Some Parallel Algorithms for
Integer Factorisation®
Richard P. Brent
Computing Laboratory

University of Oxford
rpb@comlab.ox.ac.uk

3 September 1999

*Invited paper presented at Europar’99, Toulouse.
Copyright ©1999, R. P. Brent. rpb193t

Outline

e Introduction and motivation

The elliptic curve method (ECM)

The quadratic sieve (QS and MPQS)

The number field sieve (NFS)

— Special (SNFS)
— General (GNFS)

History and extrapolations

e Summary and conclusions

Introduction

Any positive integer N has a unique prime
power decomposition

N :p?lng .. .pgk

(p1 < p2 < --- < pg primes, a; > 0). The
standard proof gives no hint of an efficient
algorithm for computing the prime power
decomposition. In order to compute it, we
need

1. An algorithm to test if an integer N is
prime.

2. An algorithm to find a nontrivial factor f
of a composite integer N.

Public Key Cryptography

Fortunately or unfortunately, depending on
one’s point of view, problem 2 is generally
believed to be hard. There is no known
polynomial-time algorithm for finding a factor
of a given composite integer N.

This empirical fact is of great interest because
the most popular algorithm for public-key
cryptography, the RSA algorithm, would be
insecure if a fast integer factorisation algorithm
could be implemented.

Today I will survey some of the most successful
integer factorisation algorithms, concentrating
on the computational aspects, and particularly
on parallel/distributed implementations. Due to
shortage of time, many topics covered in the
Proceedings paper! will not be mentioned?.

'LNCS Vol. 1685 (1999), 1-22.

2e.g. Pollard’s p — 1 and p methods, the second phase
of ECM, large-prime variants of MPQS and NFS, the dis-
crete log problem, ...

Integer Factorisation Algorithms

There are many algorithms for finding a
nontrivial factor f of a composite integer N.
The most useful algorithms fall into one of two
classes —

A. The run time depends mainly on the size
of N, and is not strongly dependent on
the size of f. Examples are —

— Lehman’s algorithm, which has
worst-case run time O(N/3).

— The Multiple Polynomial Quadratic
Sieve (MPQS) algorithm, which
under plausible assumptions has
expected run time

O(exp(Veln NInln N)) ,

where ¢ & 1 is a constant.

— The Number Field Sieve (NFS)
algorithm, which under plausible
assumptions has expected run time

O(exp(c(In N)Y3(Inln N)?/3)) |

where c is a (different) constant.

B. The run time depends mainly on the size
of f, the factor found. (We can assume
that f < NY/2.) Examples are —

— The trial division algorithm, which
has run time O(f - (In N)?).

— Pollard’s “rho” algorithm, which

under plausible assumptions has
expected run time

O(f'/? - (I N)?).

— Lenstra’s Elliptic Curve (ECM)
algorithm, which under plausible
assumptions has expected run time

O(exp(y/cln fInln f) - (In N)?) ,
where ¢ & 2 is a constant.

In these examples, the time bounds are for a
sequential machine, and the term (In N)? is a
generous allowance for the cost of performing
arithmetic operations on numbers which are

O(N?).

Quantum factorisation algorithms

In 1994 Shor showed that it is possible to factor
in polynomial expected time on a quantum
computer. However, despite the best efforts of
several research groups, such a computer has
not yet been built, and it remains unclear
whether it will ever be feasible to build one.
Thus, we restrict our attention to algorithms
which run on classical (serial or parallel)
computers.

Elliptic Curves Over Finite Fields

A curve of the form
v =x3+ar+b (1)

over some field F' is known as an elliptic curve.
A more general cubic in 2 and y can be reduced
to the form (1), which is known as the
Weierstrass normal form, by rational
transformations, provided char(F’) # 2 or 3.

There is a well-known way of defining an
Abelian group (G, +) on an elliptic curve over a
field. If P, = (z1,91) and Py = (z9,y2) are
points on the curve, then the point

Py = (z3,y3) = P1 + P» is defined by —

(z3,93) = (A2 — 21 — @2, A(T1 — 23) — 1) ,

where

sz%mm%g if P, =Py
(y1 —y2)/(x1 — z2) otherwise.

The zero element in G is the “point at infinity”,
(00, 0). We write it as 0.

Geometric Interpretation

The geometric interpretation of “+4” is
straightforward: the straight line P, P,
intersects the elliptic curve at a third point

P} = (z3,—y3), and Ps is the reflection of Pj§ in
the z-axis.

More elegantly, if a straight line intersects the
elliptic curve at three points Q1, @2, Q3 then

Q1+Q2+Q3=0.

N

Figure 1: The Group Operation

Brief Description of ECM

The elliptic curve method (ECM) for integer
factorisation was discovered by H. W. Lenstra,
Jr. in 1985. Various practical refinements were
suggested by Montgomery, Suyama, and others.

ECM uses groups defined by pseudo-random
elliptic curves over GF(p), where p > 3 is the
prime factor we hope to find. (Fortunately, we
don’t need to know p in advance.) The group
order g for an elliptic curve over GF(p) satisfies

lg—p—1]<2yp,

and all g satisfying this inequality are possible.
ECM is similar to an earlier method, Pollard’s
“p —1” method, but the p — 1 method has the
disadvantage that the group is fixed and the
method fails if p — 1 has a large prime factor.
We can think of ECM as a “randomised”
version of the p — 1 method. It works if we are
lucky enough to hit a group whose order g has
no large prime factors. (Jargon — g is
“smooth”.)

10

Lenstra’s Analysis of ECM

Consider applying ECM to a composite integer
N with smallest prime factor p. Making an
unproved but plausible assumption regarding
the distribution of prime factors of random
integers in “short” intervals, Lenstra showed
that ECM will find p in an expected number

W (p) = exp <\/(2 +o(1))lnpln lnp)

of multiplications (mod N), where the “o(1)”
term tends to zero as p — oo.

In Lenstra’s algorithm the field F is the finite
field GF(p) of p elements, where p is a prime
factor of N. Since p is not known in advance,
computation is performed in the ring Z/NZ of
integers modulo N rather than in GF(p). We
can regard this as using a redundant group
representation.

11

One Trial of ECM

A trial (or curve) is the computation involving
one random group G. The steps involved are —

1. Choose a parameter m.

2. Choose zg,yo and a randomly in [0, N).
This defines b = y3 — (z3 + azo) mod N.
Set P+ Py = (:Uo,yo).

3. For each prime < m take its maximal
power ¢ < m and set P « ¢gP in the
group G defined by a and b.

If P =0 then the trial succeeds as a factor of N
will have been found during an attempt to
compute an inverse mod N. (We expect P =0
if no prime power factors of the group order are
larger than m.) Otherwise the trial fails.

The work involved in a trial is O(m) group
operations. There is a tradeoff involved in the
choice of m, as a trial with large m is expensive,
but a trial with small m is unlikely to succeed.

12

Optimal Choice of m

Making Lenstra’s plausible assumption, one
may show that the optimal choice of m is
m = p'/*, where

2Inp
a~ .
Inlnp

It follows that the expected run time is

T — p2/a+o(1/a)]

The exponent 2/« should be compared with 1
(for trial division) or 1/2 (for Pollard’s “rho”
method).

A Practical Problem

The optimal choice of m depends on the size of
the factor p. Since p is unknown, we have to
guess or use some sort of adaptive strategy.

Fortunately, the expected performance of ECM
is not very sensitive to the choice of parameters,
so the precise strategy does not matter much.

13

Expected Performance of ECM

In Table 1 we give a small table of log; W for
factors of D decimal digits. The precise figures
depend on assumptions about the
implementation.

Table 1: Expected work for ECM

digits D | loga W
20 7.35
30 9.57
40 11.49
50 13.22
60 14.80

Note that in the region D = 50 to D = 60 the
expected work W increases by a factor of about
26 and by Moore’s law we might predict that
hardware will improve by this factor in about 9
years, i.e. Moore’s law gives about one digit per
year.

14

ECM Example 1

After the factorisation of the ninth Fermat
number Fy = 22" 4+ 1 in 1990 (we’ll say more
about this later), Fip= 2210 + 1 was the “most
wanted” number in various lists of composite
numbers.

F19 was proved composite in 1952 by Robinson,
using Pépin’s test on the SWAC. A small factor,
45592577, was found by Selfridge in 1953 (also
on the SWAC). Another small factor,
6487031809, was found by Brillhart in 1962 on
an IBM 704. Brillhart later found that the
cofactor was a 291-digit composite.

Using ECM I found a 40-digit factor psyg =

4659775785220018543264560743076778192897

of Fig in October, 1995. The 252-digit cofactor
c291/p4ag passed a probabilistic primality test
and was soon proved to be prime using the
method of Atkin and Morain (based,
appropriately, on elliptic curves). Thus, the
complete factorisation of Fig is

Fio = 45592577 - 6487031809 - p4o - p2s52 -

15

ECM Example 2

ECM can routinely find factors p of size up to
30 decimal digits, and it often finds larger
factors. The largest factor known to have been
found by ECM is the 53-digit factor

ps3 = 53625112691923843508117942\
311516428173021903300344567

of 2677 — 1, found by Conrad Curry in
September 1998 using a program written by
George Woltman and running on 16 Pentiums.

The group order for the lucky trial was

g = 2%.39.3079-152077 - 172259 - 1067063 -
3682177 - 3815423 - 8867563 - 15880351

We expect only one in 2,400,000 curves to have
such a “smooth” group order.

16

ECM Factoring Records

547 D
521
501
481
46 1
44+
424
404
38 r . ' w '
1990 1992 1994 1996 1998 2000

Figure 1: Factors found by ECM versus year

Figure 1 shows the size D (in decimal digits) of
the largest factor found by ECM against the
year it was done, from 1991 (40D) to

1999 (53D).

17

Curve Fitting

761D
741
7.21
7.0
6.8
6.6
6.4
6.2

60 T T T T 1
1990 1992 1994 1996 1998 2000

Figure 2: v/D versus year Y for ECM

Let D be the number of decimal digits in the
largest factor found by ECM up to a given date.
From the theoretical time bound for ECM,
assuming Moore’s law, we expect /D to be
roughly a linear function of calendar year (in
fact v D1n D should be linear, but given the
other uncertainties we have assumed for
simplicity that v/In D is roughly a constant).

18

Extrapolation of ECM Records

The straight line shown in the Figure 2 is

Y —1932.3
D=1 7%
vD 93

and extrapolation gives D = 60 in the year
Y =2004 and D = 70 in the year Y = 2010.

19

Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a large
class of algorithms which try to find two integers
z and y such that z # +y (mod N) but

2 =7? (mod N). (2)

Once such z and y are found, then

GCD (z — y, N) is a nontrivial factor of N.

One way to find x and y satisfying (2) is to find
a set of relations of the form

u? = v2w; (mod N), (3)

where the w; have all their prime factors in a
moderately small set of primes (called the
factor base). Each relation (3) gives a row in a
matrix A whose columns correspond to the
primes in the factor base.

20

Linear Algebra mod 2

Once enough rows have been generated, we can
use sparse Gaussian elimination in GF(2) to
find a linear dependency (mod 2) between a set
of rows of A. Multiplying the corresponding
relations now gives an expression of the

form (2). With probability at least 1/2, we have
z # +y mod N so a nontrivial factor of N will
be found. If not, we need to obtain a different
linear dependency and try again.

Exact and Approximate Systems

In the MPQS and NFS factorisation algorithms
we have to solve very large, sparse linear
systems ezactly over the finite field GF(2).
(More precisely, we have to find dependencies
amongst the rows of a large matrix.) For
discrete log problems we also get large sparse
linear systems, although the field is different.
More familiar to most people is the approximate
solution of large sparse linear systems over the
real or complex fields (using floating-point
arithmetic).

21

Use of Iterative Methods

To avoid problems with “fill in”, variants of
some familiar “iterative” methods can be used.
These methods (based on conjugate gradients or
Lanczos) only require matrix-vector
multiplications and inner products. Some
significant differences are:

e Nonzero vectors can be orthogonal to
themselves !

e Many more iterations are required to find
the exact solution (actually several exact
dependencies) than an approximate
solution.

e Preconditioning is useless (although other
forms of preprocessing may be useful).

e The matrix is never symmetric.

e Operations over GF(2) can be parallelised
using logical operations on words of
(typically) 32 or 64 bits.

22

Sieving

In quadratic sieve algorithms the numbers w;
are the values of one (or more) polynomials
with integer coefficients. This makes it easy to
find relations by sieving. The inner loop of the
sieving process has the form

while j < bound do

begin

slj] < sli] + ¢

Jeita

end
Here bound depends on the size of the
(single-precision real) sieve array s, q is a small
prime or prime power, and c is a
single-precision real constant depending on ¢
(¢c=A(q) =Ilnp if g = p°, p prime).
It is possible to use scaling to avoid floating
point additions, which is desirable on a small
processor without floating-point hardware.

23

MPQS

MPQS is a quadratic sieve method which uses
several polynomials to improve the efficiency of
sieving (an idea of Montgomery). MPQS can,
under plausible assumptions, factor a number N

in time
O(expVeln NInln N) |

where ¢ ~ 1.

If p ~ v/N this is essentially the same bound as
for ECM. Thus, MPQS has no theoretical
advantage over ECM. (Theoretically, ECM is
almost always faster than MPQS).

However, in practice MPQS is usually faster
than ECM if N is the product of two primes
which both exceed N'/3. This is because the
inner loop of MPQS involves only
single-precision (sieving) operations, whereas
the corresponding loop of ECM involves
multiple-precision operations mod N.

24

MPQS Examples

MPQS has been used to obtain many impressive
factorisations. Arjen Lenstra and Mark
Manasse (with many assistants scattered around
the world) have factored several numbers larger
than 1099, For example, the 116-decimal digit
number (332 + 1)/(known small factors) was
split into a product of 50-digit and 67-digit
primes. The final factorisation is

32941 = 22.547.16921 - 256057 - 36913801 -
177140839 - 1534179947851 -
2467707882284001426665277\
9036768062918372697435241 - pgr

Such factorisations require many years of CPU
time, but a real time of only a month or so
because of the number of different processors
which are working in parallel.

25

The Magic Words are ---

At the time of writing, the largest number
factored by MPQS is the 129-digit “RSA
Challenge” number RSA129. It was factored in
1994 by Atkins et al. RS&A had predicted in
Scientific American that it would take millions
of years to factor RSA129.

The factors of RSA129 allow decryption of a
‘secret’ message from RS&A. Using the
decoding scheme 01 = 4,02 = B,...,26 = Z,
and 00 a space between words, the decoded
message reads

THE MAGIC WORDS ARE SQUEAMISH
OSSIFRAGE

It is certainly feasible to factor larger numbers
by MPQS, but for numbers of more than about
110 decimal digits GNFS is faster. For example,
to factor RSA129 by MPQS required 5000
Mips-years, but to factor the slightly larger
number RSA130 by GNFS required only 1000
Mips-years.

26

The Special Number Field Sieve
(SNFS)

Most of our numerical examples have involved
numbers of the form

a®+b, (4)

for small a and b, although the ECM and
MPQS factorisation algorithms do not take
advantage of this special form.

The special number field sieve (SNFS) is a
relatively new (c. 1990) algorithm which does
take advantage of the special form (4). In
concept it is similar to the quadratic sieve
algorithm, but it works over an algebraic
number field defined by a, e and b.

The details are rather technical and depend on
concepts from algebraic number theory, so we
simply give two examples to show the power of
the algorithm.

27

SNFS Example 1
Consider the 155-decimal digit number

Fy=N=2% 41

as a candidate for factoring by SNFS. Note that
8N = m5 4 8, where m = 219, We may work in
the number field Q(«a), where « satisfies

a®+8=0,
and in the ring of integers of Q(«). Because
m’+8=0 (mod N),

the mapping ¢ : @ — m mod N is a ring
homomorphism from Z[a] to Z/NZ.

The idea is to search for pairs of small coprime
integers v and v such that both the algebraic
integer u + v and the (rational) integer u + mv
can be factored. The factor base now includes
prime ideals and units as well as rational
primes.

28

Example 1 continued

Because
¢(u+ av) = (u+mv) (mod N),

each such pair gives a relation analogous to (3).
The prime ideal factorisation of u 4+ av can be
obtained from the factorisation of the norm

u® — 8v° of u + aw. Thus, we have to factor
simultaneously two integers u + mv and

|u® — 8v5|. Note that, for moderate u and v,
both these integers are much smaller than N, in
fact they are O(N'/9), where d = 5 is the
degree of the algebraic number field.

Using these and related ideas, Lenstra et al
factored Fy in June 1990, obtaining

Fy = 2424833.
745560282564788420833739\
5736200454918783366342657 - pog |,

where pgg is an 99-digit prime, and the 7-digit

factor was already known (although SNFS was
unable to take advantage of this).

29

Detalils

The collection of relations took less than two
months on a network of several hundred
workstations. A sparse system of about 200,000
relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination,
dependencies (mod 2) between the rows were
found in three hours on a Connection Machine.
These dependencies implied equations of the
form 22 = 32 mod Fy. The second such
equation was nontrivial and gave the desired
factorisation of Fy.

30

SNFS Example 2

The current SNFS record is the 211-digit
number 1021 — 1, factored early in 1999 by a
collaboration called “The Cabal”. In fact,
10211 —1= 32 - Po3 - P118, where

pos = 69262455732438962066278\
23226773367111381084825\
88281739734375570506492\
391931849524636731866879

and p118 may be found by division.?

3In the paper in the Proceedings, I forgot the factor 9
of 10" —1=99---99 (!)

31

Details

The factorisation of N = 102! — 1 used two
polynomials

flz) =z —10%

and
g(z) = 1025 — 1

with common root m = 10%% mod N. After
sieving and reduction a sparse matrix over
GF(2) was obtained with about 4.8 x 10% rows
and weight (number of nonzero entries) about
2.3 x 108, an average of about 49 nonzeros per
row. Montgomery’s block Lanczos program
took 121 hours on a Cray C90 to find 64
dependencies. Finally, the square root program
needed 15.5 hours on one CPU of an SGI Origin
2000, and three dependencies to find the two
prime factors.

32

The General Number Field Sieve
(GNFS)

The general number field sieve (GNFS or just
NFS) is a logical extension of the special
number field sieve (SNFS).

When using SNFS to factor an integer N, we
require two polynomials f(z) and g(z) with a
common root m mod N but no common root
over the field of complex numbers.

If N has the special form a€ £ b then it is
usually easy to write down suitable polynomials
with small coefficients, as illustrated by the two
examples given above.

If N has no special form, but is just some given
composite number, we can also find f(z) and
g(z), but they no longer have small coefficients.

33

The “Base m” Method

Suppose that g(z) has degree d > 1 and f(z) is
linear. d is chosen empirically, but it is known
from theoretical considerations that the
optimum value is

p (3InN)1/3
Inln N '
We choose m = | N'/(@+1) | and write
d .
N = Zajmj
j=0

where the a; are “base m digits”. Then,
defining

d
f@)y=z—m, g(&)=7) aja’,
J=0

it is clear that f(z) and g(z) have a common
root m mod N. This method of polynomial
selection is called the “base m” method.

34

Other Ingredients of GNFS

Having found two appropriate polynomials, we
can proceed as in SNFS, but many difficulties
arise because of the large coefficients of g(z).
The details are the subject of several theses.
Suffice it to say that the difficulties can be
overcome and the method works!

Due to the constant factors involved, GNFS is
slower than MPQS for numbers of less than
about 110 decimal digits, but faster than MPQS
for sufficiently large numbers, as anticipated
from the theoretical run times.

35

Difficulties Overcome

Some of the difficulties which had to be
overcome to turn GNFS into a practical
algorithm are:

e Polynomial selection. The “base m”
method is not very good. Peter
Montgomery and Brian Murphy have
shown how a very considerable
improvement (by a factor of more than
ten) can be obtained.

e Linear algebra. After sieving a very large,
sparse linear system over GF(2) is
obtained, and we want to find
dependencies amongst the rows. It is not
practical to do this by Gaussian
elimination because the “fill in” is too
large. Montgomery showed that the
Lanczos method could be adapted for this
purpose. (This is nontrivial because a
nonzero vector z over GF(2) can be
orthogonal to itself, i.e. z7z = 0.) His
program works with blocks of size 64.

36

Difficulties continued

e Square roots. The final stage of GNFS
involves finding the square root of a (very
large) product of algebraic numbers. Once
again, Montgomery found a way to do
this.

e An idea of Adleman, using quadratic
characters, is essential to ensure that the
desired square root exists with high
probability.

37

Scalability of GNF'S

At present, the main obstacle to a fully parallel
and scalable implementation of GNFS is the
linear algebra. Montgomery’s block Lanczos
program runs on a single processor and requires
enough memory to store the sparse matrix. It is
possible to distribute the block Lanczos solution
over several processors of a parallel machine,
but the communication to computation ratio is
high. There is a tradeoff here by increasing
the time spent on sieving we can reduce the size
and weight of the resulting matrix.

If special hardware is built for sieving, as
recently proposed by Shamir, the linear algebra
will become relatively more important. The
argument is similar to Amdahl’s law: no matter
how fast sieving is done, we can not avoid the
linear algebra.

38

RSA140

At the time of writing the paper for the
Proceedings, the largest number factored by
GNF'S was the 140-digit RSA Challenge number
RSA140. It was split into the product of two
70-digit primes in February, 1999, by a team
coordinated from CWI, Amsterdam. The
amount of computer time required to find the
factors was about 2000 Mips-years.

The two polynomials used were
f(z) = z — 34435657809242536951779007
and

g(r) = +4396820828402°
+390315678538960z*
—73873252938929945722°
—190271532437429887148242>
—63441025694464617913930613x
+318553917071474350392223507494 .

39

Polynomial Selection

The polynomial g(x) was chosen (by the method
of Murphy and Montgomery) to have a good
combination of two properties: being unusually
small over the sieving region, and having
unusually many roots modulo small primes and
small prime powers. The polynomial used had a
yield about eight times that of a randomly
chosen polynomial (so the polynomial selection
sped up the factorisation by a factor of eight).

The polynomial selection took 2000 CPU-hours
on four 250 MHz SGI Origin 2000 processors.
This is about 60 Mips-years, or 3% of the total
factorisation time. It might have been better to
spend a larger fraction of the time on
polynomial selection — this is an interesting
tradeoff.

40

Sieving

Sieving was done on about 125 SGI and Sun
workstations running at 175 MHz on average,
and on about 60 PCs running at 300 MHz on
average. The total amount of CPU time spent
on sieving was 8.9 CPU-years (about 1900
Mips-years).

The Linear Algebra

The resulting matrix had about 4.7 x 108 rows
and weight about 1.5 x 108 (about 32 nonzeros
per row). Using Montgomery’s block Lanczos
program, it took almost 100 CPU-hours and
810 MB of memory on a Cray C916 to find 64
dependencies among the rows of this matrix.
Calendar time for this was five days.

41

RSA155

At the time of writing the paper for the
Proceedings, an attempt to factor the 512-bit
number RSA155 was underway, and I predicted
it would be factored before the year 2000.

The factorisation of RSA155 was completed on
22 August 1999 ! Tt took about 8000 Mips-years
(about four times as much as RSA140). The
sparse matrix had about 6.7 x 10% rows and
columns, and 4.2 x 108 nonzeros.

For more details, see

http://www.loria.fr/~zimmerma/records/
RSA155 .

42

Summary — RSA140 and RSA155

In Table 2 we summarise the RSA140 and
RSA155 factorisations.

Table 2: RSA140 and RSA155 factorisations

RSA140 | RSA155
Total mips-years 2000 8000
Improvement due to
polynomial selection 8 14
Matrix rows 4.7 % 10% | 6.7 x 106
Total nonzeros 1.5 x 108 | 4.2 x 108
Nonzeros per row 32 62
Matrix solution time
(on Cray C916) 100 hours | 224 hours

43

Historical Factoring Records

1607
1407
1207
1007
807
60 1
407
201
0 ‘ ‘ : ‘
1960 1970 1980 1990 2000

Size of “general” number factored versus year

The graph shows the size (in decimal digits) of
the largest “general” number factored against
the year it was done, from 1964 (20D) to 1999
(155D) (historical data from www.rsa.com).

44

Curve Fitting and Extrapolation

81 pl/3
7
6
5 -
4 1
3 -
9
1A Y
0 T T T 1
1960 1970 1980 1990 2000

From the theoretical time bound for GNFS,
assuming Moore’s law, we expect D/3 to be
roughly a linear function of time (we have
assumed that (In D)%/3 is roughly a constant).
The graph shows D'/3 versus year Y.
The straight line is
Y —1928.6

13.24
and extrapolation, for what it is worth, gives
D =309 (i.e. 1024 bits) in the year Y = 2018.

D1/3 —

45

Predictions

Moore’s law predicts that circuit densities will
double every 18 months or so. Thus, as long as
Moore’s law continues to apply and results in
correspondingly more powerful parallel
computers, we expect to get 3-4 decimal digits
per year improvement in the capabilities of
GNFS, without any algorithmic improvements.
(The extrapolation from historical figures is
more optimistic: it predicts 6 7 decimal digits
per year in the near future.)

Similar arguments apply to ECM, for which we
expect slightly more than 1 decimal digit per
year in the size of factor found.

(When) Is RSA Doomed ?

512-bit RSA keys are clearly insecure. 1024-bit
RSA keys should remain secure for at least
fifteen years, barring the unexpected (but
unpredictable) discovery of a completely new
algorithm which is better than GNFS, or the
development of a practical quantum computer.

46

Summary and Conclusions

I have sketched some algorithms for integer
factorisation. The most important are ECM,
MPQS and GNFS. The algorithms draw on
results in elementary number theory, algebraic
number theory and probability theory. As well
as their inherent interest and applicability to
other areas of mathematics, advances in public
key cryptography have lent them practical
importance.

Until a polynomial time algorithm is found or a
quantum computer capable of running Shor’s
algorithm is built, large factorisations will
remain an interesting challenge.

The best current algorithm (NFS) has an
“embarrassingly parallel” phase (sieving)
followed by a “communication intensive” phase
(linear algebra), which makes implementation
on a single parallel machine nontrivial.

47

