/O ports of each proces-
sor. The fifteen possible interconnections of 1/O ports
through switching are shown in Figure 2. Like all
reconfigurable bus systems, the behaviour of recon-
figurable mesh relies on the key assumption that the
transmission time of a message along a bus is inde-
pendent of the length of the bus.
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Figure 2: Possible interconnections between the four
I/0 ports of a processor.

A reconfigurable mesh operates in the single in-
struction multiple data (SIMD) mode. Besides the
reconfigurable switches, each processor has a comput-
ing unit with a fixed number of local registers. Other
than the buses and switches the reconfigurable mesh
of size p X ¢ is similar to the standard mesh of size
p x g and hence it has ©(pq) area in VLST embedding
[11], under the assumption that processors, switches,
and links between adjacent switches occupy unit area.

2.2 Schnorr and Shamir’s Sorting Al-
gorithm

Consider sorting M N items on an ordinary mesh of
size M x N where each processor has exactly one item
(in scrambled order) at the start. Also suppose that,
after sorting, each processor will again contain exactly
one item. Schnorr and Shamir [10] have assumed the
order of processors in the final output to be the snake-
like-row-major order. To keep the algorithm correct
for the entire range of values of M and N, it is also
assumed that N < M?2. We further assume that M =
245 N = 2% and 4s > 3t, which implies M > N3/4,
for the sake of simplicity in presentation.
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Figure 3: Definition of blocks, vertical slices, and hor-
izontal slices in the sorting algorithm of Schnorr and
Shamir.

Algorithm 1 Schnorr and Shamir’s Algorithm [10]

1 Sort all the blocks (Figure 3) in snake-like-row-
magor order;

2 Permute the columns so that the N3/* columns in
each block are distributed evenly among the N/*
vertical slices (Figure 3);

3 Sort all the blocks in snake-like-row-magor order;

4 Sort all the columns of the mesh downwards;



5 Collectively sort blocks 1 and 2, blocks 3 and 4,
etc., of each vertical slice in snake-like-row-major
order;

6 Collectively sort blocks 2 and 3, blocks 4 and 5,
etc., of each vertical slice in snake-like-row-magjor
order;

7 Sort all the rows of the mesh into alternating left-
to-right and right-to-left order;

8 Perform 2N3/* steps of the odd-even transposi-
tion sort [3] along the snake;

3 Adaptive Algorithms

Let a problem P of size n have I(n) information con-
tent [11, pp. 51-54]. If this problem P is realized
in a VLSI circuit with aspect ratio a > 1 then, by
Ullman [11, pp. 57], the AT? lower bound of P will
be Q(al?(n)). Now, consider a reconfigurable mesh
of size p x ¢ where pg = kI(n), 1 < p < q < I?*(n),
and k > 1.

Throughout this paper we assume that initially
each item of IT(n) information content is contained in
a distinct processor. In such case k = Ip—fl) represents
how much of the mesh is filled with data.

Let P be solved, AT? optimally, on a reconfigurable
mesh of size p x ¢ in O(T") time. Then

pgl? = %]2(71) .

This implies
1
r_ I _a (1)
P k
‘We now present the formal definition of adaptive al-
gorithms developed in our paper [5] without including

the analytical support for space constraint.

Definition 1 Consider an arbitrary problem P of
size n with information content I(n). An algorithm A

is called adaptive if A takes O (@) =0 (%) time

to solve P on a reconfigurable mesh of size px q, where
VIn)<p<qg<I(n)and k= %.

(n). We

Now, from equation (1) we find that 1),

From Definition 1 we also find that ¢ <
thus can conclude that

j4
k
1

k<p (2)

which is an important relation assumed in Algo-
rithm 2 below.

The study of adaptive algorithms on reconfigurable
meshes reveals that the discussion of optimality issues
in mesh-connected networks should not be limited to
any specific class or model. It is obvious that exist-
ing AT? optimal algorithms on reconfigurable mesh
will play significant role in the development of future
adaptive algorithms but we must consider optimal al-
gorithms on linear arrays and ordinary meshes as well.

Adaptive algorithms can be developed from
scratch. But we are interested in designing adaptive
algorithms mainly by threading optimal algorithms
on linear arrays, ordinary meshes, and reconfigurable
meshes. We use the following algorithmic structure in
developing adaptive algorithms for specific problems:

Algorithm 2 Generic Adaptive Algorithm

Principal Module: Here P of size n is solved on
a reconfigurable mesh of size p X q where p < q and
pq = kI(n). It is assumed that I(n) items of infor-
mation are contained in the first @ columns where

each processor PF; ;, 0 < i <pand 0 < j < @}

contains exactly one item of information.
1p Divide the mesh of size p x q into { submeshes
of size p X k each.

2p Distribute the I(n) information content equally
among the submeshes in such a way that each
processor PE; ;. of the main mesh, 0 < i < p
and 0 < j < ¥, receives one item of information.
This ensures that each submesh of size p X k now
contains exactly p items of information in its first
column.

3p Solve the subproblem with p items of information
in each submesh of size p X k using the algorithm
of the supporting layer in parallel.

4p Merge the solutions of the % subproblems using
the entire mesh of size p X q.

Supporting Module: Here P of size at most p is
solved on a reconfigurable mesh of size p X k where
k < p. It is assumed that p items of information
are contained in the first column where each processor
contains exactly one item of information.

Is Divide the mesh of size p x k into & submeshes
of size k X k each.



2s Distribute the p items of information equally
among the submeshes in such a way that each
submesh of size k X k contains exactly k items of
information in its top row.

3s Solve the subproblem with k items of information
in each submesh of size k X k in parallel.

4s Merge the solutions of the ¥ subproblems using
the entire mesh of size p X k.

The above generic Algorithm 2 assumes £ and { to
be integers for the sake of simplicity.

As mentioned in Definition 1, the main goal of Al-
gorithm 2 is to achieve O (%) run time. Phases 1p
and 1s of Algorithm 2 need no inter-processor com-
munication and thus these can be done in constant
time.

As % = # by equation (1), phase 2p can be con-
sidered as a problem of transferring column j to col-
umn kj for all j : 0 < j < {. Now each of the column
transfer can be done in constant time by p row broad-
casts in parallel. So, phase 2p can be done in O (%)
time.

Phase 1s not only divides the mesh of size p X k
into £ submeshes of size k x k but also distributes p
items of information equally among these submeshes
such that every submesh contains k items of infor-
mation in its first column. Hence, phase 2s can be
done in two steps. In the first step, the item of in-
formation in processor PE; o of each submesh of size
k x k is transferred to processor PE;; in parallel by
row broadcasts for all i : 0 < i < k. In the second
step, the item of information in each processor PEj ;
is transferred to processor PEp ; in parallel by col-
umn broadcasts for all j : 0 < 7 < k. So, it can be
concluded that phase 2s takes O(1) time.

If we can fairly assume that a constant time al-
gorithm exists to solve phase 3s (possibility of such
algorithm can be derived from equation (1)) then the
only challenge that remains in designing an adap-
tive algorithm for any specific problem is to solve
phases 4p and 4s in O (%) time as phase 3s degen-
erates to phases 1s—4s.

Phases 3p and 4p and phases 3s and 4s should not
necessarily be simple implementations of the many-
way divide-and-conquer strategy as mentioned in Al-
gorithm 2. In many cases, it is more efficient to re-
place these phases by complex iteration if the moti-
vation is to solve a large problem instance with the
solution of smaller problem instances.

Using the framework of generic adaptive Algo-
rithm 2 we developed an adaptive sorting algorithm
based on Marberg and Gafni’s rotatesort [4] algorithm
on ordinary meshes in [5]. In the next section, the
generality of Algorithm 2 is again illustrated by de-
veloping a new efficient adaptive sorting algorithm
based on Schnorr and Shamir’s sorting algorithm on
ordinary meshes.

4 A New Adaptive Sorting Al-
gorithm

In this section we develop a new adaptive sorting al-
gorithm, using the framework of generic adaptive Al-
gorithm 2, to sort n items AT? optimally on a recon-
figurable mesh of size p X ¢, p < q and pq = kn, based
on the efficient AT? optimal sorting Algorithm 1 of
Schnorr and Shamir on ordinary meshes.

Algorithm 1 of Schnorr and Shamir uses a constant
number of linear transformations in the form of sort-
ing and cyclic rotation along rows or columns. Be-
sides these, Algorithm 1 also recursively degenerates
into sorting problems on smaller meshes. We further
assume M > N3/4 as mentioned in Section 2.2. On
the contrary, if M # N3/% then N > M*/3 > M3/4
then Algorithm 1 can easily be adapted by consider-
ing blocks (Figure 3(a)) of size M3/* x M3/4 instead
and transposing all row(column) operations into col-
umn(row) operations.

The following two lemmas play important roles in
the development of adaptive sorting algorithm pre-
sented in this section:

Lemma 1 Let s items are stored in some s proces-
sors of a reconfigurable linear array of m > s proces-
sors. Then these items can be sorted in O(s) time.

Proof. A straightforward emulation of odd-even
transposition sorting algorithm [3] solves the prob-
lem. |

Lemma 2 Sorting m items in the first row of a re-
configurable mesh of size m x m can be done in O(1)
time.

Proof. See in [2,8,9]. |
In this section we further assume k = 247, p = 245,
and ¢ = 2% where r, s, and t are integers and r <
s < t for the sake of simplicity.
The principal module and the supporting module of
this adaptive algorithm are presented in Sections 4.2
and 4.1 respectively.



4.1 The Supporting Module

In this section we develop an adaptive algorithm to
sort p items on a reconfigurable mesh of size p x k,
k < p, according to the supporting module of Algo-
rithm 2. We assume that phases 1s and 2s of Algo-
rithm 2 are already completed, i.e., the mesh is di-
vided into £ submeshes of size k& x k each and the
given p items in the first column are distributed in
such a way that each processor Pl ;, 0 < i < %
and 0 < 7 < k, receives an item. This distribution
of items transformed the column of p items into an
array of £ x k items where each row is separated by
k rows. Now, phases 3s and 4s of Algorithm 2 emu-
late Algorithm 1 of Schnorr and Shamir. As phase 2
of Algorithm 1 can be obtained by cyclic rotation of
each row in parallel, this emulation requires only the
following basic operations in various phases of Algo-
rithm 1:

k> (1)

1. Sort (%)3/4 ></(%)3/4 it?ms using a submesh
. 3/4 3/4
of size k (2)”" x ()™,

2. Rotate £ items using a submesh of size px 1.

3. Sort k items in a row using a submesh of
size k X k.

4. Sort, (2)** x 2(2)
mesh of size k (%)3/4 x 2 (%)3/4.

5. Sort £ items using a submesh of size p x 1.

3/4 . .
’* items using a sub-

6. Perform 2(%)3/4 steps of the odd-even
transposition sort.

Else (= 2 > k3/4)
7. Sort k3/* x k3/* items using a submesh of
size kk3/4 x K3/
8. Rotate k items in a row using a submesh of
size k X k.
9. Sort £ items using a submesh of size p x 1.

10. Sort 2k3/4 x k3/* items using a submesh of
size 2kk3/* x k3/4,

11. Sort k items in a row using a submesh of
size k X k.

12. Perform 2k3/* steps of the odd-even trans-
position sort.

The problem of rotation can always be transformed
into a sorting problem without any slowdown. A ro-
tation, therefore, takes no more time than it does to
sort.

Now operations 3, 8, and 11 can be done in O(1)
time by Lemma 2. Using Lemma 1, operations 2, 5,
and 9 can be done in O (%) time.

Algorithm 1 of Schnorr and Shamir can be applied,
by treating the reconfigurable mesh as an ordinary

mesh, to solve operation 1 and 4 in O ((%)3/4> time,

operation 7 and 10 in O (k3/4) =0 ((%)3/4) time.

Theorem 3 Given p items in the first column of a
reconfigurable mesh of size p X k, k < p, these items
can be sorted in O (%) time, which is AT? optimal.

|

4.2 The Principal Module

In this section we develop an adaptive algorithm to
sort n items on a reconfigurable mesh of size p x q,
p < q and pq = kn, according to the principal module
of Algorithm 2. We assume that phases 1p and 2p of
Algorithm 2 are already completed, i.e., the mesh is
divided into { submeshes of size p x k each and the
given n items in the first 2 columns are distributed
in such a way that each processor PFE; ji, 0 <@ <p
and 0 < j < £, receives an item. This distribution
of items transformed the given n items into an array
of p x { items where each column is separated by
k columns. Now, phases 3p and 4p of Algorithm 2
emulate Algorithm 1 of Schnorr and Shamir which
requires only the following basic operations in various
phases of Algorithm 1:

Ifp> (§)""

1. Sort (%)3/4 X (%)3/4 items using a submesh
of size (£)** x k (£)**.
2. Rotate { items using a submesh of size 1 xq.

3. Sort p items in a column using a submesh
of size p x k.

4. Sort 2(%)3/4 x (4
mesh of size 2 (%)3/4 X k (%)3/4.

5. Sort £ items using a submesh of size 1 x g.

)3/ * items using a sub-

6. Perform 2(%)3/4 steps of the odd-even
transposition sort.

Else (= ¢ > p%*)
7. Sort p*/* x p?/* items using a submesh of
size p?/4 x kp3/4.

8. Rotate p items in a column using a submesh
of size p X k.



9. Sort { items using a submesh of size 1 x g.

10. Sort p*/4 x 2p®/4 items using a submesh of
size p3/* x 2kp3/4.

11. Sort p items in a column using a submesh
of size p X k.

12. Perform 2p®/4 steps of the odd-even trans-
position sort.

From equation (2) we get k < p. Hence, operations
3, 8, and 11 can be done in O (%) time by Theorem 3.
Using Lemma 1, operations 2, 5, and 9 can be done
in O (%) time.

Algorithm 1 of Schnorr and Shamir can be applied,
by treating the reconfigurable mesh as an ordinary

mesh, to solve operation 1 and 4 in O ((%)3/4> time,

operation 7 and 10 in O (p*/4) = O ((%)3/4) time.
Theorem 4 Given n items in the first 2 columns of
a reconfigurable mesh of size px q, p < q and pq = kn,
these items can be sorted in O (%) time, which is AT?
optimal.

To sort M N items on an ordinary mesh of size
M x N, Schnorr and Shamir’s Algorithm 1 takes
M + 2N + o(M + N) steps [10], while Marberg and
Gafni’s rotatesort algorithm takes 7TM + 7N steps [4].
As both the adaptive sorting algorithms, developed
in this paper and in [5], use the same framework of
generic adaptive Algorithm 2, the adaptive sorting
algorithm developed in this paper (based on Algo-
rithm 1) is more efficient than the adaptive sorting
algorithm in [5] (based on rotatesort) as the constant
factor of the highest order term in the complexity or-
der of Algorithm 1 is lower than that of rotatesort.

5 Conclusion

In [5] we introduced the idea of adaptive algorithms
which runs on reconfigurable meshes of variable sizes
and aspect ratios without compromising the AT op-
timality. We supported our idea by developing adap-
tive algorithms for sorting and computing maxima in
[5]. In this paper we have developed a new adaptive
sorting algorithm which has lower constant associated
with the highest order term in the complexity order
than our adaptive sorting algorithm in [5].
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