
Resource Allocation Schemes
for Gang Scheduling

Bing Bing Zhou1, David Walsh2, and Richard P. Brent3

1 School of Computing and Mathematics, Deakin University,
Geelong, VIC 3217, Australia

2 Department of Computer Science, Australian National University,
Canberra, ACT 0200, Australia

3 Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford OX1 3QD, UK

Abstract. Gang scheduling is currently the most popular scheduling
scheme for parallel processing in a time shared environment. In this
paper we first describe the ideas of job re-packing and workload tree
for efficiently allocating resources to enhance the performance of gang
scheduling. We then present some experimental results obtained by im-
plementing four different resource allocation schemes. These results show
how the ideas, such as re-packing jobs, running jobs in multiple slots and
minimising the average number of time slots in the system, affect system
and job performance when incorporated into the buddy based allocation
scheme for gang scheduling.

1 Introduction

Many job scheduling strategies have been introduced for parallel computing sys-
tems. (See a good survey in [4].) These scheduling strategies can be classified
into either space sharing, or time sharing. Because a time shared environment
is more difficult to establish for parallel processing in a multiple processor sys-
tem, currently most commercial parallel systems only adopt space sharing such
as the LoadLeveler scheduler from IBM for the SP2 [9]. However, one major
drawback of space sharing is the blockade situation, that is, small jobs can eas-
ily be blocked for a long time by large ones. For parallel machines to be truly
utilised as general-purpose high-performance computing servers for various kinds
of applications, time sharing has to be seriously considered.

It is known that coordinated scheduling of parallel jobs across the proces-
sors is a critical factor to achieve efficient parallel execution in a time-shared
environment. Currently the most popular strategy for coordinated scheduling is
explicit coscheduling [7], or gang scheduling [5]. With gang scheduling processes
of the same job will run simultaneously for a certain amount of time which is
called, scheduling slot, or time slot. When a time slot is ended, the processors
will context-switch at the same time to give the service to processes of another
job. All parallel jobs in the system take turns to receive the service in a co-
ordinated manner. If space permits, a number of jobs may be allocated in the

D.G. Feitelson and L. Rudolph (Eds.): JSSPP 2000, LNCS 1911, pp. 74–86, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Resource Allocation Schemes for Gang Scheduling 75

same time slot and run simultaneously on different subsets of processors. Thus
gang scheduling can be considered as a scheduling strategy which combines both
space sharing and time sharing together.

Currently most allocation strategies for gang scheduling only consider pro-
cessor allocation within the same time slot and the allocation in one time slot is
independent of the allocation in other time slots. One major disadvantage in this
kind of resource allocation is the problem of fragmentation. Because resource al-
location is considered independently in different time slots, some freed resources
due to job termination may remain idle for a long time even though they are
able to be re-allocated to existing jobs running in other time slots. One way to
alleviate the problem is to allow jobs to run in multiple time slots whenever pos-
sible [2,10]. When jobs are allowed to run in multiple time slots, the buddy based
allocation scheme will perform much better than many other existing allocation
schemes in terms of average job turnaround time [2].

The buddy based scheme was originally developed for memory allocation [8].
To allocate resources to a job of size p using the buddy based scheme, the
processors in the system are first divided into subsets of size n for n/2 < p ≤ n.
The job is then assigned to one such subset if there is a time slot in which all
processors in the subset are idle. Although the buddy scheme causes the problem
of internal fragmentation, jobs with about the same size tend to be head-to-head
aligned in different time slots. If one job is completed, the freed resources can
easily be reallocated to other jobs running on the same subset of processors.
Therefore, jobs have a better chance to run in multiple time slots.

To alleviate the problem of fragmentation we proposed another scheme,
namely job re-packing [11]. In this scheme we try to rearrange the order of
job execution on the originally allocated processors so that small fragments of
idle resources from different time slots can be combined together to form a larger
and more useful one in a single time slot. When this scheme is incorporated into
the buddy based system, we can set up a workload tree to record the workload
conditions of each subset of processors. With this workload tree we are able to
simplify the search procedure for resource allocation and also to balance the
workload across the processors.

In this paper we shall present some simulation results to show how the ideas,
such as re-packing jobs, running jobs in multiple slots and minimising the number
of time slots in the system, affect system and job performance when incorporated
into the buddy scheduling system. In Section 2 we briefly discuss job re-packing.
The construction of the binary workload tree for the buddy based system is
described in Section 3. Section 4 first discusses four different allocation schemes
to be compared and the workload model used in our experiments and then
presents some simulation results. Finally the conclusions are given in Section 5.

2 Job Re-packing

One way to alleviate the problem of fragmentation is to allow jobs to run in
multiple time slots whenever possible. A simple example is depicted in Fig. 1.



76 B.B. Zhou, D. Walsh, and R.P. Brent

J

J 7

J

P7P6P5

S 1

S 2

S 3 J 5 J 5 J 5 J 6 J 6 J 7 J 7

J 4 J 4

J 1 J 1 J 2 J 2 J 3 J 3 J 3

P1 P2 P3 P4 P5 P6 P7 P8

4

(J’) (J") (J")(J’)(J’) (J’)

J

1 P

P4P3P2P

S 3

S 2

S 1

J 5 J 5 J 5 J 6 J 6 J 7

2 P

1P

J 4

8

1 J 1 J 2 J 2

J 1 J 1 J 2 J 2

J 7 J 7

J 3 J 3

7

3

P

2 J 2

P3 P4 P5 P6

J J

P8

7S 2

S 1

J 1 J 1 J J

5 3J

4 J 4

J 5 J

7

J 5 J 36 J 6 J 3 J

(b)

(a)

(c)

Fig. 1. An example of alleviating the fragmentation problem by (b) running jobs in
multiple time slots and (c) re-packing job to reduce the total number of time slot.

In this example the system has eight processors and originally three slots are
created to handle the execution of nine jobs. Now assume that two jobs J ′ and J ′′

in slot S2 are terminated. If jobs are allowed to run in multiple time slots, jobs J1
and J2 in slot S1 and job J7 on S3 can occupy the freed resources in S2, as shown
in Fig. 1(b). Therefore, most processors can be kept busy all the time. However,
this kind of resource reallocation may not be optimal when job performance is
considered. Assume now there arrives a new job which requires more than one
processor. Because the freed resources have been reallocated to the running jobs,
the fourth time slot has to be created and then the performance of the existing
jobs which run in a single time slot will be degraded.

Now consider job re-packing. We first shift jobs J1 and J2 from slot S1 to
slot S2 and then move jobs J5 and J6 down to slot S1 and job J7 to slot S2. After
this rearrangement or re-packing of jobs, time slot S3 becomes completely empty.
We can then eliminate this empty slot, as shown in Fig. 1(c). It is obvious that
this type of job re-packing can greatly improve the overall system performance.
Note that during the re-packing jobs are only shifted between rows from one
time slot to another. We actually only rearrange the order of job execution on
their originally allocated processors in a scheduling round and there is no process
migration between processors involved. This kind of job rearrangement is par-



Resource Allocation Schemes for Gang Scheduling 77

ticularly suitable for distributed memory machines in which process migration
is expensive.

Since processes of the same job need coordination and they must be placed
in the same time slots all the time during the computation, therefore, we cannot
re-pack jobs in an arbitrary way. A shift is said to be legal if all processes of
the same job are shifted to the same slot at the same time. In job re-packing we
always utilise this kind of legal shift to rearrange jobs between time slots so that
small fragments of available processors in different time slots can be combined
into a larger and more useful one. This kind of job re-packing can effectively be
done based on the following two simple properties [11].

Property 1. Assume that processors are logically organised as a one-dimensional
linear array. Any two adjacent fragments of available processors can be grouped
together in a single time slot.

Property 2. Assume that processors are logically organised as a one-dimensional
linear array. If every processor has an idle fragment, jobs in the system can be
re-packed such that all the idle fragments will be combined together in a single
time slot which can then be eliminated.

Note that adopting job re-packing may increase the scheduling overhead in
a clustered computing system because messages notifying the changes in the
global scheduling matrix have to be broadcast to processors so that the local
scheduling tables on each processor can be modified accordingly. However, there
is no need to frequently re-pack jobs between time slots. The re-packing is applied
only when the working condition is changed, e.g., when a job is terminated, or
when a new job arrives. Thus the extra system cost introduced by the re-packing
may not be high. In the next section we shall see that, when job re-packing is
incorporated in the buddy based system, we can set up a workload tree. With this
workload tree the procedure for searching available resources can be simplified
and then the overall system overhead for resource allocation is actually reduced.

3 Workload Tree

Based on job re-packing we can set up a workload tree (WLT) for the buddy
scheduling system, as depicted in Fig. 2, to balance the workload across the
processors and also to simplify the search procedure for resource allocation.

The workload tree has logN + 1 levels where N is the number of processors
in the system. Each node in the tree is associated with a particular subset of
processors. The node at the top level is associated with all N processors. The
N processors are divided into two subsets of equal size and each subset is then
associated with a child node of the root. The division and association continues
until the bottom level is reached. Each node in the tree is assigned an integer
value. At the bottom level the value assigned to each leaf node is equal to the
number of idle time slots on the associated processor. For example, the node



78 B.B. Zhou, D. Walsh, and R.P. Brent

0 3 2 3

0 5

0

0 0 1 2

WLT

1 1 1 2

S 1

S 2

S 3 J 5 J 5 J 6J 6J 5

J 3 J 3 J 4 J 4J 4J 3 J 3

J 1J 1 J 2 J 2

P2 P3 P4 P5 P6 P7 P8P1

Fig. 2. The binary workload tree (WLT) for the buddy based allocation system.

corresponding to processor P1 is given a value 0 because there is no idle slot on
that processor, while the value assigned to the last node is equal to 2 denoting
there are currently two idle slots on processor P8. For a non-leaf node the value
will be equal to the sum of the values of its two children when both values are
nonzero. Otherwise, it is set to zero denoting the associated subset of processors
will not be available for new arrivals.

For the conventional allocation method, adding this workload tree may not
be able to assist the decision making for resource allocation. This is because the
information contained in the tree does not tell which slot is idle on a processor,
but processes of the same job have to be allocated in the same time slot. With job
re-packing, however, we know that on a one-dimensional linear array any two
adjacent fragments of available processors can be grouped together to form a
larger one in a single time slot according to Property 1 presented in the previous
section. To search for a suitable subset of available processors, therefore, we only
need to check the values at a proper level. Consider the situation depicted in
Fig. 2 and assume that a new job of size 4 arrives. In this case we need only to
check the two nodes at the second level. Since the value of the second node at that
level is nonzero (equal to 5), the new job can then be placed on the associated
subset of processors, that is, the last four processors. To allocate resources we
may first re-pack job J6 into time slot S1 and then place the new job in time
slot S3. Since the workload conditions on these processors are changed after the
allocation, the values of the associated nodes need to be updated accordingly.

There are many other advantages in using this workload tree. To ensure
a high system and job performance it is very important to balance workloads
across the processors. Using the workload tree it will become much easier for
us to handle the problem of load balancing. Because the value of each node



Resource Allocation Schemes for Gang Scheduling 79

reflects the information about the current workload condition on the associated
processor subset, the system can easily choose a subset of less active processors
for an incoming job by comparing the node values at a proper level.

To enhance the efficiency of resource utilisation jobs should be allowed to run
in multiple time slots if there are free resources available. Although the idea of
running jobs in multiple time slots was originally proposed in [2,10], there were
no methods given on how to effectively determine whether an existing job on
a subset of processors can run in multiple time slots. Using the workload tree
this procedure becomes simple. In Fig. 2, for example, the rightmost node at the
third level of the workload tree is nonzero and job J2 is currently running within
the associated subset of processors. It can then be allocated an additional time
slot (S3 in this case) and run in multiple time slots.

To enhance the system and job performance it is also important to minimise
the number of time slots in the system. (See our experimental results presented
in the next section.) Since the root of the workload tree is associated with all
the processors, we are able to know quickly when a time slot can be deleted by
simply checking the node value. If it is nonzero, we immediately know that there
is at least one idle slot on each processor. According to Property 2 presented in
the previous section these idle fragments can be combined together in a single
time slot which can then be eliminated. Assume that job J1 in Fig. 2 is termi-
nated. The values of the leaf nodes associated with processors P1 and P2 become
nonzero. This will cause the value of their parent node to become nonzero. The
information about the change of workload condition is continuously propagated
upward and then the root value will become nonzero. It is easy to see in this par-
ticular example that, after job J2 is legally shifted to time slot S3, time slot S1
will become completely empty and can then be deleted.

4 Experiments

In this section we present some experimental results to show how the techniques
of re-packing jobs, running jobs in multiple slots and minimising the average
number of time slots in the system, affect system and job performance when
incorporated into the buddy based allocation system for gang scheduling.

4.1 Allocation Schemes

Four different resource allocation schemes are evaluated in the experiment. The
first one is just the conventional buddy (BC) system in which the workload
balancing is not seriously considered and each job only runs in a single time
slot. The second scheme (BR) utilises the workload tree to balance the workload
across the processors and re-packs jobs when necessary to reduce the average
number of time slots in the system, but it does not consider to run jobs in
multiple time slots. The third allocation scheme (BRMS) is a modified version
of the second one, in which jobs are allowed to run in multiple time slots whenever
possible. When a job is given an extra time slot in this scheduling scheme, it



80 B.B. Zhou, D. Walsh, and R.P. Brent

will keep running in multiple time slots to completion and never relinquish the
extra resources gained during the computation. The fourth allocation scheme
(BRMMS) is designed to consider the minimisation of the average number of
time slots in the system while allowing jobs to run in multiple slots. In this
scheme jobs running in multiple time slots may have to relinquish the additional
resources gained during the computation if a new arrival cannot fit into the
existing time slots, or if a time slot in the system can be deleted. Therefore, we
can expect that the average number of time slots in the system will never be
greater than the number created by using the second scheduling scheme BR.

4.2 The Workload Model

Experimental results show that the choice of workload alone does not signif-
icantly affect the relative performance of different resource management algo-
rithms [6]. To compare the performance of the above four different resource
allocation schemes, we adopted one workload model proposed in [1]. Both job
runtimes and sizes (the number of processors required) in this model are dis-
tributed uniformly in log space (or uniform-log distributed), while the interar-
rival times are exponentially distributed. This model was constructed based on
observations from the Intel Paragon at the San Diego Supercomputer Center
and the IBM SP2 at the Cornell Theory Center and has been used by many
researchers to evaluate their parallel job scheduling algorithms.

Since the model was originally built to evaluate batch scheduling policies, we
made a few minor modifications in our simulation for gang scheduling. In many
real systems jobs are classified into two classes, that is, interactive and batch jobs.
A batch job is one which tends to run much longer and often requires a larger
number of processors than interactive ones. Usually batch queues are enabled for
execution only during the night. In our experiments we only consider interactive
jobs. Job runtimes will have a reasonably wide distribution, with many short
jobs but a few relatively large ones and they are rounded to the number of time
slots within a range between 1 and 120. Assuming the length of a time slot is
five second, the longest job will then be 10 minutes and the average job length
is about two minutes.

4.3 Results

We assume that there are 128 processors in the system. During the simulation
we collect the following statistics:

– average processor active ratio ra: the average number of time slots in which
a processor is active divided by the overall system computational time in
time slots. If the resource allocation scheme is efficient, the obtained result
should be close to the estimated average system workload ρ which is defined
as ρ = λp̄t̄/P where λ is job arrival rate, t̄ and p̄ are the average job length
and size and P is the total number of processors in the system.



Resource Allocation Schemes for Gang Scheduling 81

Table 1. Some experimental results obtained in the first experiment.

scheme ρ ra nl na tta tsa tma tla

BC 0.20 0.19 3 1.16 31.10 5.67 40.52 112.45
BR 0.19 3 0.45 30.01 5.52 39.29 108.18
BRMS 0.19 4 0.57 29.25 5.37 37.86 106.56
BRMMS 0.19 3 0.44 28.66 5.24 37.09 104.68

BC 0.50 0.46 6 2.84 70.00 14.04 89.27 246.08
BR 0.46 5 2.27 58.65 11.68 75.23 206.45
BRMS 0.45 15 6.11 57.28 15.99 73.83 184.98
BRMMS 0.47 5 2.06 44.05 8.77 55.82 159.75

BC 0.70 0.55 10 5.23 129.65 25.03 166.21 456.72
BR 0.58 8 4.09 102.21 20.27 130.17 359.00
BRMS 0.53 30 14.39 96.95 35.78 128.23 271.12
BRMMS 0.61 7 3.58 66.23 13.96 83.19 234.05

BC 0.90 0.58 14 7.62 189.60 35.91 246.73 670.42
BR 0.65 11 6.00 150.18 29.50 195.49 526.64
BRMS 0.56 43 20.17 120.53 51.84 170.61 356.94
BRMMS 0.68 10 5.51 98.51 20.80 124.69 345.48

– average number of time slots na: If ti is the total time when there are i time
slots in the system, the average number of time slots in the system during the
operation can be defined as na =

∑nl

i=0 iti/
∑nl

i=0 ti where nl is the largest
number of time slots encountered in the system during the computation.

– average turnaround time ta: The turnaround time is the time between the
arrival and completion of a job. In the experiment we measured the average
turnaround time tta for all 200 jobs. We also divided the jobs into three
classes, that is, small (between 1 and 12 time slots), medium (between 13
and 60) and large (greater than 60) and measured the average turnaround
time for these classes, tsa, tma and tla, respectively.

We conducted two experiments. In our first experiment we measured tran-
sient behaviors of each system. Each time only a small set of 200 jobs were used to
evaluate the performance of each scheduling scheme. For each estimated system
workload, however, 20 different sets of jobs were generated using the workload
model and the final results are the average of the 20 runs for each scheduling
scheme.

Some experimental results are given in Table 1. First consider that jobs only
run in a single time slot. When job re-packing is applied to reduce the number of
time slots in the system and the workload tree is used to balance the workload
across the processors, we expect that both job performance and system resource
utilisation should be improved. Our experimental results confirm this prediction.



82 B.B. Zhou, D. Walsh, and R.P. Brent

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

BC:

BR-MMS:

BR:

BR-MS:

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������������������������������������������������������������������

p = 0.20 p = 0.50 p = 0.70 p = 0.90

150.0

30.0

60.0

90.0

120.0

180.0

Fig. 3. Average turnaround time for all jobs tta.

It can be seen from the table that scheme BR consistently outperforms BC
under all categories although the improvement is not significant for the estimated
system workload ρ = 0.20.

When jobs are allowed to run in multiple time slots, situations become a bit
more complicated. We can see that both nl and na are dramatically increased
when the third scheduling scheme BRMS is adopted. In order to give a better
view for the comparison we show three pictures for average turnaround time for
all jobs tta, average turnaround time for short jobs tsa and average processor
active ratio ra, respectively.

The average turnaround time for all jobs is depicted in Fig. 3. It is seen
that schemes BRMS and BRMMS which allow jobs to run in multiple slots can
reduce tta. This is understandable since a job running in multiple slots may have
a shorter turnaround time. An interesting point, however, is that applying BRMS
will result in a much longer average turnaround time for short jobs as shown in
Fig. 4. From the user’s perspective it is short jobs that need to be completed more
quickly. The main reason why BRMS can cause a longer average turnaround time
for short jobs may be as follows: If jobs are allowed to run in multiple slots and
do not relinquish additional slots gained during the computation, the number
of time slots in the system may become very large most of the time. Note that
long jobs will stay in the system longer and then have a better chance to run in
multiple time slots. However, the system resources are limited. When a short job
arrives, it can only obtain a very small portion of CPU utilisation if allocated
only in a single time slot.

It seems that we can increase the average processor active ratio if jobs are
allowed to run in multiple time slots. However, another interesting point is that
using the allocation scheme BRMS will eventually decrease the efficiency in



Resource Allocation Schemes for Gang Scheduling 83

30.0

40.0

50.0

10.0

20.0

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

BC:

BR-MMS:

BR:

BR-MS:

��������������������������������������������������������������������
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���

���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

p = 0.20 p = 0.50 p = 0.70 p = 0.90

Fig. 4. Average turnaround time for small jobs tsa.

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

BC:

BR-MMS:

BR:

BR-MS:

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

.10

.20

.30

.40

.50

.60

.70

p = 0.20 p = 0.50 p = 0.70 p = 0.90

Fig. 5. Average processor active ratio ra.

resource utilisation. As shown in Fig. 5 the average processor active ratio can
even be lower than that obtained by using the conventional buddy scheduling
scheme BC. The main reason may be that, when a job running in multiple slots
finishes, the processors on which it was running will be idle in those time slots
until a change in workload condition occurs such as a new job arriving to fill the
freed resources, or some slots becoming totally empty which can be eliminated.

In our second experiment we measured the steady state performance of each
system by increasing the number of jobs in each job set to 20,000. Some ex-
perimental results are depicted in Table 2. The results are obtained by taking
the average of 5 runs using different job sets. It can be seen that the allocation



84 B.B. Zhou, D. Walsh, and R.P. Brent

Table 2. Some experimental results obtained in the second experiment.

scheme ρ ra nl na tta tsa tma tla

BC 0.20 0.20 6 1.21 32.15 5.70 40.62 114.25
BR 0.20 6 0.46 30.97 5.52 39.16 109.77
BRMS 0.20 7 1.20 30.99 5.51 39.11 110.15
BRMMS 0.20 6 0.45 29.58 5.21 37.20 105.60

BC 0.50 0.49 18 3.64 91.09 17.33 115.54 317.90
BR 0.49 13 2.60 68.32 12.95 86.93 237.94
BRMS 0.49 17 3.78 78.78 15.64 99.75 272.78
BRMMS 0.49 12 2.30 48.93 9.47 61.25 172.04

BC 0.70 0.68 79 35.28 874.81 166.87 1097.78 3077.22
BR 0.69 26 7.21 177.75 34.23 224.62 620.55
BRMS 0.69 64 23.37 441.42 91.33 551.02 1531.94
BRMMS 0.69 23 5.39 94.78 20.10 118.61 326.51

BC 0.90 0.69 645 346.33 8713.93 1603.65 10955.74 30834.47
BR 0.85 123 62.48 1151.24 296.40 1952.93 5438.99
BRMS 0.82 357 202.71 3836.59 800.92 4830.35 13191.87
BRMMS 0.86 90 39.94 716.46 151.14 887.45 2490.94

scheme BR performs much better than BRMS. This conforms that simply run-
ning jobs in multiple time slots can eventually decrease the efficiency of system
resource utilisation and degrade the overall performance of jobs.

It can be seen from the above tables and pictures that BRMMS is the best of
the four allocation schemes. It consistently outperforms all other three schemes
under all categories. To improve job and system performance, jobs should be
allowed to run in multiple time slots so that free resources can be more efficiently
utilised. However, simply running jobs in multiple time slots cannot guarantee
the improvement of performance. The minimisation of average number of time
slots in the system has to be seriously considered.

5 Conclusions

One major drawback of using gang scheduling for parallel processing is the prob-
lem of fragmentation. A conventional way to alleviate this problem was to allow
jobs to run in multiple time slots. However, simply adopting this idea alone may
cause several problems. The first obvious one is the increased system scheduling
overhead. This is because simply running jobs in multiple time slots can greatly
increase the average number of time slots in the system and then the system time
will be increased to manage a large number of time slots. The second problem is
the unfair treatment to small jobs. Long jobs will stay in the system for relatively



Resource Allocation Schemes for Gang Scheduling 85

a long time and then have a better chance to run in multiple time slots. How-
ever, the system resources are limited and in consequence a newly arrived short
job may only obtain relatively a very small portion of CPU utilisation. Another
very interesting point obtained from our experiment is that simply running jobs
in multiple time slots may not solve the problem of fragmentation, but on the
contrary it may eventually degrade the efficiency of system resource utilisation.

With job re-packing we try to rearrange the order of job execution on their
originally allocated processors to combine small fragments of available proces-
sors into a larger and more useful one. Based on job re-packing we can set up
a workload tree to greatly improve the performance for the buddy scheduling
system. With the workload tree we are able to simplify the search procedure for
resource allocation, to balance the workload across the processors and to quickly
detect when a job can run in multiple time slots and when the number of time
slots in the system can be reduced. More importantly we are able to properly
combine the ideas of job re-packing, running jobs in multiple time slots and
minimising the average number of time slots in the system together to reduce
job turnaround times and to enhance the efficiency of system resource utilisa-
tion. Our experimental results show that this combined allocation scheme, i.e.,
our fourth allocation scheme BRMMS can indeed improve the system and job
performance significantly. Because there is no process migration involved, this
scheme is particularly suitable for clustered parallel computing systems.

It should be noted that in our experiment we assumed that the memory space
is unlimited and characteristics of jobs are totally unknown. In practice, however,
the size of memory in each processor is limited. Thus jobs may have to come to
a waiting queue before being executed and large running jobs may have to be
swapped when the system becomes busy. Along with the rapid development of
high-performance computing libraries characteristics of jobs may no longer be
considered completely unknown before being executed. These conditions will be
considered in our future research.

References

1. A. B. Downey, A parallel workload model and its implications for processor alloca-
tion, Proceedings of 6th International Symposium on High Performance Distributed
Computing, Aug 1997.

2. D. G. Feitelson, Packing schemes for gang scheduling, In Job Scheduling Strate-
gies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Lecture Notes
Computer Science, Vol. 1162, Springer-Verlag, 1996, pp.89-110.

3. D. G. Feitelson and L. Rudolph, Distributed hierarchical control for parallel pro-
cessing, Computer, 23(5), May 1990, pp.65-77.

4. D. G. Feitelson and L. Rudolph, Job scheduling for parallel supercomputers, in
Encyclopedia of Computer Science and Technology, Vol. 38, Marcel Dekker, Inc,
New York, 1998.

5. D. G. Feitelson and L. Rudolph, Gang scheduling performance benefits for fine-
grained synchronisation, Journal of Parallel and Distributed Computing, 16(4),
Dec. 1992, pp.306-318.



86 B.B. Zhou, D. Walsh, and R.P. Brent

6. V. Lo, J. Mache and K. Windisch, A comparative study of real workload traces and
synthetic workload models for parallel job scheduling, In Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph (Eds.), Lecture Notes
Computer Science, Vol. 1459, Springer-Verlag, 1998, pp.25-46.

7. J. K. Ousterhout, Scheduling techniques for concurrent systems, Proceedings of
Third International Conference on Distributed Computing Systems, May 1982,
pp.20-30.

8. J. L. Peterson and T. A. Norman, Buddy systems, Comm. ACM, 20(6), June 1977,
pp.421-431.

9. J. Skovira, W. Chan, H. Zhou and D. Lifka, The EASY - LoadLeveler API project,
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(Eds.), Lecture Notes Computer Science, Vol. 1162, Springer-Verlag, 1996.

10. K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi and M. Tukamoto, Time sharing
systems that use a partitioning algorithm on mesh-connected parallel computers,
Proceedings of the Ninth International Conference on Distributed Computing Sys-
tems, 1996, pp.268-275.

11. B. B. Zhou, R. P. Brent, C. W. Johnson and D. Walsh, Job re-packing for en-
hancing the performance of gang scheduling, Proceedings of 5th Workshop on Job
Scheduling Strategies for Parallel Processing, San Juan, April 1999, pp.129-143.


	Introduction 
	Job Re-packing 
	Workload Tree 
	Experiments 
	Allocation Schemes 
	The Workload Model 
	Results 

	Conclusions 

