Some Parallel Algorithms for
Integer Factorisation

Richard P. Brent

Oxford University Computing Laboratory,
Wolfson Building, Parks Road,
Oxford OX1 3QD, UK

rpb@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/
oucl/people/richard.brent.html

3 June 1999
(revised 30 August 1999)

Abstract. Algorithms for finding the prime factors of large composite
numbers are of practical importance because of the widespread use of
public key cryptosystems whose security depends on the presumed diffi-
culty of the factorisation problem. In recent years the limits of the best
integer factorisation algorithms have been extended greatly, due in part
to Moore’s law and in part to algorithmic improvements. It is now rou-
tine to factor 100-decimal digit numbers, and feasible to factor numbers
of 155 decimal digits (512 bits). We describe several integer factorisa-
tion algorithms, consider their suitability for implementation on parallel
machines, and give examples of their current capabilities.

Copyright © 1999, R. P. Brent and Springer-Verlag. Expanded version of invited
paper to be presented at Euro-Par *99, Toulouse, 1-3 Sept. 1999. Shorter version [11]
in LNCS 1685 (1999), 1-22. See http://www/springer.de/comp/lncs/index.html

rpb193 typeset using MTEX2e

1 Introduction
Any positive integer N has a unique prime power decomposition

N =p¢111pgtz ___p:k

(p1 < p2 < -+ < pi primes, a; > 0). This result is easy to prove, but the
standard proof gives no hint of an efficient algorithm for computing the prime
power decomposition. In order to compute it, we need —

1. An algorithm to test whether an integer N is prime.
2. An algorithm to find a nontrivial factor f of a composite integer N.

Given these components there is a simple recursive algorithm to compute the
prime power decomposition.

Fortunately or unfortunately, depending on one’s point of view, problem 2
is generally believed to be hard. There is no known deterministic or randomised
polynomial-time! algorithm for finding a factor of a given composite integer N.
This empirical fact is of great interest because the most popular algorithm for
public-key cryptography, the RSA algorithm [81], would be insecure if a fast
integer factorisation algorithm could be implemented [67].

In this paper we survey some of the most successful integer factorisation
algorithms. Since there are already several excellent surveys emphasising the
number-theoretic basis of the algorithms, we concentrate on the computational
aspects, and particularly on parallel/distributed implementations of the algo-
rithms.

1.1 Primality testing

There are deterministic primality testing algorithms whose worst-case running
time on a sequential computer is O((log N)¢!08108108 V) "where ¢ is a moderate
constant. These algorithms are practical for numbers N of several hundred deci-
mal digits [1, 21, 60]. If we are willing to accept a very small probability of error,
then faster (polynomial-time) probabilistic algorithms are available [38,62, 77].
Thus, in this paper we assume that primality testing is easy and concentrate on
the more difficult problem of factoring composite integers.

1.2 Public key cryptography

As we already observed, large primes have a significant practical application —
they can be used to construct public key cryptosystems?. The best-known is the
RSA system, named after its inventors Rivest, Shamir and Adleman [81]. The

! For a polynomial-time algorithm the expected running time should be a polynomial
in the length of the input, i.e. O((log N)¢) for some constant c.

2 A concept introduced by Diffie and Hellman [29]. Also known as asymmetric or open
encryption key cryptosystems [84, 92].

security of RSA depends on the (assumed) difficulty of factoring the product of
two large primes. This is the main practical motivation for the current interest in
integer factorisation algorithms. Of course, mathematicians have been interested
in factorisation algorithms for hundreds of years, but until recently it was not
known that such algorithms were of “practical” importance.

In the RSA system we usually take N = p;p,, where p;, po are large primes,
each approximately equal, but not too close, to n'/2. The product N is made
public but the factors pi,ps are kept secret. There is an implementation ad-
vantage in using a product of three large primes, N = p;paps, where each p;
is approximately N'/3. Some of the computations can be done mod p; and the
results (mod N) deduced via the Chinese remainder theorem. This is faster if we
use three primes instead of two. On the other hand, the security of the system
may be compromised because N, having smaller prime factors, may be easier to
factor than in the two-prime case.

1.3 The discrete logarithm problem

The difficulty of the discrete logarithm problem [66, 50] was used by Diffie and
Hellman [29] to construct the Diffie-Hellman key agreement protocol. This well-
known protocol allows two parties to establish a secret key through an exchange
of public messages. Related public-key algorithms, such as the El Gamal algo-
rithm [32, 33, 84], also depend on the difficulty of the discrete logarithm problem.
These public-key algorithms provide practical alternatives to the RSA algorithm.
Although originally considered in the setting of the multiplicative group GF (p)*
of GF(p) (the finite field with a prime number p of elements), they generalise
to any finite group G. There may be advantages (increased speed or security
for a fixed size) in choosing other groups. Neal Koblitz [39] and Victor Miller
independently proposed using the group of points on an elliptic curve, and this
is a subject of much current research.

We do not consider algorithms for discrete logarithms in this paper. However,
it is interesting to note that in some cases integer factorisation algorithms have
analogues which apply to the discrete logarithm problem [66,95,96]. This is less
often true for discrete logarithms over elliptic curves, which is one reason for the
popularity of elliptic curves in cryptographic applications [51,52].

1.4 Parallel algorithms

When designing parallel algorithms we hope that an algorithm which requires
time 77 on a computer with one processor can be implemented to run in time
Tp ~ T1/P on a computer with P independent processors. This is not always
the case, since it may be impossible to use all P processors effectively. However,
it is true for many integer factorisation algorithms, provided P is not too large.

The speedup of a parallel algorithm is S = T7/Tp. We aim for a linear
speedup, i.e. S = O(P).

2 Multiple-Precision Arithmetic

Before describing some integer factorisation algorithms, we comment on the
implementation of multiple-precision integer arithmetic on vector processors and
parallel machines. Multiple-precision arithmetic is necessary because the number
N which we want to factor may be much larger than can be represented in a
single computer word (otherwise the problem is trivial).

2.1 Carry propagation and redundant number representations

To represent a large positive integer NV, it is customary to choose a convenient
base or radiz § and express N as

t—1
N =3 df,
0

where dy, . .., d;—1 are “base 3 digits” in the range 0 < d; < 8. We choose 3 large,
but small enough that 3 — 1 is representable in a single word [4,38]. Consider
multiple-precision addition (subtraction and multiplication may be handled in a
similar way). On a parallel machine there is a problem with carry propagation
because a carry can propagate all the way from the least to the most significant
digit. Thus an addition takes worst case time ©O(t), and average time ©(logt),
independent of the number of processors.

The carry propagation problem can be reduced if we permit digits d; outside
the normal range. Suppose that we allow —2 < d; < 3+ 1, where 3 > 4. Then
possible carries are in {—1,0,1,2} and we need only add corresponding pairs
of digits (in parallel), compute the carries and perform one step of carry prop-
agation. It is only when comparisons of multiple-precision numbers need to be
performed that the digits have to be reduced to the normal range by fully propa-
gating carries. Thus, redundant number representation is useful for speeding up
multiple-precision addition and multiplication. On a parallel machine with suffi-
ciently many processors, such a representation allows addition to be performed
in constant time.

2.2 High level parallelism

Rather than trying to perform individual multiple-precision operations rapidly,
it is often more convenient to implement the multiple-precision operations in
bit or word-serial fashion, but perform many independent operations in parallel.
For example, a trial of the elliptic curve algorithm (§7) involves a predetermined
sequence of additions and multiplications on integers of bounded size. Our im-
plementation on a Fujitsu VPP 300 performs many trials concurrently (on one or
more processors) in order to take advantage of each processor’s vector pipelines.

2.3 Use of real arithmetic

Most supercomputers were not designed to optimise the performance of ex-
act (multiple-precision) integer arithmetic. On machines with fast floating-point
hardware, e.g. pipelined 64-bit floating point units, it may be best to represent
base 3 digits in floating-point words. The upper bound on S is imposed by the
multiplication algorithm — we must ensure that 32 is exactly representable in a
(single or double-precision) floating-point word. In practice it is convenient to
allow some slack — for example, we might require 832 to be exactly representable.
On machines with IEEE standard arithmetic, we could use 3 = 224

2.4 Redundant representations mod N

Many integer factorisation algorithms require operations to be performed modulo
N, where N is the number to be factored. A straightforward implementation
would perform a multiple-precision operation and then perform a division by
N to find the remainder. Since N is fixed, some precomputation involving N
(e.g. reciprocal approximation) may be worthwhile. However, it may be faster
to avoid explicit divisions, by taking advantage of the fact that it is not usually
necessary to represent the result uniquely.

For example, consider the computation of z * ymod N. The result is
r =x %y — qx*xN and it may be sufficient to choose ¢ so that 0 < r < 2N
(a weaker constraint than the usual 0 < r < N). To compute r we multiply z
by the digits of y, most significant digit first, but modify the standard “shift
and add” algorithm to subtract single-precision multiples of N in order to keep
the accumulated sum bounded by 2N. Formally, a partial sum s is updated by
s+ Bx*s+y;jxz—q; * N, where g; is obtained by a division involving only a
few leading digits of 8% s+ y; xx and N.

Alternatively, a technique of Montgomery [53] can be used to speed up mod-
ular arithmetic.

2.5 Computing inverses mod N

In some factorisation algorithms we need to compute inverses mod N. Suppose
that z is given, 0 < x < N, and we want to compute z such that zz = 1 mod N.
The extended Euclidean algorithm [38] applied to and N gives 4 and v such
that

uz +vN = GCD(z, N).

If GCD(z,N) = 1 then uz = 1mod N, so z = u. If GCD(z,N) > 1 then
GCD(z,N) is a nontrivial factor of N. This is a case where failure (in finding
an inverse) implies success (in finding a factor) !

3 Integer Factorisation Algorithms

There are many algorithms for finding a nontrivial factor f of a composite inte-
ger N. The most useful algorithms fall into one of two classes —

A. The run time depends mainly on the size of N, and is not strongly dependent
on the size of f. Examples are —

e Lehman’s algorithm [43], which has worst-case run time O(N'/3).

e The Continued Fraction algorithm [61] and the Multiple Polynomial
Quadratic Sieve (MPQS) algorithm [72,89], which under plausible as-
sumptions have expected run time O(exp(vV¢ln N Inln N)), where cis a
constant (depending on details of the algorithm). For MPQS, ¢ ~ 1.

e The Number Field Sieve (NFS) algorithm [44,45], which under plausi-
ble assumptions has expected run time O(exp(c(In N)/3(Inln N)?/3)),
where c is a constant (depending on details of the algorithm and on the
form of N).

B. The run time depends mainly on the size of f, the factor found. (We can
assume that f < N'/2.) Examples are —

e The trial division algorithm, which has run time O(f - (log N)?).

e Pollard’s “rho” algorithm [71], which under plausible assumptions has
expected run time O(f'/2 - (log N)?).

e Lenstra’s Elliptic Curve (ECM) algorithm [49], which under plausible as-
sumptions has expected run time O(exp(yv/cIn fInIn f)-(log N)?), where
¢~ 2 is a constant.

In these examples, the time bounds are for a sequential machine, and the term
(log N)? is a generous allowance for the cost of performing arithmetic operations
on numbers which are O(N?). If N is very large, then fast integer multiplication
algorithms [26, 38] can be used to reduce the (log N)? term.

Our survey of integer factorisation algorithms in §84-10 below is necessarily
cursory. For more information the reader is referred to the literature [7, 14, 56,
74,80].

3.1 Quantum factorisation algorithms

In 1994 Shor [86,87] showed that it is possible to factor in polynomial expected
time on a quantum computer [27, 28]. However, despite the best efforts of several
research groups, such a computer has not yet been built, and it remains unclear
whether it will ever be feasible to build one. Thus, in this paper we restrict our
attention to algorithms which run on classical (serial or parallel) computers [93].
The reader interested in quantum computers could start by reading [76, 94].

4 Pollard’s “rho” Algorithm

Pollard’s “rho” algorithm [5,71] uses an iteration of the form
zit1 = f(z;) mod N, i >0,

where N is the number to be factored, xg is a random starting value, and f is a
nonlinear polynomial with integer coefficients, for example

flx)=2°4+a (a#0,—2mod N).

Let p be the smallest prime factor of IV, and j the smallest positive index
such that z5; = z; (mod p). Making some plausible assumptions, it is easy to
show that the expected value of j is E(j) = O(p'/?). The argument is related to
the well-known “birthday” paradox — the probability that zg,x1, ...,z are all
distinct mod p is approximately

(1= 1/p) - (L=2/p)--(1 - k/p) ~ exp (%) ,

and if zg,xy,...,2) are not all distinct mod p then j < k.

In practice we do not know p in advance, but we can detect z; by taking
greatest common divisors. We simply compute GCD (z2; —x;, N) fori =1,2,...
and stop when a GCD greater than 1 is found.

4.1 Pollard rho examples

An early example of the success of a variation of the Pollard “rho” algorithm
is the complete factorisation of the Fermat number Fg = 22° 11 by Brent and
Pollard [12]. In fact

Fy = 1238926361552897 - pea2,

where pgy is a 62-digit prime.

The Cunningham project [13] is a collaborative effort to factor numbers of
the form a™ £ 1, where a < 12. The largest factor found by the Pollard “rho”
algorithm during the Cunningham project is a 19-digit factor of 223%¢ + 1 (found
by Harvey Dubner on a Dubner Cruncher [15]). Larger factors could certainly
be found, but the discovery of ECM (§7) has made the Pollard “rho” algorithm
uncompetitive for factors greater than about 10 decimal digits [6, Table 1].

4.2 Parallel rho

Parallel implementation of the “rho” algorithm does not give linear speedup®. A
plausible use of parallelism is to try several different pseudo-random sequences

3 Variants of the “rho” algorithm can be used to solve the discrete logarithm problem.
Recently, van Oorschot and Wiener [68,69] have shown that a linear speedup is
possible in this application.

(generated by different polynomials f). If we have P processors and use P differ-
ent sequences in parallel, the probability that the first k& values in each sequence
are distinct mod p is approximately exp(—k?P/(2p)), so the speedup is O(P/?).
Recently Crandall [25] has suggested that a speedup ©(P/(log P)?) is possible,
but his proposal has not yet been tested.

5 The Advantages of a Group Operation

The Pollard rho algorithm takes z;+1 = f(z;) mod N where f is a polynomial.
Computing z,, requires n steps. Suppose instead that x;11 = zgox; where “o” is
an associative operator, which for the moment we can think of as multiplication.
We can compute z, in O(logn) steps by the binary powering method [38].

Let m be some bound assigned in advance, and let E be the product of all
maximal prime powers ¢¢, ¢¢° < m. Choose some starting value zg, and consider
the cyclic group < zo> consisting of all powers of z¢ (under the associative
operator “o”). If this group has order g whose prime power components are
bounded by m, then g|E and ¥ = I, where I is the group identity.

We may consider a group defined mod p but work mod N, where p is an
unknown divisor of N. This amounts to using a redundant representation for
the group elements. When we compute the identity I, its representation mod
N may allow us to compute p via a GCD computation (compare Pollard’s rho
algorithm). We give two examples below: Pollard’s p—1 algorithm and Lenstra’s
elliptic curve algorithm.

6 Pollard’s p — 1 Algorithm

Pollard’s “p — 1” algorithm [70] may be regarded as an attempt to generate the

[P)]

identity in the multiplicative group GF(p)*. Here the group operation “o” is
just multiplication mod p, so (by Fermat’s theorem) g|p — 1 and

28 =I1=x§ =1 (mod p) = p|GCD (zf —1,N)

6.1 p— 1 example

The largest factor found by the Pollard “p—1” algorithm during the Cunningham
project is a 32-digit factor

P32 = 49858990580788843054012690078841
of 2977 — 1. In this case

p3a—1=2%.5.13-19-977- 1231 - 4643 - 74941 - 1045397 - 11535449

6.2 Parallel p — 1

Parallel implementation of the “p — 1”7 algorithm is difficult, because the inner
loop seems inherently serial. At best, parallelism can speed up the multiple preci-
sion operations by a small factor (depending on log N but not on p). Parallelism
can be used effectively for the second phase (see §7.2) but the first phase is a
serial bottleneck.

6.3 The worst case for p — 1

In the worst case, when (p — 1)/2 is prime, the “p — 1”7 algorithm is no better
than trial division. Since the group has fixed order p — 1 there is nothing to
be done except try a different algorithm. In the next section we show that it is
possible to overcome the main handicaps of the “p — 1”7 algorithm, and obtain
an algorithm which is easy to implement in parallel and does not depend on the
factorisation of p — 1.

7 Lenstra’s Elliptic Curve Algorithm

If we can choose a “random” group G with order g close to p, we may be able to
perform a computation similar to that involved in Pollard’s “p — 1” algorithm,
working in G rather than in GF(p)*. If all prime factors of g are less than the
bound m then we find a factor of N. Otherwise, repeat with a different G (and
hence, usually, a different g) until a factor is found. This is the motivation for
H. W. Lenstra’s elliptic curve algorithm (or method) (ECM).
A curve of the form
v’ =2 +az+b (1)

over some field F' is known as an elliptic curve. A more general cubic in 2 and y
can be reduced to the form (1), which is known as the Weierstrass normal form,
by rational transformations, provided char(F) # 2 or 3.

There is a well-known way of defining an Abelian group (G, o) on an elliptic
curve over a field. Formally, if P, = (z1,y1) and P> = (x2,y2) are points on the
curve, then the point P; = (x3,y3) = PioP; is defined by —

(#3,y3) = (A — 21 — 22, A1 — z3) — 111), (2)

where
) = { Bzi+a)/(2y) ith =P
(y1 —y2)/(x1 — x2) otherwise.

The identity element in G is the “point at infinity”, (oo, 00).

From now on we write “o” as “+”, since this is standard in the elliptic curve
literature. Thus (oo, 00) is the “zero” element of G, and is written as 0.

The geometric interpretation of P, + P, is straightforward: the straight line

P, P, intersects the elliptic curve at a third point Py = (23, —ys), and P; is the

10

reflection of Pj in the z-axis. We refer the reader to a suitable text [20,37,42,
88] for an introduction to the theory of elliptic curves.

In Lenstra’s algorithm [49] the field F is the finite field GF(p) of p elements,
where p is a prime factor of N. The multiplicative group GF(p)* of GF(p),
used in Pollard’s “p — 1” algorithm, is replaced by the group G defined by (1-2).
Since p is not known in advance, computation is performed in the ring Z/NZ
of integers modulo N rather than in GF(p)*. We can regard this as using a
redundant group representation.

A trial is the computation involving one random group G. The steps involved
are —

1. Choose xg, yo and a randomly in [0, N). This defines b = y3 — (z + azo) mod
N. Set P + Py = (;L'O,y(]).

2. For prime g < m set P < ¢°P in the group G defined by a and b, where e is
an exponent chosen as in §5. If P = 0 then the trial succeeds as a factor of
N will have been found during an attempt to compute an inverse mod N.
Otherwise the trial fails.

The work involved in a trial is O(m) group operations. There is a tradeoff
involved in the choice of m, as a trial with large m is expensive, but a trial with
small m is unlikely to succeed.

Given z € GF(p), there are at most two values of y € GF(p) satisfying (1).
Thus, allowing for the identity element, we have ¢ = |G| < 2p + 1. A much
stronger result, the Riemann hypothesis for finite fields, is known —

lg—p—1] < 2p'/2.

Making a plausible assumption about the distribution of prime divisors of g,
one may show that the optimal choice of m is m = p'/®, where

o~ (2Inp/Inlnp)t/?.

It follows that the expected run time is

T = p2/a+o(1/a) . (3)
For details, see Lenstra [49]. The exponent 2/« in (3) should be compared with 1
(for trial division) or 1/2 (for Pollard’s “rho” method). Because of the overheads
involved with ECM, a simpler algorithm such as Pollard’s “rho” is preferable for
finding factors of size up to about 109, but for larger factors the asymptotic ad-

vantage of ECM becomes apparent. The following examples illustrate the power
of ECM.

7.1 ECM examples
1. In 1995 we completed the factorisation of the 309-decimal digit (1025-bit)
Fermat number Fio = 22'° + 1. In fact
Fio = 45592577 - 6487031809 -
4659775785220018543264560743076778192897 - pasa

11

where 46597 ---92897 is a 40-digit prime and pase = 13043 ---24577 is a
252-digit prime. The computation, which is described in detail in [10], took
about 240 Mips-years.

2. The largest factor known to have been found by ECM is the 53-digit factor

53625112691923843508117942311516428173021903300344567

of 2677 — 1, found by Conrad Curry in September 1998 using a program
written by George Woltman and running on 16 Pentiums (for more details
see [9]). Note that if the RSA system were used with 512-bit keys and the
three-prime variation, as described in §1.2, the smallest prime would be less
than 53 decimal digits, so ECM could be used to break the system.

7.2 The second phase

Both the Pollard “p — 1”7 and Lenstra elliptic curve algorithms can be speeded
up by the addition of a second phase. The idea of the second phase is to find a
factor in the case that the first phase terminates with a group element P # 0,
such that |(P)| is reasonably small (say O(m?)). (Here {P) is the cyclic subgroup
generated by P.) There are several possible implementations of the second phase.
One of the simplest uses a pseudorandom walk in (P). By the birthday paradox
argument, there is a good chance that two points in the random walk will coincide
after O(|(P)|'/?) steps, and when this occurs a nontrivial factor of N can usually
be found. Details of this and other implementations of the second phase may be
found in [6, 10, 30, 54, 55, 59, 90].

The use of a second phase provides a significant speedup in practice, but does
not change the asymptotic time bound (3). Similar comments apply to other
implementation details, such as ways of avoiding most divisions and speeding
up group operations, ways of choosing good initial points, and ways of using
preconditioned polynomial evaluation [6, 54, 55].

7.3 Parallel/distributed implementation of ECM

Unlike the Pollard “rho” and “p—1” methods, ECM is “embarrassingly parallel”,
because each trial is independent. So long as the expected number of trials is
much larger than the number P of processors available, linear speedup is possible
by performing P trials in parallel. In fact, if 7} is the expected run time on one
processor, then the expected run time on a MIMD parallel machine with P
processors is

Tp=T1/P+ 0(T11/2+€) (4)

The bound (4) applies on a SIMD machine if we use the Montgomery-
Chudnovsky form [19, 54]
by? =2 +az® + 2z

instead of the Weierstrass normal form (1) in order to avoid divisions.

12

In practice, it may be difficult to perform P trials in parallel because of
storage limitations. The second phase requires more storage than the first phase.
Fortunately, there are several possibilities for making use of parallelism during
the second phase of each trial. One parallel implementation performs the first
phase of P trials in parallel, but the second phase of each trial sequentially, using
P processors to speed up the evaluation of the high-degree polynomials which
constitute most of the work during the second phase.

7.4 ECM Factoring Records

52

50

44
42

40 T

38 T T T T]
1990 1992 1994 1996 1998 2000

Figure 1: Size of factor found by ECM versus year

Figure 1 shows the size D (in decimal digits) of the largest factor found by
ECM against the year it was done, from 1991 (40D) to 1999 (53D) (historical
data from [9]).

7.5 Extrapolation of ECM Records

Let D be the number of decimal digits in the largest factor found by ECM up
to a given date. From the theoretical time bound for ECM, assuming Moore’s
law, we expect v/D to be roughly a linear function of calendar year (in fact
v D1n D should be linear, but given the other uncertainties we have assumed for
simplicity that vIn D is roughly a constant). Figure 2 shows v/D versus year Y.

13

76 7 D

74 7
7.2
7.0
6.8
6.6

6.4

6.2

6.0 | | | T 1
1990 1992 1994 1996 1998 2000
Figure 2: v/D versus year Y for ECM

The straight line shown in the Figure 2 is

Y —1932.3
VD= Y 19323

93 or equivalently Y =9.3v/D +1932.3,

and extrapolation gives D = 60 in the year Y = 2004 and D = 70 in the year
Y = 2010.

8 Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a wide class of algorithms which try to find
two integers z and y such that z # £y (mod N) but

22 =y® (mod N) . (5)

Once such z and y are found, then GCD (z — y, N) is a nontrivial factor of N.
One way to find = and y satisfying (5) is to find a set of relations of the form

u? = v%w,- (mod N), (6)

where the w; have all their prime factors in a moderately small set of primes
(called the factor base). Each relation (6) gives a colunm in a matrix A whose
rows correspond to the primes in the factor base. Once enough columns have been
generated, we can use Gaussian elimination in GF(2) to find a linear dependency
(mod 2) between a set of columns of A. Multiplying the corresponding relations

14

now gives an expression of the form (5). With probability at least 1/2, we have
z # +y mod N so a nontrivial factor of N will be found. If not, we need to
obtain a different linear dependency and try again.

In quadratic sieve algorithms the numbers w; are the values of one (or more)
quadratic polynomials with integer coefficients. This makes it easy to factor the
w; by sieving. For details of the process, we refer to [16,47,56,72,75,79,89]. The
inner loop of the sieving process has the form

while j < bound do
begin
slj] < sli] + ¢
J<itg
end

Here bound depends on the size of the (single-precision real) sieve array s, g is a
small prime or prime power, and c is a single-precision real constant depending
on q (¢ = A(q) = logp if ¢ = p°, p prime). The loop can be implemented
efficiently on a pipelined vector processor. It is possible to use scaling to avoid
floating point additions, which is desirable on a small processor without floating-
point hardware.

In order to minimise cache misses on a machine whose memory cache is too
small to store the whole array s, it may be desirable to split the inner loop to
perform sieving over cache-sized blocks.

The best quadratic sieve algorithm (MPQS) can, under plausible assump-
tions, factor a number N in time @(exp(c(In Nlnln N)'/2)), where ¢ ~ 1. The
constants involved are such that MPQS is usually faster than ECM if N is the
product of two primes which both exceed N'/3. This is because the inner loop
of MPQS involves only single-precision operations.

Use of “partial relations”, i.e. incompletely factored w;, in MPQS is analogous
to the second phase of ECM and gives a similar performance improvement [3]. In
the “one large prime” (P-MPQS) variation w; is allowed to have one prime factor
exceeding m (but not too much larger than m). In the “two large prime” (PP-
MPQS) variation w; can have two prime factors exceeding m — this gives a further
performance improvement at the expense of higher storage requirements [48], and
does not seem to have an analogue applicable to ECM.

8.1 Parallel/distributed implementation of MPQS

Like ECM, the sieving stage of MPQS is ideally suited to parallel implementa-
tion. Different processors may use different polynomials, or sieve over different
intervals with the same polynomial. Thus, there is a linear speedup so long as
the number of processors is not much larger than the size of the factor base.
The computation requires very little communication between processors. Each
processor can generate relations and forward them to some central collection
point. This was demonstrated by A. K. Lenstra and M. S. Manasse [47], who

15

distributed their program and collected relations via electronic mail. The pro-
cessors were scattered around the world — anyone with access to electronic mail
and a C compiler could volunteer to contribute?. The final stage of MPQS —
Gaussian elimination to combine the relations — was not so easily distributed. In
practice it is only a small fraction of the overall computation, but it may become
a limitation if very large numbers are attempted by MPQS (a similar problem
is discussed below in connection with NFS).

8.2 MPQS examples

MPQS has been used to obtain many impressive factorisations [13, 79, 89]. Arjen
Lenstra and Mark Manasse [47] (with many assistants scattered around the
world) have factored several numbers larger than 10'%°. For example, a typical
factorisation was the 116-decimal digit number (3%?° 4 1)/(known small factors)
into a product of 50-digit and 67-digit primes. The final factorisation is

3329 41 =22.547- 16921 - 256057 - 36913801 - 177140839 - 1534179947851 -
24677078822840014266652779036768062918372697435241 - per

Such factorisations require many years of CPU time, but a real time of only a
month or so because of the number of different processors which are working in
parallel.

At the time of writing (3 June 1999), the largest number factored by MPQS
is the 129-digit “RSA Challenge” [81] number RSA129. It was factored in 1994
by Atkins et al [2]. It is certainly feasible to factor larger numbers by MPQS, but
for numbers of more than about 110 decimal digits GNFS is faster [34-36]. For
example, it is estimated in [22] that to factor RSA129 by MPQS required 5000
Mips-years, but to factor the slightly larger number RSA130 by GNFS required
only 1000 Mips-years [24].

9 The Special Number Field Sieve (SNFS)

The number field sieve (NFS) algorithm was developed from the special number
field sieve (SNFS), which we describe in this section. The general number field
sieve (GNFS or simply NFS) is described in §10.

Most of our numerical examples have involved numbers of the form

a®+b, (7)

for small a and b, although the ECM and MPQS factorisation algorithms do not
take advantage of this special form.

The special number field sieve (SNFS) is a relatively new algorithm which
does take advantage of the special form (7). In concept it is similar to the

4 This idea of using machines on the Internet as a “free” supercomputer has recently
been adopted by several other computation-intensive projects

16

quadratic sieve algorithm, but it works over an algebraic number field defined by
a, e and b. We refer the interested reader to Lenstra et al [44,45] for details, and
merely give an example to show the power of the algorithm. For an introduction
to the relevant concepts of algebraic number theory, see Stewart and Tall [91].

9.1 SNFS examples
Consider the 155-decimal digit number
F,=N=2 411

as a candidate for factoring by SNFS. Note that 8N = m® + 8, where m = 2103,
We may work in the number field Q(a), where a satisfies

and in the ring of integers of Q(«a). Because
m®+8=0 (mod N),

the mapping ¢ : @ » m mod N is a ring homomorphism from Z[a] to Z/NZ.

The idea is to search for pairs of small coprime integers « and v such that both
the algebraic integer u + av and the (rational) integer u + mv can be factored.
(The factor base now includes prime ideals and units as well as rational primes.)
Because

d(u+ av) = (u +mv) (mod N),

each such pair gives a relation analogous to (6).

The prime ideal factorisation of u+ awv can be obtained from the factorisation
of the norm u®—8v® of u+awv. Thus, we have to factor simultaneously two integers
u +muv and |u5 — 8v°|. Note that, for moderate v and v, both these integers are
much smaller than N, in fact they are O(N'/?), where d = 5 is the degree of
the algebraic number field. (The optimal choice of d is discussed in §10.)

Using these and related ideas, Lenstra et al [46] factored Fy in June 1990,
obtaining

Fy = 2424833 - 745560282564 7884208337395736200454918783366342657 - pyg,

where pgg is an 99-digit prime, and the 7-digit factor was already known
(although SNFS was unable to take advantage of this). The collection of re-
lations took less than two months on a network of several hundred workstations.
A sparse system of about 200,000 relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination, dependencies (mod 2) between
the columns were found in three hours on a Connection Machine. These depen-
dencies implied equations of the form 22 = y2 mod Fy. The second such equation
was nontrivial and gave the desired factorisation of Fy.

17

More recently, considerably larger numbers have been factored by SNFS.
The current record is the 211-digit number 10%!! — 1, factored early in 1999 by
a collaboration called “The Cabal” [18]. In fact, (10%** —1)/9 = pos - p11s, where

Po3 = 6926245573243896206627823226773367111381084825
88281739734375570506492391931849524636731866879

and p;;3 may be found by division. The factorisation of N = 10?11 — 1 used two
polynomials
f(z) =2 —10%

and
g(z) =102° — 1

with common root m = 10%% mod N. Details of the computation can be found
in [18]. To summarise: after sieving and reduction a sparse matrix over GF(2)
was obtained with about 4.8 x 10® rows and weight (number of nonzero entries)
about 2.3 x 108, an average of about 49 nonzeros per row. Montgomery’s block
Lanczos program (see §10) took 121 hours on a Cray C90 to find 64 dependencies
between the columns. Finally, the square root program needed 15.5 hours on one
CPU of an SGI Origin 2000, and three dependencies to find the two prime factors.

10 The General Number Field Sieve (GNFS)

The general number field sieve (GNFS or just NFS) is a logical extension of the
special number field sieve (SNFS). When using SNFS to factor an integer N, we
require two polynomials f(z) and g(z) with a common root m mod N but no
common root over the field of complex numbers. If N has the special form (7)
then it is usually easy to write down suitable polynomials with small coefficients,
as illustrated by the two examples given in §9. If N has no special form, but is
just some given composite number, we can also find f(z) and g(z), but they no
longer have small coefficients.

Suppose that g(z) has degree d > 1 and f(x) is linear®. d is chosen empir-
ically, but it is known from theoretical considerations that the optimum value

is
N ELLAS
Inln N '
We choose m = |[NY/(4+D) | and write
d .
N = Z a;m’
=0

5 This is not necessary. For example, Montgomery found a clever way (described
in [34]) of choosing two quadratic polynomials.

18

where the a; are “base m digits”. Then, defining
d .
f(a:)zar—m, g(w)zZaj:c’,
7j=0

it is clear that f(z) and g(z) have a common root m mod N. This method of
polynomial selection is called the “base m” method.

In principle, we can proceed as in SNFS, but many difficulties arise because
of the large coefficients of g(z). For details, we refer the reader to [34,35,57,
58,64,73,74,98]. Suffice it to say that the difficulties can be overcome and the
method works! Due to the constant factors involved it is slower than MPQS
for numbers of less than about 110 decimal digits, but faster than MPQS for
sufficiently large numbers, as anticipated from the theoretical run times given
in §3.

Some of the difficulties which had to be overcome to turn GNFS into a
practical algorithm are:

1. Polynomial selection. The “base m” method is not very good. Peter Mont-
gomery and Brian Murphy [63-65] have shown how a very considerable im-
provement (by a factor of more than ten for number of 140 digits) can be
obtained.

2. Linear algebra. After sieving a very large, sparse linear system over GF(2)
is obtained, and we want to find dependencies amongst the columns. It is
not practical to do this by structured Gaussian elimination [40, §5] because
the “fill in” is too large. Odlyzko [66,23] and Montgomery [58] showed that
the Lanczos method [41] could be adapted for this purpose. (This is non-
trivial because a nonzero vector x over GF(2) can be orthogonal to itself,
i.e. z7x = 0.) To take advantage of bit-parallel operations, Montgomery’s
program works with blocks of size dependent on the wordlength (e.g. 64).

3. Square roots. The final stage of GNFS involves finding the square root of
a (very large) product of algebraic numbers®. Once again, Montgomery [57]
found a way to do this.

At present, the main obstacle to a fully parallel and scalable implementation
of GNFS is the linear algebra. Montgomery’s block Lanczos program runs on
a single processor and requires enough memory to store the sparse matrix. In
principle it should be possible to distribute the block Lanczos solution over
several processors of a parallel machine, but the communication/computation
ratio will be high. There is a tradeoff here — by increasing the time spent on
sieving we can reduce the size and weight of the resulting matrix.

It should be noted that if special hardware is built for sieving, as pioneered
by Lehmer and recently proposed (in more modern form) by Shamir [85], the
linear algebra will become relatively more important”.

6 Anidea of Adleman, using quadratic characters, is essential to ensure that the desired
square root exists with high probability.

" The argument is similar to Amdahl’s law: no matter how fast sieving is done, we can
not avoid the linear algebra.

19

10.1 RSA140

At the time of writing, the largest number factored by GNFS is the 140-digit
RSA Challenge number RSA140. It was split into the product of two 70-digit
primes in February, 1999, by a team coordinated from CWI, Amsterdam. For
details see [17]. To summarise: the amount of computer time required to find the
factors was about 2000 Mips-years. The two polynomials used were

f(z) = z — 34435657809242536951779007

g(x) = +439682082840z°
+390315678538960x*
—7387325293892994572x3
—19027153243742988714824x>
—63441025694464617913930613x
+318553917071474350392223507494 .

The polynomial g(z) was chosen to have a good combination of two proper-
ties: being unusually small over the sieving region and having unusually many
roots modulo small primes (and prime powers). The effect of the second prop-
erty alone makes g(z) as effective at generating relations as a polynomial chosen
at random for an integer of 121 decimal digits (so in effect we have removed at
least 19 digits from RSA140 by judicious polynomial selection). The polynomial
selection took 2000 CPU-hours on four 250 MHz SGI Origin 2000 processors.
This is about 60 Mips-years, or about 3% of the total factorisation time. Sieving
was done on about 125 SGI and Sun workstations running at 175 MHz on aver-
age, and on about 60 PCs running at 300 MHz on average. The total amount of
CPU time spent on sieving was 2000 Mips-years (8.9 CPU-years).

The resulting matrix had about 4.7 x 10% rows and weight about 1.5 x 108
(about 32 nonzeros per row). Using Montgomery’s block Lanczos program, it
took almost 100 CPU-hours and 810 MB of memory on a Cray C916 to find 64
dependencies among the columns of this matrix. Calendar time for this was five
days.

10.2 RSA155

At the time of writing (3 June 1999), an attempt to factor the 512-bit number
RSA155 is well underway. We confidently predict that it will be factored before
the year 2000.2

20

160 7 D

140

120

100

80 T

20

0 T T T]
1960 1970 1980 1990 2000

Figure 3: Size of “general” number factored versus year

10.3 Historical Factoring Records

Figure 3 shows the size D (in decimal digits) of the largest “general” number
factored against the year it was done, from 1964 (20D) to 1999 (155D) (historical
data from [64,67,82]).

10.4 Curve Fitting and Extrapolation

Let D be the number of decimal digits in the largest “general” number fac-
tored by a given date. From the theoretical time bound for GNFS, assuming
Moore’s law, we expect D'/ to be roughly a linear function of calendar year (in
fact D'/3(In D)2/3 should be linear, but given the other uncertainties we have
assumed for simplicity that (In D)?/3 is roughly a constant). Figure 4 shows D'/3
versus year Y.

The straight line shown in the Figure 4 is

Y —1928.6

D1/3 —
13.24

or equivalently Y =13.24D'/3 +1928.6,

and extrapolation, for what it is worth, gives D = 309 (i.e. 1024 bits) in the year
Y = 2018.

8 Postscript: The factorisation of RSA155 was completed on 22 August 1999. As pre-
dicted by Brian Murphy [64, pg. 109], it took about 8000 Mips-years. For further
details see the Appendix and [78].

21

6.0 7 pi/3

4.5 T

4.0

2.5 7

2.0 T T T]
1960 1970 1980 1990 2000

Figure 4: D'/3 versus year Y

10.5 Predictions

Moore’s law predicts that circuit densities will double every 18 months or so.
Thus, as long as Moore’s law continues to apply and results in correspondingly
more powerful parallel computers, we expect to get 3—4 decimal digits per year
improvement in the capabilities of GNFS, without any algorithmic improve-
ments. The extrapolation from historical figures is more optimistic: it predicts
6-7 decimal digits per year in the near future.

(When) Is RSA Doomed ?

512-bit RSA keys are clearly insecure. 1024-bit RSA keys should remain secure
for at least fifteen years, barring the unexpected (but unpredictable) discovery
of a completely new algorithm which is better than GNFS, or the development
of a practical quantum computer.

22
11 Summary and Conclusions

We have sketched some algorithms for integer factorisation. The most important
are ECM, MPQS and NFS. The algorithms draw on results in elementary number
theory, algebraic number theory and probability theory. As well as their inherent
interest and applicability to other areas of mathematics, advances in public key
cryptography have lent them practical importance.

Despite much progress in the development of efficient algorithms, our knowl-
edge of the complexity of factorisation is inadequate. We would like to find a
polynomial time factorisation algorithm or else prove that one does not exist.
Until a polynomial time algorithm is found or a quantum computer capable
of running Shor’s algorithm [86,87] is built, large factorisations will remain an
interesting challenge.

A survey similar to this one was written in 1990 (see [8]). Comparing the
examples there we see that significant progress has been made. This is partly
due to Moore’s law, partly due to the use of many machines on the Internet,
and partly due to improvements in algorithms (especially GNFS). The largest
number factored by MPQS at the time of writing [8] had 111 decimal digits.
According to [22], the 110-digit number RSA110 was factored in 1992, RSA120
in 1993, and RSA129 in 1994 (all by MPQS). In 1996 GNFS was used to factor
RSA130, and in February 1999 GNFS also cracked RSA140°. Progress seems
to be accelerating. This is due in large part to algorithmic improvements which
seem unlikely to be repeated. On the other hand, it is very hard to anticipate
algorithmic improvements!

From the predicted run time for GNFS, we would expect RSA155 to take 6.5
times as long as RSA140. On the other hand, Moore’s law [67,83] predicts that
circuit densities will double every 18 months or so. Thus, as long as Moore’s
law continues to apply and results in correspondingly more powerful parallel
computers, we expect to get three to four decimal digits per year improvement
in the capabilities of GNFS, without any algorithmic improvements.

Similar arguments apply to ECM, for which we expect slightly more than
one decimal digit per year in the size of factor found [9].

Regarding cryptographic consequences, we can say that 512-bit RSA keys
are already insecure. 1024-bit RSA keys should remain secure for at least fifteen
years, barring the unexpected (but unpredictable) discovery of a completely new
algorithm which is better than GNFS, or the development of a practical quantum
computer.

Acknowledgements

Thanks are due to Peter Montgomery, Brian Murphy, Andrew Odlyzko, John
Pollard, Herman te Riele, Sam Wagstaff, Jr. and Paul Zimmermann for their
assistance.

9 Postscript: and now, in August 1999, RSA155.

23

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math.
Comp. 61 (1993), 29-68. Programs available from ftp://ftp.inria.fr/INRIA
/ecpp.V3.4.1.tar.Z .

. D. Atkins, M. Graff, A. K. Lenstra and P. C. Leyland, The magic words are

squeamish ossifrage, Advances in Cryptology: Proc. Asiacrypt’94, LNCS 917,
Springer-Verlag, Berlin, 1995, 263-277.

H. Boender and H. J. J. te Riele, Factoring integers with large prime variations of
the quadratic sieve, Experimental Mathematics, 5 (1996), 257-273.

R. P. Brent, A Fortran multiple-precision arithmetic package, ACM Trans. on
Math. Software 4 (1978), 57-70.

R. P. Brent, An improved Monte Carlo factorisation algorithm, BIT 20 (1980),
176-184.

R. P. Brent, Some integer factorisation algorithms using elliptic curves, Aus-
tralian Computer Science Communications 8 (1986), 149-163. ftp://ftp.comlab.
ox.ac.uk/pub/Documents/techpapers/Richard.Brent/rpb102.dvi.gz .

R. P. Brent, Parallel algorithms for integer factorisation, in Number Theory and
Cryptography (edited by J. H. Loxton), London Mathematical Society Lecture Note
Series 154, Cambridge University Press, 1990, 26-37.

R. P. Brent, Vector and parallel algorithms for integer factorisation, Proceed-
ings Third Australian Supercomputer Conference University of Melbourne, De-
cember 1990, 12 pp. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/
Richard.Brent/rpb122.dvi.gz .

R. P. Brent, Large factors found by ECM, Oxford University Computing Lab-
oratory, May 1999. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/
Richard.Brent/champs.txt .

R. P. Brent, Factorization of the tenth Fermat number, Math. Comp. 68
(1999), 429-451. Preliminary version available as Factorization of the tenth
and eleventh Fermat numbers, Technical Report TR-CS-96-02, CSL, ANU,
Feb. 1996, 25pp. ftp://ftp.comlab.ox.ac.uk:/pub/Documents/techpapers/
Richard.Brent/rpb16itr.dvi.gz .

R. P. Brent, Some parallel algorithms for integer factorisation Proc. Europar’99,
Toulouse, Sept. 1999. LNCS 1685, Springer-Verlag, Berlin, 1-22. (A preliminary
and shorter version of this paper, written before the factorisation of RSA155.)

R. P. Brent and J. M. Pollard, Factorisation of the eighth Fermat number, Math.
Comp. 36 (1981), 627-630.

J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr.,
Factorisations of b £ 1,b = 2,3,5,6,7,10,11,12 up to high powers, American
Mathematical Society, Providence, Rhode Island, second edition, 1988. Updates
available from http://www/cs/purdue.edu/homes/ssw/cun/index.html .

D. A. Buell, Factoring: algorithms, computations, and computers, J. Supercomput-
ing 1 (1987), 191-216.

C. Caldwell, The Dubner PC Cruncher — a microcomputer coprocessor card for
doing integer arithmetic, review in J. Rec. Math. 25 (1), 1993.

T. R. Caron and R. D. Silverman, Parallel implementation of the quadratic sieve,
J. Supercomputing 1 (1988), 273-290.

S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,
B. Murphy, H. te Riele and P. Zimmermann, Factorization of RSA-140 using the
number field sieve, announced 4 February 1999. Available from ftp://ftp.cwi.nl/
pub/herman/NFSrecords/RSA-140 .

24

18

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,
H. te Riele and P. Zimmermann, 211-digit SNFS factorization, announced 25 April
1999. Available from ftp://ftp.cwi.nl/pub/herman/NFSrecords/SNFS-211 .

D. V. and G. V. Chudnovsky, Sequences of numbers generated by addition in
formal groups and new primality and factorization tests, Adv. in Appl. Math. 7
(1986), 385-434.

H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag,
Berlin, 1993.

H. Cohen and H. W. Lenstra, Jr., Primality testing and Jacobi sums, Math. Comp.
42 (1984), 297-330.

S. Contini, The factorization of RSA-140, RSA Laboratories Bulletin 10, 8 (March
1999). Available from http://www.rsa.com/rsalabs/html/bulletins.html .

D. Coppersmith, A. Odlyzko and R. Schroeppel, Discrete logarithms in GF(p),
Algorithmica 1 (1986), 1-15.

J. Cowie, B. Dodson, R. M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomery
and J. Zayer, A world wide number field sieve factoring record: on to 512 bits,
Advances in Cryptology: Proc. Asiacrypt’96, LNCS 1163, Springer-Verlag, Berlin,
1996, 382-394.

R. E. Crandall, Parallelization of Pollard-rho factorization, preprint, 23 April 1999.
R. Crandall and B. Fagin, Discrete weighted transforms and large-integer arith-
metic, Math. Comp. 62 (1994), 305-324.

D. Deutsch, Quantum theory, the Church-Turing principle and the universal quan-
tum computer, Proc. Roy. Soc. London, Ser. A 400 (1985), 97-117.

D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London, Ser. A
425 (1989), 73-90.

W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory 22 (1976), 472-492.

B. Dixon and A. K. Lenstra, Massively parallel elliptic curve factoring, Proc. Fu-
rocrypt 92, LNCS 658, Springer-Verlag, Berlin, 1993, 183-193.

B. Dodson and A. K. Lenstra, NFS with four large primes: an explosive experiment,
Proc. Crypto’95, LNCS 963, Springer-Verlag, Berlin, 1995, 372-385.

T. El Gamal, A public-key cryptosystem and a signature scheme based on discrete
logarithms, Advances in Cryptology: Proc. CRYPT(Q’84, Springer-Verlag, Berlin,
1985, 10-18.

T. El Gamal, A public-key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. on Information Theory 31 (1985), 469-472.

M. Elkenbracht-Huizing, An implementation of the number field sieve, Ezperimen-
tal Mathematics, 5 (1996), 231-253.

M. Elkenbracht-Huizing, Factoring integers with the number field sieve, Doctor’s
thesis, Leiden University, 1997.

M. Elkenbracht-Huizing, A multiple polynomial general number field sieve Algo-
rithmic Number Theory — ANTS III, LNCS 1443, Springer-Verlag, Berlin, 1998,
99-114.

K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
Springer-Verlag, Berlin, 1982.

D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison Wesley, third
edition, 1997.

N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, New
York, 1994.

40

41.
42.
43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

25

B. A. LaMacchia and A. M. Odlyzko, Solving large sparse systems over finite fields,
Advances in Cryptology, CRYPTO ’90 (A. J. Menezes and S. A. Vanstone, eds.),
LNCS 537, Springer-Verlag, Berlin, 109-133.

C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res.
Nat. Bureau of Standards 49 (1952), 33-53.

S. Lang, Elliptic Curves — Diophantine Analysis, Springer-Verlag, Berlin, 1978.
R. S. Lehman, Factoring large integers, Math. Comp. 28 (1974), 637-646.

A. K. Lenstra and H. W. Lenstra, Jr. (editors), The development of the number
field sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, The number
field sieve, Proc. 22nd Annual ACM Conference on Theory of Computing, Balti-
more, Maryland, May 1990, 564-572.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factor-
ization of the ninth Fermat number, Math. Comp. 61 (1993), 319-349.

A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Proc. Eurocrypt
’89, LNCS 434, Springer-Verlag, Berlin, 1990, 355-371.

A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Math. Comp.
63 (1994), 785-798.

H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics
(2) 126 (1987), 649-673.

K. S. McCurley, The discrete logarithm problem, in Cryptography and Computa-
tional Number Theory, C. Pomerance, ed., Proc. Symp. Appl. Math., Amer. Math.
Soc., 1990.

A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publish-
ers, Boston, 1993.

A. Menezes, Elliptic curve cryptosystems, CryptoBytes 1, 2 (1995), 1-4. Available
from http://www.rsa.com/rsalabs/pubs/cryptobytes .

P. L. Montgomery, Modular multiplication without trial division, Math. Comp. 44
(1985), 519-521.

P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorisation,
Math. Comp. 48 (1987), 243-264.

P. L. Montgomery, An FFT extension of the elliptic curve method of factorization,
Ph. D. dissertation, Mathematics, University of California at Los Angeles, 1992.
ftp://ftp.cwi.nl/pub/pmontgom/ucladissertation.psl.Z .

P. L. Montgomery, A survey of modern integer factorization algorithms, CWI Quar-
terly 7 (1994), 337-366. ftp://ftp.cwi.nl/pub/pmontgom/cwisurvey.psl.Z .
P. L. Montgomery, Square roots of products of algebraic numbers, Mathematics of
Computation 1948 — 1993, Proc. Symp. Appl. Math. 48 (1994), 567-571.

P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF'(2),
Advances in Cryptology: Proc. Eurocrypt’95, LNCS 921, Springer-Verlag, Berlin,
1995, 106-120. ftp://ftp.cwi.nl/pub/pmontgom/BlockLanczos.psad.gz .

P. L. Montgomery, Vectorization of the elliptic curve method, £tp://ftp.cwi.nl/
pub/pmontgom/ecmvec.psad.gz .

F. Morain, Courbes elliptiques et tests de primalité, Ph. D. thesis, Univ. Claude
Bernard — Lyon I, France, 1990. ftp://ftp.inria.fr/INRIA/publication/
Theses/TU-0144.tar.Z .

M. A. Morrison and J. Brillhart, A method of factorisation and the factorisation
of F;, Math. Comp. 29 (1975), 183-205.

R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

26

63

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.
85.

B. A. Murphy, Modelling the yield of number field sieve polynomials, Algorithmic
Number Theory — ANTS III, LNCS 1443, Springer-Verlag, Berlin, 1998, 137-150.
B. A. Murphy, Polynomial selection for the number field sieve integer factorisation
algorithm, Ph. D. thesis, Australian National University, July 1999.

B. A. Murphy and R. P. Brent, On quadratic polynomials for the number field
sieve, Australian Computer Science Communications 20 (1998), 199-213.

A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic signif-
icance, Advances in Cryptology: Proc. Eurocrypt ’84, LNCS 209, Springer-Verlag,
Berlin, 1985, 224-314.

A. M. Odlyzko, The future of integer factorization, CryptoBytes 1, 2 (1995), 5-12.
Available from http://wuw.rsa.com/rsalabs/pubs/cryptobytes .

P. C. van Oorschot and M. J. Wiener, Parallel collision search with application to
hash functions and discrete logarithms, Proc 2nd ACM Conference on Computer
and Communications Security, ACM, New York, 1994, 210-218.

P. C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic
applications, J. Cryptology 12 (1999), 1-28.

J. M. Pollard, Theorems in factorisation and primality testing, Proc. Cambridge
Philos. Soc. 76 (1974), 521-528.

J. M. Pollard, A Monte Carlo method for factorisation, BIT 15 (1975), 331-334.
C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology,
Proc. Eurocrypt 84, LNCS 209, Springer-Verlag, Berlin, 1985, 169-182.

C. Pomerance, The number field sieve, Proceedings of Symposia in Applied Math-
ematics 48, Amer. Math. Soc., Providence, Rhode Island, 1994, 465-480.

C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473—
1485.

C. Pomerance, J. W. Smith and R. Tuler, A pipeline architecture for factoring large
integers with the quadratic sieve algorithm, SIAM J. on Computing 17 (1988),
387-403.

J. Preskill, Lecture Notes for Physics 229: Quantum Information and Com-
putation, California Institute of Technology, Los Angeles, Sept. 1998. http://
www.theory.caltech.edu/people/preskill/ph229/ .

M. O. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12
(1980), 128-138.

H. te Riele et al, Factorization of a 512-bits RSA key using the number field sieve,
announcement of 26 August 1999, http://www.loria.fr/~zimmerma/records/
RSA155 .

H. J. J. te Riele, W. Lioen and D. Winter, Factoring with the quadratic sieve on
large vector computers, Belgian J. Comp. Appl. Math. 27 (1989), 267-278.

H. Riesel, Prime numbers and computer methods for factorization, 2nd edition,
Birkh&user, Boston, 1994.

R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM 21 (1978), 120-126.

RSA Laboratories, Information on the RSA challenge, http://www.rsa.com/
rsalabs/html/challenges.html .

R. S. Schaller, Moore’s law: past, present and future, IEEE Spectrum 34, 6 (June
1997), 52-59.

B. Schneier, Applied Cryptography, second edition, John Wiley and Sons, 1996.
A. Shamir, Factoring large numbers with the TWINKLE device (extended ab-
stract), preprint, 1999. Announced at Eurocrypt’99.

86

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

27

. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factor-
ing, Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, California, 1994, 124-134. CMP 98:06

P. W. Shor, Polynomial time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J. Computing 26 (1997), 1484-1509.

J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics
106, Springer-Verlag, New York, 1986.

R. D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987),
329-339.

R. D. Silverman and S. S. Wagstaff, Jr., A practical analysis of the elliptic curve
factoring algorithm, Math. Comp. 61 (1993), 445-462.

I. N. Stewart and D. O. Tall, Algebraic Number Theory, second edition, Chapman
and Hall, 1987.

D. Stinson, Cryptography — Theory and Practice, CRC Press, Boca Raton, 1995.
A. M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. (2) 42 (1936), 230-265. Errata ibid 43
(1937), 544-546.

U. Vazirani, Introduction to special section on quantum computation, STAM J.
Computing 26 (1997), 1409-1410.

D. Weber, Computing discrete logarithms with the number field sieve, Algorithmic
Number Theory — ANTS II, LNCS 1122, Springer-Verlag, Berlin, 1996, 99-114.
D. Weber, On the computation of discrete logarithms in finite prime fields, Ph. D.
thesis, Universitit des Saarlandes, 1997.

D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans.
Inform. Theory 32 (1986), 54-62.

J. Zayer, Faktorisieren mit dem Number Field Sieve, Ph. D. thesis, Universitit des
Saarlandes, 1995.

Appendix: — RSA140 and RSA155

Table 1 gives some statistics on the RSA140 and RSA155 factorisations.

Table 1. RSA140 and RSA155 factorisations

RSA140 | RSA155
Total CPU time in mips-years 2000 8000
Improvement due to polynomial selection 8 14
Matrix rows 4.7 x 10° 6.7 x 10°
Total nonzeros 1.5 x 10% (4.2 x 10®
Nonzeros per row 32 62
Matrix solution time (on Cray C916) 100 hours|224 hours

