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Abstract

Gangsdedulingis currently the mostpopular schedul-
ing schemefor parallel processingn a time shaed envi-
ronment. One major drawbad of using gang scheduling
is the problemof fragmentation.The corventionalmethod
to alleviate this problemis to allow jobs runningin multi-
pletimeslots. However, our experimentaresultsshowthat
simply applying this methodalone cannotsolvethe prob-
lemof fragmentationbut on the contrary it mayeventually
degradethe efficiencyof systenresouce utilisation. In this
paperweintroducean efficientresouceallocationscheme
which effectivelyincorporatestheideasof re-pading jobs,
runningjobsin multipleslotsandminimisingtimeslotsinto
the buddy basedsystemto significantly improve the sys-
tem and job performancefor gang scheduling Because
there is no processmigration involvedin job re-pading,
this schemeis particularly suitablefor clusteed parallel
computingsystems.

1. Intr oduction

With therapid developmentsn both hardwareandsoft-
waretechnologythe performancef scalablesystemssuch
asclustersof workstations/PCs/SMRmssignificantlybeen
improved. It is expectedhatthiskind of systermwill domi-
natetheparallelcomputemarketin thenearfuturebecause
of the continuedcost-efective growth in performanceFor
this type of machineto betruly utilisedasgeneral-purpose
high-performanceomputingseners for variouskinds of
applications effective job schedulingfacilities have to be
developedto achiese high efficiengy of resourcautilisation.

Many job schedulingscheme$ave beenintroducedfor
parallel computingsystems. (Seea good suney in [4].)

These schedulingschemescan be classifiedinto either
spacesharing or timesharing Becauseatime sharedervi-
ronmentis moredifficult to establistfor parallelprocessing
in a multiple processosystemcurrentlymostcommercial
parallelsystemsonly adoptspacesharingschemesuchas
theLoadLevelerschedulefrom IBM for the SP2[8]. How-
ever, onemajor drawvbackof spacesharingis the blockade
situation thatis, smalljobscaneasilybeblockedfor along
time by large ones. Thustime sharingschemeseedto be
considered.

It is known thatcoordinatedschedulingof paralleljobs
acrosgthe processorss a critical factorto achieve efficient
parallelexecutionin atime sharedervironment. Currently
the mostpopularscheméor coordinatedschedulings ex-
plicit costeduling[6], or gangscheduling[5]. With gang
schedulingprocesse®f the samejob will run simultane-
ously for a certainamountof time, which is called the
schedulingslot, or time slot. Whena time slot is ended,
the processorsvill context-switch at the sametime to give
the serviceto processe®f anotherjob. All paralleljobs
in the systemtake turnsto receve the servicein a coordi-
natedmanner If spacepermits,a numberof jobs may be
allocatedin the sametime slot and run simultaneouslyon
differentsubsetof processorsThusgangschedulingcan
beconsideredsa schedulingschemavhich combinesoth
spacesharingandtime sharingtogether

One disadwantageassociatedwith corventional gang
schedulindgor clusteredor networked)computingsystems
is its purely centraliseccontrolfor context switchesacross
theprocessorsThatis, a centralcontrolleris usecdto broad-
castmessaget all the processorgelling which job should
be schedulethext. Whenthe sizeof a systemis large, ef-
ficient spacepartitioning policies are not easily incorpo-
rated, mainly due to this frequentbroadcasting. To deal
with this problemwe designedh new coschedulinggcheme



called loose gang scheduling or scalable gang schedul-
ing [11, 12]. Using our schedulingschemethe disadan-
tagesassociateavith corventionalgangschedulincaresig-
nificantly alleviated,especiallytherequirementor frequent
broadcastingThebasicstructureof this schedulingscheme
hasbeenimplementecn a 16-processoFujitsu AP1000+.
Although the function of the currentcoschedulingsystem
is limited and needsto be further enhancedthe prelimi-
nary experimentalresultsshav that the schemeworks as
expected[10]. This enablesusto considermore effective
methoddgor resourceallocationto significantlyenhancehe
performancef gangscheduling.

Currently mostallocationschemedgor gangscheduling
only considemprocessoallocationwithin thesameime slot
andtheallocationin onetime slotis independendf the al-
locationin othertime slots. Onemajordisadwantagen this
kind of resourcellocationis theproblemof fragmentation.
Becauseaesourcellocationis consideredndependentlyn
differenttime slots,somefreedresourceslueto job termi-
nation may remainidle for a long time even thoughthey
areableto bere-allocatedo existing jobsrunningin other
time slots. One way to alleviate the problemis to allow
jobsto runin multiple time slotswhenerer possiblg2, 9].
When jobs are allowed to run in multiple time slots, the
buddy basedallocationschemewill perform much better
thanmary otherexisting allocationschemedn termsof av-
eraggob turnaroundime [2].

The buddy basedschemewas originally developedfor
memoryallocation[7]. To allocateresourcedo a job of
sizep usingthe buddy basedschemethe processorin the
systemarefirst divided into subsetof sizen for n/2 <
p < n. Thejob is thenassignedo onesuchsubseif there
is atime slotin which all processor# the subsetareidle.
Although the buddy schemecauseghe problemof inter-
nal fragmentationjobswith aboutthe samesizetendto be
head-to-headilignedin differenttime slots. If onejob is
completedthe freedresourcesaneasilybe reallocatedo
otherjobsrunningonthesamesubsebf processorsThere-
fore,jobshave abetterchancedo runin multiple time slots.
An interestingpoint is that we cannotguaranteghe im-
provementn systenresourcautilisationby simply running
jobsin multiple time slots. We shall shawv thatsimply run-
ning jobsin multiple time slotsmay eventuallydegradethe
efficiengy in systenresourcautilisationunlessspecialcare
is taken.

To alleviate the problemof fragmentatiorwe proposed
anotheischemenamelyjob re-packing13]. In thisscheme
wetry to rearrangeéheorderof job executionontheir origi-
nally allocatedorocessorsothatsmallfragmentsf idle re-
sourcedrom differenttime slotscanbe combinedtiogether
to form a largerandmoreusefulonein a singletime slot.
Whenthis schemas incorporatednto thebuddybasedsys-
tem, we cansetup a workloadtreeto recordthe workload

conditionsof eachsubsetof processors.With this work-
load treewe are ableto simplify the searchprocedurefor
resourceallocationandalsoto balanceheworkloadacross
theprocessors.

In this paperwe introducean efficient resourcealloca-
tion schemeThis schemeeffectively incorporateshetech-
niguesof re-packingobs,runningjobsin multiple slotsand
minimising the time slotsinto the buddy basedsystemto
significantlyenhancesystemandjob performanceln Sec-
tion 2 we first describeheworkloadmodelusedin our ex-
periments. The ideasof job re-packingandworkloadtree
for thebuddybasedsystemarethenpresentedh Section3.
Section4 givessomeexperimentakesultswhich shawv that
simply runningjobsin multiple time slotscannotsolve the
problemof fragmentationput on the contrarymay even-
tually degradethe efficiengy of systenmresourceautilisation.
Our efficient allocationschemes describedand someex-
perimentalresultsare alsopresentedn Section5. Finally
theconclusionsaregivenin Section6.

2. The Workload Model

In our experimentswe adopteda workload model pro-
posedin [1]. Both job runtimesand sizes(the numberof
processorsequired)in this modelaredistributeduniformly
in log space(or uniform-logdistributed),while the interar
rival times are exponentiallydistributed. This modelwas
constructecbasedon obsenrationsfrom the Intel Paragon
at the SanDiego Supercompute€enterandthe IBM SP2
at the Cornell Theory Centerand hasbeenusedby mary
researcherso evaluatetheir parallel job schedulingalgo-
rithms.

Sincethe modelwas originally built to evaluatebatch
schedulingpolicies,we madea few minor modificationsin
our simulationfor gangscheduling.In mary real systems
jobs are classifiedinto two classesthatis, interactve and
batchjobs. A batchjob is one which tendsto run much
longerandoftenrequiresalargernumberof processorthan
interactve ones. Usually batchqueuesare enabledfor ex-
ecutiononly duringthe night. In our experimentswve only
considerinteractive jobs. Jobruntimeswill have areason-
ably wide distribution, with mary shortjobs but a few rel-
atively large onesandthey areroundedto the numberof
time slotswithin arangebetweerl and120. Assumingthe
lengthof atimesslotis five secondsthelongesiob will then
be 10 minutesandthe averaggob lengthis abouttwo min-
utes. In the experimentwe alsoassumehatthereare128
processori the system.

We aremoreinterestedn thetransientoehaiors, rather
thanthe steadystateof a system. In the experimenteach
time only a small set of 200 jobs were usedto evaluate
the performanceof eachschedulingscheme.For eaches-
timatedsystemworkload,however, 20 differentsetsof jobs



weregeneratedisingthe workloadmodelandthe final re-
sultsaretheaverageof the 20 experimentdor eachschedul-
ing scheme.

Duringthesimulationwe collectthefollowing statistics:

e averageprocessofactive ratio r,: the averagenum-
berof time slotsin which a processors active divided
by theoverall systemcomputationatime in time slots.
If the resourceallocationschemeis efficient, the ob-
tainedresultshouldbe closeto the estimatedaverage
systemworkload p which is definedasp = Apt/P
where) is job arrival rate,t andp arethe averageiob
lengthandsizeand P is thetotal numberof processors
in thesystem.

e averagenumberof time slotsn,: If ¢; is thetotal time
whenthereare: time slotsin the system the average
numberof time slotsin thesystenduringtheoperation
canbedefinedasn, = " it;/ >.",t; wheren;
is the largestnumberof time slotsencounteredn the
systemduringthe computation.

e averageturnaroundtime ¢,: The turnaroundtime is
the time betweerthe arrival and completionof a job.
In theexperimentwe measuretheaveraggurnaround
timet,, for all 200jobs. We alsodividedthejobsinto
threeclassesthat is, small (betweenl and 12 time
slots),medium(betweeril3 and60) andlarge (greater
than60) andmeasuredhe averageturnaroundime for
theseclassestsq, tmq andt;,, respectiely.

3. Job Re-Packing and Workload Tree

In the following discussionwe assumethat proces-
sors in a parallel system are logically organisedas a
one-dimensionalinear array Note that the term one-
dimensionallinear array is purely definedin the gang
schedulingcontext. A logical one-dimensionadrray is de-
finedasa setof NV processorsvhich areenumeratedrom
1to N (or from Oto N — 1) regardlessof their physical
locationsin the system. Thuswe can simply usea two-
dimensionalglobal schedulingmatrix suchas the onein
Fig. 1. Usingthetermlinear array we meanthatonly con-
secutvely numberegrocessorsanbe allocatedo a given
job. Thusthis kind of regularity is only associateavith the
globalschedulingnatrix, but notwith thephysicallocations
of processors.

Oneway to alleviate the problemof fragmentatioris to
allow jobsto runin multiple time slotswheneer possible.
A simpleexampleis depictedn Fig. 1. In this examplethe
systemhaseight processorand originally threeslots are
createdo handlethe executionof ninejobs. Now assume
thattwo jobs .J’ and.J” in slot Sy areterminated.If jobs
areallowedto runin multiple time slots,jobs J; and.J> in
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Figure 1. An example of alleviating the frag-
mentation problem by (b) running jobs in mul-
tiple time slots and (c) re-packing jobs to re-
duce the total number of time slot.

slot S; andjob J7 on S5 canoccupy thefreedresourcesn

So, asshown in Fig. 1(b). Therefore mostprocessorgan
bekeptbusyall thetime. However, thiskind of resourcee-

allocationmaynotbeoptimalwhenjob performancés con-
sidered Assumenow therearrivesanew job whichrequires
morethanoneprocessarBecausehefreedresourcehiave
beerreallocatedo therunningjobs,thefourthtime slothas
to be createdandthenthe performancef the existing jobs
whichrunin asingletime slotwill bedegraded.

Now considerjob re-packing. We first shift jobs J;
and J, from slot S; to slot S; and then move jobs J5
and Jg down to slot S; andjob J; to slot S>. After this
rearrangemerntr re-packingof jobs,time slot S3; becomes
completelyempty We cantheneliminatethis emptysilot,
asshavn in Fig. 1(c). It is obvious that this type of job
re-packingcan greatlyimprove the overall systemperfor
mance Notethatduringthere-packingobsareonly shifted
betweenrows from onetime slot to another We actually
only rearrangehe orderof job executionon their originally
allocatedprocessorén a schedulingroundandthereis no
procesamigrationbetweenprocessorinvolved. This kind
of job rearrangemenis particularly suitablefor clustered
parallelmachinesn which processnigrationis expensve.

Sinceprocessesf the samejob needcoordinationand
they mustbe placedin the sametime slotsall thetime dur-
ing the computation therefore,we cannotre-packjobsin



anarbitraryway. A shiftis saidto belegalif all processes
of thesamgob areshiftedto thesameslotatthesametime.
In job re-packingwve alwaysutilise this kind of legal shift to
rearranggobsbetweertime slotssothatsmallfragmentof
idle resourcedn differenttime slotscanbecombinednto a
largerandmoreusefulone.

When processorsare logically organisedas a one-
dimensionalineararray we have two interestingproperties
which aredescribedelown. (The proofsof theseproperties
canbefoundin [13].

Property 1 Assumehatprocessosarelogically organised
asa one-dimensiondinear array. Anytwo adjacentfrag-

mentsof availableprocessos canbe groupedtogetherin a

singletimesilot.

Property 2 Assumehatprocessaosarelogically organised
asaone-dimensiondineararray. If everyprocessohasan
idle fragmentjobsin thesystentanbere-padkedsud that
all theidle fragmentswill be combinedogetherin a single
timeslotwhich canthenbeeliminated.

Basedon job re-packingwe cansetup a workloadtree
(WLT) for the buddy schedulingsystem,as depictedin
Fig. 2, to balancethe workload acrossthe processorsnd
alsoto simplify the searchprocedurefor resourcealloca-

tion.
(o)
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Figure 2. The binary workload tree (WLT) for
the buddy based allocation system.

TheworkloadtreehaslogN + 1 levelsfor N thenumber
of processori thesystem Eachnodein thetreeis associ-
atedwith a particularsubsebf processorsThenodeatthe
top level is associatedvith all N processorsThe N pro-
cessoraredividedinto two subset®f equalsizeandeach
subseis thenassociatedvith a child nodeof theroot. The
division andassociatiorcontinueauntil the bottomlevel is

reachedEachnodein thetreeis assignednintegervalue.
At the bottom level the value assignedo eachleaf node
is equalto the numberof idle time slotson the associated
processarFor example,the nodecorrespondingo proces-
sor P; is givenavalue0 becauseéhereis noidle slotonthat
processqgwhile thevalueassignedo thelastnodeis equal
to 2 denotingthereare currentlytwo idle slotson proces-
sor Ps. For a non-leafnodethe valuewill be equalto the
sumof the valuesof its two childrenwhenbothvaluesare
nonzero.Otherwiseijt is setto zerodenotingtheassociated
subsebf processorsvill notbeavailablefor new arrivals.

For the corventional allocation method, adding this
workloadtree may not be ableto assistthe decisionmak-
ing for resourceallocation.Thisis becaus¢heinformation
containedin the tree doesnot tell which slot is idle on a
processarbut processe®f the samejob have to be allo-
catedin the sametime slot. With job re-packinghowever,
we know that on a one-dimensionalinear array ary two
adjacenfragmentsof available processorganbe grouped
togetherto form alargeronein asingletime slotaccording
to Propertyl. To searchfor a suitablesubsetof available
processorghereforewe only needto checkthevaluesata
properlevel. Considerthe situationdepictedin Fig. 2 and
assumehatanew job of size4 arrives.In this casewe need
only to checkthe two nodesat the secondevel. Sincethe
valueof the secondnodeat thatlevel is nonzero(equalto
5), thenew job canthenbe placedon the associatedubset
of processorsthatis, the lastfour processorsTo allocate
resourcesve first re-packjob Js into time slot.S; andthen
placethenew job in time slot S3. Sincetheworkloadcon-
ditionsontheseprocessorarechangedftertheallocation,
the valuesof the associatechodesneedto be updatedac-
cordingly.

Therearemary otheradvantagesn usingthis workload
tree.To ensurea high systemandjob performancét is very
importantto balanceworkloadsacrossthe processorsUs-
ing the workloadtreeit will becomemucheasierfor usto
handlethe problemof loadbalancing Becausehevalueof
eachnodereflectsthe informationaboutthe currentwork-
load conditionon the associateghrocessosubsetthe sys-
temcaneasilychoosea subsebf lessactive processorfor
anincomingjob by comparingthe nodevaluesat a proper
level.

To enhancethe efficiencgy of resourceutilisation jobs
shouldbe allowedto run in multiple time slotsif thereare
freeresourceswvailable. Althoughtheideaof runningjobs
in multipletime slotswasoriginally proposedn [2, 9], there
were no methodsgiven on how to effectively determine
whetheran existing job on a subsetof processorganrun
in multiple time slots. Using the workloadtreethis proce-
durebecomesimple. In Fig. 2, for example,therightmost
two nodesatthethird level of theworkloadtreearenonzero
andjobs J, andJg arecurrentlyrunningwithin eachof the



scheme| p Ta n; Ng tia tsa tma tia

BC 0.20| 0.19| 3 1.16 | 31.10 | 5.67 | 40.52 | 112.45
BR 0.19| 3 0.45 | 30.01 | 5,52 | 39.29 | 108.18
BRMS 0.19| 4 0.57 | 29.25 | 5.37 | 37.86 | 106.56
BC 050 | 0.46| 6 2.84 | 70.00 | 14.04| 89.27 | 246.08
BR 046 | 5 2.27 | 58.65 | 11.68| 75.23 | 206.45
BRMS 0.45| 15| 6.11 | 57.28 | 15.99| 73.83 | 184.98
BC 0.70 | 0.55| 10 | 5.23 | 129.65| 25.03 | 166.21| 456.72
BR 0.58| 8 4.09 | 102.21| 20.27 | 130.17 | 359.00
BRMS 053 | 30| 14.39| 96.95 | 35.78 | 128.23| 271.12
BC 090| 0.58 | 14 | 7.62 | 189.60| 35.91| 246.73| 670.42
BR 0.65| 11| 6.00 | 150.18| 29.50 | 195.49| 526.64
BRMS 0.56 | 43 | 20.17| 120.53| 51.84| 170.61 | 356.94

Table 1. Some experimental results 1.

two associatedubsetf processorstespectiely. These
two jobs canthenbe allocatedan additionaltime slot and
runin multiple time slots.

Sincetheroot of theworkloadtreeis associatedvith all
the processorswye are ableto know quickly whena time
slot canbe deletedby simply checkingthe nodevalue. If it
is nonzerowe immediatelyknow thatthereis at leastone
idle slot on eachprocessarAccordingto Property2 these
idle fragmentscan be combinedtogetherin a single time
slotwhich canthenbeeliminated.

4. Running Jobsin Multiple Time Slots

In this sectionwe presentsome experimentalresults
obtained from implementing three different allocation
schemego shav thatsimply runningjobsin multiple time
slotsmay not solve the problemof fragmentationThefirst
oneis just the corventionalbuddy (BC) systemin which
theworkloadbalancings notseriouslyconsideredndeach
jobonly runsin asingletime slot. ThesecondschemdBR)
utilisestheworkloadtreeto balanceheworkloadacrosgshe
processorandre-packgobswhennecessaryo reducethe
averagenumberof time slotsin the system but it doesnot
considerto run jobsin multiple time slots. Thethird allo-
cationschemgBRMS) is a modifiedversionof the second
one,in which jobsareallowedto runin multiple time slots
wheneer possible.Whenajob is givenan extra time slot
in this schedulingschemeijt will keeprunningin multiple
time slotsto completionand never relinquishthe extra re-
sourcegjainedduringthe computation.

Someexperimentalresultsare given in Table 1. First
considerthatjobsonly runin a singletime slot. Whenjob
re-packingis appliedto reducethe numberof time slotsin
the systemand the workload tree is usedto balancethe
workload acrossthe processorswe expect that both job
performanceand systemresourceutilisation shouldbeim-

proved. Our experimentalresultsconfirm this prediction.
It canbe seenfrom the tablethat schemeBR consistently
outperformsBC underall categyoriesalthoughtheimprove-
mentis not significantfor the estimatedsystemworkload
p = 0.20.

It is seenthatscheme8BRMS which allows jobsto run
in multipleslotscanreducetheaverageurnaroundimet,,.
Thisis understandablsincea job runningin multiple slots
may have a shorterturnaroundtime. An interestingpoint,
however, is that applying BRMS will resultin a much
longer averageturnaroundtime for shortjobs. The main
reasonwhy BRMS cancausea longeraverageturnaround
time for shortjobsmaybeasfollows: If jobsareallowedto
run in multiple slotsanddo not relinquishadditionalslots
gainedduringthe computationthe numberof time slotsin
the systemmay becomevery large mostof thetime. Note
thatlongjobswill stayin the systemlongerandthenhave
a betterchanceto run in multiple time slots. However, the
systemresourcesrelimited. Whena shortjob arrives, it
canonly obtaina very small portion of CPU utilisation if
allocatedonly in asingletime slot.

It seemghatwe canincreasethe averageprocessonc-
tive ratio if jobs areallowedto run in multiple time slots.
However, anotherinterestingpointis thatusingthe alloca-
tion schemeBRMS will eventuallydecreasehe efficiency
in resourceaitilisation. As shovnin Tablel theaveragepro-
cessofactive ratio caneven be lower thanthat obtainedby
usingthe conventionalbuddy schedulingschemeBC. The
main reasonmay be that, whena job runningin multiple
slotsfinishes,the processor®n which it was runningwill
be idle in thosemultiple time slots until a changein the
workloadconditionoccurs suchasanew job arriving to fill
the freedresourcespr someslotsbecomingtotally empty
which canbeeliminated.



5. Efficient Allocation Scheme

It canbe seenfrom Table1 thatsimply runningjobsin
multiple time slotswill greatlyincreaseéhe numberof time
slotsin the system. To confirm that this greatincreasen
systenslotnumberss themaincausdor thedegradatiorof
systemperformance\We designedwo allocationschemes
which considetthereductionof the numberof time slotsin
the systemwhile allowing jobsto runin multiple slots.

Figure 3. Two workload trees (WLTS and
WLTM) used for reducing the number of time
slots in the system.

Becausedhe systemtries to reducethe numberof time
slots, jobs runningin multiple time slots may have to re-
linquishthe additionalresourcegainedduringthe compu-
tation. Now the problemis how to determinewhenatime
slot shouldbe deletedandwhenajob shouldbe allowedto
runin multiple time slots. Thesetwo issuesusuallyconflict
with eachother To dealwith this problemwe setup two
workloadtreesWLTM andWLTS. An exampleis depicted
in Fig. 3. Thetwo treesarethe sameexcepttheir nodeval-
ues.If all thejobsarerunningin asingletime slot, thenode
valuesin bothtreesareexactly the same.Whensomejobs,
for example,jobs J3 andJs in Fig. 3, aregivenextratime
slots, we only updatethe nodevaluesin tree WLTM, but
leave WLTS intact.

Since WLTM containsthe information on the actual

workload conditionin the system,it canbe usedto deter

minewhenajob canbegivenanextratime slot. For exam-
ple,in Fig. 3 therightmostnodeatthethird level is nonzero
andjob J; is runningwithin the associategubsetof pro-

cessorslf therearenonew arrivals, J; canrunin bothtime

slotsS; andsSs.

TreeWLTSdoesnothaveary informationaboutrunning
jobsin multipletime slots.If it is usedto make resourceal-
location decisions however, somejobs have to relinquish
extratime slots. Sincethevalueof therootnodeis nonzero
in Fig. 3, for example,we canthendeleteatime slotin the
system.To achieve thisjob J; is first shiftedto slot S; and
thenjobs.J; and.Js relinquishonetime slotthey gaineddur-
ing the computation.Thusslot S3 will becomecompletely
emptyandcanbedeleted.

To reducetime slots in the systemour first alloca-
tion schemeBRMMS* works as follows: The workload
treeWLTM is usedto allocateresource$o new arrivalsand
to determinavhenajob canrunin multipletime slots. This
is exactly the sameasthatin BRMS. However, the work-
loadtreeWLTS is alsousedto determinewhenatime slot
canbeeliminated.Thustheaveragenumberof time slotsin
the systemwill becomesmallerthanthe numbercreatecby
usingBRMS.

In BRMMS* jobs relinquishtheir extra time slotsonly
when a time slot is to be eliminated. However, our sec-
ond allocation schemeBRMMS is more vigorousin re-
ducingtime slots. This schemewnorks morelik e allocation
schemeBR. It usesworkloadtreeWLTS to allocatethere-
sourcedo new arrivals andto determinethe reductionof
time slotsin the system.The workloadtreeWLTM is only
usedto determinewhenrunningjobs canrun in multiple
time slotsif thereareno new arrivals. Thusjobs may have
to relinquishthe extra time slotswhena new job arrives,
but it cannotbe allocatedin the existing time slots. There-
fore,we canexpectthattheaveragenumberof time slotsin
thesystenmwill neverbegreatethanthenumbercreatedy
usingschemeBR.

Someexperimentakesultsaregivenin Table2. There-
sultsobtainedby usingBRMS arealsorelistedin thetable.
It is easyto seefrom the table that reducingtime slotsin
the systemcansignificantlyimprove the performance We
can also seethat schemeBRMMS performsmuch better
thanBRMMS* underall catgyories.To enhancehe system
andjob performancethereforejt is moreimportantto min-
imisethe numberof time slotsin the systemthanto simply
runjobsin multipletime slots.

In orderto give abetterview for thecomparisorwe shav
two picturesfor averageturnaroundime for shortjobst,,
andaverageprocessoactive ratio r,, in Fig. 4. We cansee
from the figure that using schemeBRMS will resultin a
long averageturnarounctime for shortjobsanda low av-
erageprocessornctive ratio andthe resultsare evenworse



scheme p T n; Ng tia tsa tma tia

BRMS 0.20| 0.19| 4 0.57 | 29.25 | 5.37 | 37.86 | 106.56
BRMMS* 0.19| 3 0.45 | 28.81 | 5.26 | 37.21 | 105.38
BRMMS 0.19( 3 0.44 | 28.66 | 5.24 | 37.09 | 104.68
BRMS 0.50| 0.45| 15| 6.11 | 57.28 | 15.99| 73.83 | 184.98
BRMMS* 046 | 7 2.78 | 49.19 | 9.98 | 62.18 | 178.27
BRMMS 047 | 5 2.06 | 44.05 | 8.77 | 55.82 | 159.75
BRMS 0.70| 053 | 30| 14.39| 96.95 | 35.78 | 128.23| 271.12
BRMMS* 055| 13| 6.14 | 81.47 | 18.50| 103.76| 280.47
BRMMS 061 7 358 | 66.23 | 13.96 | 83.19 | 234.05
BRMS 0.90| 056 | 43| 20.17| 120.53| 51.84| 170.61| 356.94
BRMMS* 0.58 | 20| 9.86 | 117.71| 29.07 | 153.45| 391.67
BRMMS 0.68| 10| 551 | 98.51 | 20.80| 124.69| 345.48

Table 2. Some experimental results 2.

(b)

Figure 4. (a) Average turnaround time for
small jobs t,, and (b) Average processor ac-
tive ratio r,.

thanthoseobtainedoy usingaverysimplebuddyallocation
schemeBC. We concludethat, to ensurea high systemand
job performancesimply runningjobsin multiple time slots
shouldbeavoided.

AlthoughBRMMS* performsbetterthanBRMS, it can
only producea worseprocessorctive ratio thanBR. Note
thatin the allocationschemeBR jobsonly runin a single
time slots, which may resultin a low averagenumberof
time slotsin thesystem.This givesanotherclearindication

of theimportanceof reducingtime slotsin the system.

It canbe seenfrom the above tablesand picturesthat
BRMMS is the bestof the five allocationschemeslt con-
sistentlyoutperformsll otherschemesinderall categories.
To improve job andsystemperformancejobsshouldbeal-
lowedto runin multipletime slotssothatfreeresourcesan
be moreefficiently utilised. However, simply runningjobs
in multiple time slotscannotguarante¢he improvementof
performance The minimisationof time slotsin the system
hasto beseriouslyconsidered.

6. Conclusions

Onemajordrawbackof usinggangschedulingor paral-
lel processings the problemof fragmentation.A corven-
tionalwayto alleviatethis problemwasto allow jobsto run
in multiple time slots. However, simply adoptingthis idea
alonemay causeseveralproblems.Thefirst obviousoneis
theincreasedystemschedulingoverhead.Thisis because
simply runningjobs in multiple time slots cangreatly in-
creasethe averagenumberof time slotsin the systemand
thenthe systemtime will be increasedo managea large
numberof time slots. The secondproblemis the unfair
treatmento smalljobs. Long jobswill stayin the system
for relatively a long time andthenhave a betterchanceto
run in multiple time slots. However, the systemresources
are limited andin consequenca newly arrived shortjob
mayonly obtainrelatively avery smallportionof CPUutil-
isation. Anothervery interestingpoint obtainedfrom our
experiments thatsimply runningjobsin multipletimesslots
maynotsolvetheproblemof fragmentationbut onthecon-
trary it may eventuallydegradethe efficiengy of systenre-
sourceutilisation.

We canseefrom our experimentalresultsthat the min-
imisation of time slots in the systemis very important
to ensurea high systemand job performance. We thus



highly recommendour resourceallocation schemeBR-

MMS. This schemeeffectively combinesthe techniques
of job re-packing,runningjobsin multiple time slotsand

minimising time slots in the systemtogetherso that job

turnaroundiimes are greatlyreducedandthe efficiency of

systemresourceutilisationis significantlyenhanced.Be-

causethereis no procesamigrationinvolved whenjob re-

packingis applied,this schemds particularly suitablefor

clusteredparallelcomputingsystems.

It shouldbe notedthat in our experimentwe assumed
that the memoryspaceis unlimited and characteristic®f
jobs are totally unknowvn. In practice,however, the size
of memoryin eachprocessoiis limited. Thusjobs may
have to cometo a waiting queuebefore being executed
andlarge running jobs may have to be swappedwhenthe
systembecomeshusy Along with the rapid development
of high-performanceomputinglibraries,characteristicef
jobsmayno longerbe consideredompletelyunknovn be-
fore beingexecuted.Theseconditionswill beconsideredn
our futureresearch.
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