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Abstract

The Reconfigurable Mesh (RM) attracted criticism for its key assumption
that a message can be broadcast in constant time independent of bus length.
To account for this limit, k-constrained RM model has recently been proposed
where buses of length at most k segments are allowed to be configured at any
step. Straightforward simulations of AT? optimal RM algorithms on this con-
strained model are found to be non-optimal and several AT? optimal algorithms
have already been developed on this new model. In this paper, we prove that if
attaining AT? optimality is a goal of developing algorithms on the k-constrained
RM, then the k-constrained RM does not make any difference to the original
“unconstrained” RM.

1 Introduction

It is well known that inter-processor communications and simultaneous memory ac-
cesses often act as bottlenecks in present-day parallel machines. Bus systems have
been introduced recently to a number of parallel machines to address this problem.
Examples include the Bus Automaton [13], the Reconfigurable Mesh (RM) [10], the
content addressable array processor [16], and the Polymorphic torus [9]. Among them
RM draws much attention because of its simplicity. A bus system is called reconfig-
urable if it can be dynamically changed according to either global or local information.

In the most common unit-time delay model of RM, it is assumed that a message

can be broadcast in constant time along any bus independent of its length. This
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Figure 1: A reconfigurable mesh of size 3 x 4.

assumption attracted criticism and cast a shadow of doubt on the implementation
of RM. Although investigations of bus delays in [6, 7, 8] has confirmed that broad-
cast delay is very small, theoretically it cannot be correctly modeled by a constant
independent of bus length. To account for this limit, Beresford-Smith et al. [3, 2]
have proposed the k-constrained RM where buses of length at most k£ segments are
allowed to be formed at any time. Straightforward simulations of AT? optimal RM
algorithms on this constrained model are found to be non-optimal and several AT?
optimal algorithms have already been developed on this new model.

In this paper we first show that to keep a k-constrained RM of size p x ¢ distinct
from an “unconstrained” RM of same size, k£ must be o(p+¢). We then prove that to
make the k-constrained RM more powerful than the ordinary mesh, &£ must not be a
constant, i.e., k must be a function of p and ¢. Finally we show that if attaining AT?
optimality is a goal of developing algorithms on the k-constrained RM, as has been
discussed by Beresford-Smith et al. in [3, 2], then the k-constrained RM does not
make any difference to the original “unconstrained” RM in considering propagation
delay in the time complexity of algorithms.

Throughout the paper, we use O() to mean “oder exactly’,” O() to mean “order
at most,” () to mean “order at least,” and o() to mean “order less.”

The paper is organized as follows. Section 2 presents various models of reconfig-
urable meshes discussed in this paper. Analysis of relative power of the k-constrained
RM with the ordinary mesh and the “unconstrained” RM is done in Section 3. Sec-

tion 4 concludes the paper.

2 The Reconfigurable Mesh Models

The reconfigurable mesh is primarily a two-dimensional mesh of processors connected
by reconfigurable buses. In this parallel architecture, a processor element is placed

at the grid points as in the ordinary mesh connected computers. Processors of the



RM of size X x Y are denoted by PE;;, 0 <7 < X, 0 < j <Y where processor
PEy, resides in the south-western corner. Each processor is connected to at most
four neighboring processors through fixed bus segments connected to four I/O ports
E & W along dimension x and N & S along dimension y. These fixed bus segments
are building blocks of larger bus components which are formed through switching,
decided entirely on local data, of the internal connectors (see Figure 1) between the
I/O ports of each processor.

Other than the buses and switches the RM of size p x ¢ is similar to the standard
mesh of size p x ¢ and hence it has ©(pq) area in VLSI embedding [14], under the
assumption that processors, switches, and links between adjacent switches occupy
unit area.

One critical factor in the complexity analysis of reconfigurable algorithms is the
time needed to propagate a message over a bus. In the most common unit-time delay
model [15], it is assumed that in any configuration any message can be transmitted
along any bus in constant time, regardless of the bus length. Unfortunately this as-
sumption, based on which a large number of algorithms with constant time complexity
are developed, is theoretically false, as the speed of signals carrying information is
bounded by the speed of light. This partially explains why the reconfigurable meshes
have not gained wide acceptance initially. Recently some VLSI implementations of
reconfigurable meshes have demonstrated that the broadcast delay, though not a con-
stant, is nevertheless relatively small in terms of machine cycles. For example, only
16 machine cycles are required to broadcast on a 10® processor YUPPIE (Yorktown
Ultra Parallel Polymorphic Image Engine) [7, 8]. GCN (Gated-Connection Network)
[6] has even shorter delays by adopting precharged circuits. Broadcast delay can fur-
ther be reduced by using optical fiber for reconfigurable bus system and electrically
controlled directional coupler switches as proposed in [1].

Although the above observations serve the practical purposes, unit-time delay can
never be theoretically sound. In the log-time delay model [11] it is assumed that each
broadcast takes O(log s) time to reach all the processors connected to a bus, where s is
the maximum number of switches in a minimum switch path between two processors
connected on the bus. The log-time delay model accounts for the delay and therefore,
it is more realizable approach in analyzing algorithms’ complexity. But in terms of
the speed of light it is also not a very realistic model.

Very recently a different approach is considered to account for the delay asso-

ciated with propagation. Beresford-Smith et al. [2, 3] have recently proposed the



k-constrained RM model where it is assumed that in any situation any message can
propagate at most k fixed bus segments and thus buses of length at most £ segments
are allowed in any step.

Although Beresford-Smith et al. [2, 3] have not proposed any upper limit on the
value of k, it is obvious that a k-constrained RM of size p X ¢ should have k£ = o(p+q)
for large p+q. Otherwise, the k-constrained RM model will be asymptotically same as
the “unconstrained” (unit-time delay model) RM and therefore, the delay associated

with propagation will remain unaccounted for.

3 Relative Power of the k-Constrained RM

Definition 1 Let My and M, denote two parallel computational models. Model M 1is
considered as powerful as model My if and only if each step in My with N processors
can be simulated in constant time by My with O(N¢) processors where € is a small
constant > 1. Model M, is considered more powerful than model M,y if and only if

M is as powerful as My but My is not as powerful as M;.
Theorem 1 The k-constrained RM is as powerful as the ordinary mesh.

Proof. The k-constrained RM can configure buses of length at most £ units. As the
ordinary mesh uses only unit-lengthed buses, a k-constrained RM of size p x ¢ can
execute any algorithm on an ordinary mesh of size p X ¢ in the same time complexity

without any modification in the algorithm. [ |

Theorem 2 The ordinary mesh is as powerful as the k-constrained RM, where k is

a constant.

Proof. Consider an arbitrary step of an arbitrary algorithm on a k-constrained RM
of size p x ¢. This step configures buses of length at most k£ units. Now an ordinary
mesh of size p X ¢ can simulate each of these buses of length at most &£ units in O(k)

times. As k is a constant, O(k) can be considered as O(1), i.e., constant time. |

Theorem 3 The k-constrained RM, where k is a constant, is not more powerful than

the ordinary mesh.

Proof. A proof of contradiction can easily be arranged using Theorem 2. |
So, the above Theorem 3 clearly proves that in the definition of the k-constrained

RM of size p x ¢, where k = o(p + ¢), k must not be considered as a constant and
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therefore, £ must always be considered as a function of p and ¢g. The same observation

has also been made by Beresford-Smith et al. [2, 3] without any formal proof.
Theorem 4 The RM is as powerful as the k-constrained RM.

Proof. As the RM can configure buses of any length, a RM of size p x ¢ can execute
any algorithm on a k-constrained RM of size p x ¢ in the same time complexity

without any modification in the algorithm. [ |
Theorem 5 The k-constrained RM is not as powerful as the RM.

Proof. Consider solving a problem P of size n in constant time and suppose this
demands an RM of size at least p x q. By Theorem 4, no k-constrained RM of size
less than p x ¢ should be able to solve the same problem P of size n in constant time.

Now, as stated at the end of Section 2, for large p + ¢, £ must be assumed as
o(p + q). Otherwise, the k-constrained RM model will be asymptotically same as
the “unconstrained” RM. So, no k-constrained RM can solve problem P of size n
in constant time as the communication diameter of the minimum allowable sized
k-constrained RM is (p + ¢)/o(p + q) # O(1). [ |

The consequence of Theorem 5 has also been realized by Beresford-Smith et al.
(2, 3] as they have shown, in obvious way, that straightforward simulation of an RM
algorithms on a k-constrained RM loses AT? optimality unless the area of the mesh is
reduced. To address this issue, AT? optimal algorithms have already been developed
on k-constrained RMs for sorting and computing convex hull [2, 3], broadcasting [4],
multiplying sparse matrices [5], and computing the contour of maximal elements of a
set of planar points [12].

By admitting the importance of AT? optimality and then developing a number
of AT? algorithms on the k-constrained RM, Beresford-Smith et al. [2, 3], ironi-
cally, have also revealed a fatal weakness in their model. In the rest of this section
we show that if attaining AT? optimality is a goal of developing algorithms on the
k-constrained RM, difference between this model and the “unconstrained” model dis-
appears.

Let a problem P of size n have I(n) information content [14, pp. 51-54]. If this
problem P is realized in a VLSI circuit with aspect ratio o > 1 then, by Ullman [14,
pp. 57, the AT? lower bound of P will be

Q(al*(n)) . (1)



Now, consider a mesh of size p x ¢ where pg = KI(n), 1 <p < q < I?(n), and K > 1.
We assume that initially each item of I(n) information content is contained in a
distinct processor. In such case I = % has a physical interpretation. It represents
how much of the mesh is filled with data.
Let P be solved, AT? optimally, on a mesh of size p x ¢ in O(T) time. Then
applying eqn. (1) we get
pgT? = %Iz(n) .

This implies
T="—>=—. 2
K )

No matter what type of mesh (ordinary or reconfigurable) we are using and no
matter whether propagation delay is accounted for (log-time delay and k-constrained
RM models) or not (“unconstrained” unit-time delay RM model), to attain AT?
optimality, problem P must be solved in O(g/K) time on a mesh of size p X ¢ where
pg = KI(n) and p < gq.

If the above mesh is an ordinary one, then I must be O(1) as the communication
diameter is ©(g). If the mesh is a k-constrained RM, then I must be O(k) as the
communication diameter is ©(q/k). K can take any possible value if the mesh under
consideration is an “unconstrained” RM as the communication diameter is 1.

So, given a problem of fixed size to be solved in a k-constrained RM of fixed size,
attaining AT? optimality depends on the factor K. If K > k then we must reduce
the size of the mesh so that K = % = k. This means to solve a problem P of size
n with I(n) information content on a k-constrained RM of size p x ¢, the area of the
mesh pg must be O(kI(n)).

Theorem 6 It is possible to solve problems AT? optimally on the k-constrained RM

if the area of the mesh is unconstrained. |

Let a problem P of size n with I(n) information content is solved by algorithm
A, AT? optimally, on a k-constrained RM of size p x ¢, pg = kI(n). Suppose the
same problem P of size n with I(n) information content now needs to be solved
AT? optimally using an “unconstrained” RM of size p X q. By Theorem 4, the same
algorithm A, without making any modification, can be used for this purpose. So,
even with the “unconstrained” model, it is sufficient to construct buses of length at

most k segments.



Theorem 7 If attaining AT? optimality is a goal of developing algorithms on the k-
constrained RM, the difference between this model and the “unconstrained” unit-time
delay RM model, in considering propagation delay in measuring time complexity of

algorithms, s lost. |

4 Conclusion

The Reconfigurable Mesh (RM) attracted criticism for its key assumption that a
message can be broadcast in constant time independent of bus length. To account for
this limit Beresford-Smith et al. [3, 2] have recently proposed the k-constrained RM
model where buses of length at most k£ segments are allowed to be configured at any
step. Straightforward simulations of AT? optimal RM algorithms on this constrained
model are found to be non-optimal and several AT? optimal algorithms have already
been developed on this new model. In this paper we first have shown that to keep
a k-constrained RM of size p x ¢ distinct from an “unconstrained” RM of same size,
k must be o(p + ¢). Then we have proved that to make the k-constrained RM more
powerful than the ordinary mesh, £ must not be a constant, i.e., k¥ must be a function
of p and ¢. Finally we have established that if attaining AT? optimality is a goal of
developing algorithms on the k-constrained RM then the k-constrained RM does not
make any difference to the original “unconstrained” RM in considering propagation

delay in the time complexity of algorithms.
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