
A Fast Algorithm for Testing
Irreducibility of Trinomials mod 2

(preliminary report)1

Richard P. Brent
Oxford University Computing Laboratory

Oxford OX1 3QD, UK
rpb@comlab.ox.ac.uk

Samuli Larvala
Helsinki University of Technology

Helsinki, Finland
slarvala@cc.hut.fi

Paul Zimmermann
INRIA Lorraine

615 rue du Jardin Botanique
BP 101, F-54600 Villers-les-Nancy

France
Paul.Zimmermann@loria.fr

Programming Research Group
Report PRG–TR–13–00

30 December 2000

Abstract

The standard algorithm for testing reducibility of a trinomial of prime degree r over
GF(2) requires 2r+O(1) bits of memory and Θ(r2) bit-operations. We describe an algorithm
which requires only 3r/2 + O(1) bits of memory and significantly fewer bit-operations than
the standard algorithm. Using the algorithm, we have found 18 new irreducible trinomials
of degree r in the range 100151 ≤ r ≤ 700057.

If r is a Mersenne exponent (i.e. 2r−1 is a Mersenne prime), then an irreducible trinomial
is primitive. Primitive trinomials are of interest because they can be used to give pseudo-
random number generators with period at least 2r − 1. We give examples of primitive
trinomials for r = 756839, 859433, and 3021377. The three results for r = 756839 are new.
The results for r = 859433 extend and correct some computations of Kumada et al. [Math.
Comp. 69 (2000), 811–814]. The two results for r = 3021377 are primitive trinomials of the
highest known degree.

1Copyright c©2000, the authors. rpb199tr typeset using LATEX

1



1 Introduction

Throughout this report all polynomials are assumed to be over the finite field GF(2). For the
sake of brevity, we shall not repeat this below.

We say that a polynomial P (x) is reducible if it has nontrivial factors; otherwise it is
irreducible. We say that a polynomial P (x) of degree r > 1 is primitive if P (x) is irreducible
and xj 6= 1 mod P (x) for 0 < j < 2r − 1. If P (x) is primitive, then x is a generator for the
multiplicative group of the field Z2[x]/(P (x)), so we have a useful representation of GF(2r). See
Lidl and Niederreiter [16] or Menezes et al. [20, §§2.6.3,4.5,6.2] for background information.

There is an interest in discovering primitive trinomials of high degree r because of their
connection with fast, high-quality pseudorandom number generators of period (at least) 2r − 1
and good statistical properties in all dimensions D < r, see [1, 3, 4, 5, 9, 11, 13, 17, 18, 21, 26].

To test if an irreducible polynomial of degree r is primitive, we need to know the factorization
of 2r − 1. Zierler and Brillhart [28, 29] considered r ≤ 1000 for which the factorization of 2r − 1
was known. We say that r is a Mersenne exponent if 2r−1 is a (Mersenne) prime. In this case the
factorization of 2r−1 is trivial and an irreducible polynomial of degree r is necessarily primitive.
Because several large Mersenne exponents are known [7], there is a possibility of finding primitive
trinomials of high degree if we have an efficient algorithm for testing reducibility.

Zierler [30] gave all primitive trinomials of Mersenne exponent r ≤ 11213. Kurita and
Matsumoto [15] extended this to r ≤ 86243, and Heringa et al. [9] to r ≤ 216091.

Kumada et al. [14] did not consider the next Mersenne exponent (r = 756839), but conducted
an exhaustive search for r = 859433 and found one primitive trinomial.

In this report we describe a new algorithm for testing reducibility of trinomials of prime
degree, and give some results obtained by applying the algorithm to the Mersenne exponents
r ≤ 3021377. In particular, we have verified the published results for r ≤ 216091, found three
new primitive trinomials for r = 756839, found a primitive trinomial for r = 859433 which was
missed by Kumada et al. [14], and found two new primitive trinomials for r = 3021377. At the
time of writing (December 2000) the search for r = 3021377 is incomplete.

Sieving is discussed in §2 and §5. In §3 we describe the standard algorithm for testing
reducibility, and in §4 we describe our new algorithm. Some performance figures are given in §6.
The computational results are summarised in §7 and Tables 5–4.

2 Sieving

Testing a polynomial P (x) for irreducibility is analogous to testing a number N for primality.
We can save time by first checking if P (x) is divisible by an irreducible polynomial of low degree,
in the same way that we can save time by checking if N is divisible by a small prime.

The following theorem characterises the irreducible polynomials of given degree. The proof
is well-known, see for example [16].

Theorem 1 Let Φd,1, Φd,2, . . . be the irreducible polynomials of degree d. Then, for n ≥ 1,∏
d|n

∏
j

Φd,j(x) = x2n
+ x .

Example. Taking n = 3 in Theorem 1 we have

x8 + x = x8 − x = x(1 + x)(1 + x + x3)(1 + x2 + x3) ,

so the irreducible polynomials of degree one are {x, 1 + x}, and those of degree three are
Φ3,1(x) = 1 + x + x3 and its reciprocal Φ3,2(x) = x3Φ3,1(1/x) = 1 + x2 + x3.

2



Corollary 1 Let Jn be the number of irreducible polynomials of degree n. Then∑
d|n

dJd = 2n ,

and by Möbius inversion

Jn =
1
n

∑
d|n

2dµ(n/d) .

In particular, Jn ∼ 2n/n and, if n is prime, then Jn = (2n − 2)/n.

Remark. The number of primitive polynomials of degree n is φ(2n − 1)/n, where φ denotes
Euler’s phi function: see [20, Fact 2.230].

From Theorem 1, we can check if P (x) is divisible by some irreducible polynomial Φd,j(x)
of degree d|n by computing GCD(P (x), x2n

+ x). By analogy with the process of sieving out
small integer factors, this process will be called sieving, although the sieve is performed by a
GCD computation2. We are interested in the case that P (x) = xr + xs + 1 is a trinomial, and
we always assume that r > s > 0.

Consider the computation of G = GCD(xr + xs + 1, x2n
+ x). If k = 2n − 1, then

G = GCD(xr + xs + 1, xk + 1). In practice, we distinguish two cases:

1. If r ≥ k, we can use the fact that G = GCD(xr′
+ xs′

+ 1, xk + 1) where r′ = r mod k,
s′ = s mod k. Thus, for small k the computation of G is trivial (independent of r). We
could precompute the possible G and store in a lookup table of size Ω(k2), but our current
program does not do this because the time taken for this case is negligible.

2. If k > r the standard Euclidean algorithm would take time O(k2) and space Ω(k). We
save time and space by first computing x2n

mod P (x) by squaring and reducing n times.
Then we apply the Euclidean algorithm to compute G = GCD(x2n

mod P (x) + x, P (x)).
The overall time is O(r(n + r)) and space Ω(r) (for details see §§3–4).

Sieving is performed with n = 2, 3, 4, . . . until one of the following holds:

1. We find a nontrivial GCD, in which case P (x) is reducible.

2. The estimated time Ts(n) which would be required to perform another sieving step satisfies
nTs(n) ≥ Tf (r), where Tf (r) is the (estimated) time required for the full reducibility test
of §4. The rationale for this criterion is given in §5.

3. n ≥ br/2c, in which case P (x) is irreducible (in practice, it is unlikely that we sieve this
far).

3 The Standard Algorithm

The standard algorithm for testing reducibility of a polynomial P (x) uses the following Theorem,
which is an easy consequence of Theorem 1. In practice we first sieve out “small” factors of
P (x) as described in §2, but this is not essential and is only done for reasons of efficiency (for
details see §5).

2In fact, sieving in this manner corresponds more closely to sieving out integer factors with n binary digits
than to sieving out multiples of the n-th prime.

3



Theorem 2 Let P (x) be a polynomial of degree r > 1. Then P (x) is irreducible iff

x2r
= x mod P (x)

and, for all d, 1 ≤ d < r, if d|r then

GCD(x2d
+ x, P (x)) = 1 .

Remark. The second condition in Theorem 2 is necessary, as the example

P (x) = (1 + x)(1 + x + x2)(1 + x + x3)

of degree 6 shows. However, it is trivial if the degree r is prime, which is the case in our
applications (see §7). Hence, from now on we avoid complications by assuming that r is prime.
In the case of interest to us, Theorem 2 reduces to:

Corollary 2 If r > s > 0, where r is prime, then P (x) = xr + xs + 1 is irreducible iff

x2r
= x mod P (x) .

To implement Corollary 2 we have the following algorithm:

A(x)← x;
for j ← 1 to r do

A(x)← A(x)2 mod P (x);
if A(x) = x then return “irreducible”

else return “reducible”.

Full reducibility test

The inner loop, which is executed r times, consists of a squaring step A(x) ← A(x)2, and
a reduction step A(x) ← A(x) mod P (x). Each of these steps can be implemented in Θ(r)
bit-operations (as explained below) and Θ(r) space.

To consider the implementation in more detail, we assume that the polynomial
A(x) = a0 + a1x + · · ·+ adx

d is represented as a bit-string3 a0a1 . . . ad. Because we are working
over GF(2), the cross terms in A(x)2 vanish and we have simply

A(x)2 = a0 + a1x
2 + · · ·+ adx

2d ,

which is represented as a bit-string (with optional zero padding on the right):

a00a10a20 . . . ad−10ad0 .

In the following, we often describe algorithm in terms of bit-operations for the sake of clarity,
but an efficient implementation should use word-operations so that several bit-operations can be
performed with one machine instruction. We omit the details of conversion from bit-operations
to word-operations.

3.1 Squaring

On a byte-addressable machine, the squaring operation can be performed eight bits at a time
using a table lookup. We precompute a table of 256 16-bit integers representing the “squares”
of the 256 possible 8-bit sequences (where the integers encode the coefficients of polynomials
over GF(2)). Thus, squaring a polynomial of degree r−1 can be done with dr/8e table lookups.

We have found that, on some machines, the table lookup method is not the fastest, even if the
table size is optimised to give the best results. An alternative on a machine with wordlength w
bits is to perform squaring by a sequence of d2r/we log2(w/2) iterations of the logical operations
“shift right”, “or” (written “∨”), and “and” (written “∧”).

3We identify the field element 0 with the bit 0 and the Boolean value “false”, and the field element 1 with the
bit 1 and the Boolean value “true”.

4



We illustrate the idea with a small example (r = 4, w = 8). The masks M1 = 11001100 and
M0 = 10101010 are precomputed, and “?” means “don’t care”.

initial data a0a1a2a3

pad on right → a0a1a2a3 0 0 0 0

shift right 2 → 0 0 a0a1a2a3 0 0

∨ last 2 words → a0a1 ? ? a2a3 ? ?

}
iteration 1

∧ with mask M1 → a0a1 0 0 a2a3 0 0

shift right 1 → 0 a0a1 0 0 a2a3 0

∨ last 2 words → a0 ? a1 ? a2 ? a3 ?

}
iteration 2

∧ with mask M0 → a0 0 a1 0 a2 0 a3 0

Squaring via logical operations

3.2 Reduction mod P (x)

Reduction of A(x) = a0 + a1x + · · ·+ adx
d mod P (x) = xr + xs + 1 is performed by a sequence

of “exclusive or” operations (written “⊕”). We describe these as single-bit operations, but for
efficiency they are implemented as w-bit-operations using word-length exclusive or operations
(after appropriate shifting and masking).

While d = deg(A) ≥ r, we can replace

A(x) by A(x)− (xd + xd+s−r + xd−r)

since
xd + xd+s−r + xd−r = 0 mod P (x) .

In terms of bit-operations:

for d← 2r − 2 downto r do
begin
ad−r ← ad−r ⊕ ad;
ad+s−r ← ad+s−r ⊕ ad;
ad ← 0; {This could be implicit}
end.

Standard reduction algorithm

Overall, the reduction takes 2r + O(1) exclusive or bit-operations, or 2r/w + O(1) exclusive
or word-operations.

Although complete descriptions are not always given in the original papers, previous com-
putations involving the computation of irreducible/primitive trinomials (Kumada et al. [14],
Heringa et al. [9], . . .) seem to have used some variant of sieving combined with squaring and
reduction, as described above. This is why we call it the standard algorithm. In §4 we describe an
improvement which, although mathematically trivial, gives a significant reduction in computing
time.

5



4 The New Algorithm

The standard algorithm is inefficient because many of the bit-operations are performed on bits
which are necessarily zero. Our new algorithm avoids this. Before giving the algorithm in the
general case, we illustrate with the example r = 7, s = 3.

We initialise A(x) ← x, i.e. a0 . . . a6 ← 0100000. The “squaring” operation is implicit: we
keep the bit-vector 0100000 and regard this as representing

a0a2a4a6a8a10a12

(the odd-numbered coefficients a1, a3, . . . in the square are necessarily zero, so need not be
computed). We now reduce mod P (x) = 1 + x3 + x7. Observe that x12 = x5 + x8 mod P (x), so
we replace a8 by a8 ⊕ a12. We should also replace a5 by a5 ⊕ a12, but a5 is currently zero, so
we can simply regard the rightmost bit as representing a5 rather than a12. Thus, after the first
step of the reduction we have a bit-vector representing

a0a2a4a6a8a10a5 ,

where the only bits which could have changed, because they depend on the result of an ⊕
operation, are underlined.

Proceeding in a similar fashion, we observe that x10 = x3 + x6 mod P (x), but a3 = 0 , so
we replace a6 by a6 ⊕ a10 and implicitly regard the second bit from the right as representing a3

rather than a10. Thus, after the reduction we have a bit-vector representing

a0a2a4a6a8a3a5 .

One more step of reduction gives a bit-vector representing

a0a2a4a6a1a3a5 .

Observe that this bit-vector contains the coefficients of A(x)2 mod P (x), but they are in a
shuffled order. We need to apply an interleave permutation to get back to the natural order

a0a1a2a3a4a5a6 .

Interleaving is closely related to the “squaring” operation described in §3.1. In fact, if we
square a0a2a4a6 → a00a20a40a60, square and rightshift a1a3a50 → 0a10a30a500, and apply
a bitwise ∨ operation, we obtain a0a1a2a3a4a5a60. Thus, interleaving can be implemented by
squaring as in §3.1 and a few additional operations (shifting and ∨-ing). Although two squarings
are necessary, the bit-vectors are only half as long as in §3.1, so the work involved is almost the
same.

We give a complete example with r = 7, s = 3. The k-th operation of (implicitly) squaring
and reducing mod P (x) is denoted by Sk, and the k-th operation of interleaving by Ik. If we
start with A(x) = x and perform operations S1, I1, S2, I2, . . . , S7, I7 we obtain the following:

S1 → 0100000, I1 → 0010000 representing x2

S2 → 0010000, I2 → 0000100 representing x4

S3 → 0010100, I3 → 0100100 representing x + x4

S4 → 0110100, I4 → 0110100 representing x + x2 + x4

S5 → 0100100, I5 → 0110000 representing x + x2

S6 → 0110000, I6 → 0010100 representing x2 + x4

S7 → 0000100, I7 → 0100000 representing x

6



Since the final result is x, we can deduce from Corollary 2 that P (x) = 1+x3 +x7 is irreducible.
We now describe the new algorithm formally, in terms of bit-operations. It is necessary

to assume that both r and s are odd. However, this is not a serious restriction. We already
assumed that r is prime (and hence odd if r > 2). If s is even, we simply replace s by r − s,
i.e. consider the reciprocal trinomial xr + xr−s + 1 instead of xr + xs + 1.

To avoid confusion, we denote the working bit-array by b0b1 · · · br−1. This bit-array is used to
represent the coefficients a0a1 · · · ar−1 of the polynomial A(x), but not necessarily in the natural
order. In a program, only the b-array is required.

Let α = (r − 1)/2 and δ = (r − s)/2. Since r and s are odd, α and δ are integers. Initially
we set b1 ← 1 and the other bj ← 0 to represent A(x) = x.

4.1 Implicit squaring and reduction

Each step Sk is implemented by

for j ← r − 1 downto α + 1 do
bj−δ ← bj−δ ⊕ bj .

Squaring and reduction step Sk

Note that there are only r/2 + O(1) “⊕” bit-operations in the loop, which is a 75% reduction
over the 2r + O(1) for the reduction step of the standard algorithm (§3.2).

4.2 Interleaving

The obvious implementation of the interleaving step Ik requires a temporary bit-array (say
c0c1 · · · cr−1). For example:

c0 ← b0;
for j ← 1 to α do {forward interleave}

begin
c2j−1 ← bj+α;
c2j ← bj ;
end;

for j ← 0 to r − 1 do bj ← cj .

Forward interleave Ik with copy

We call this a “forward interleave” because the first loop index j increases. We can avoid
the final loop (copying the c array to b) by alternately using the array b and the array c (or by
interchanging pointers appropriately). However, the space required is still 2r/w + O(1) words,
so in terms of space requirements we have not yet improved on the standard algorithm.

7



4.3 Combining steps to avoid copying and save space

We can interleave in the backward direction (replace “for j ← 1 to α” by “for j ← α downto 1”
above). If we also interchange the roles of b and c to avoid the final copy, we obtain a program
for steps Sk, Ik, Sk+1, Ik+1:

for j ← r − 1 downto α + 1 do
bj−δ ← bj−δ ⊕ bj .

c0 ← b0;
for j ← 1 to α do {forward interleave}

begin
c2j−1 ← bj+α;
c2j ← bj ;
end;

for j ← r − 1 downto α + 1 do
cj−δ ← cj−δ ⊕ cj .

for j ← α downto 1 do {backward interleave}
begin
b2j ← cj ;
b2j−1 ← cj+α;
end;

b0 ← c0

Combining steps Sk, Ik, Sk+1, Ik+1

with forward and backward interleaving

The point of interleaving alternately in the forward and backward directions is that we can
save space by using a single working array of size 3r

2w + O(1) words. The b and c arrays can
partially overlap – in fact bj can occupy the same memory as cj+α (j = 0, 1, . . .), as shown:

b0 b1 · · · bα · · · br−1

c0 c1 · · · cα · · · cr−1

Saving space by overlapping arrays

Note that the “forward interleave” transmits data from b to c (i.e. to the left) and the “backward
interleave” transmits data from c to b (i.e. to the right)!

Partially overlapping the arrays b and c in this manner can improve performance dramatically
on machines with memory hierarchies and cache sizes of less than 2r bits, because the working
set is reduced in size by 25%. It has little effect on machines with much larger caches (see §6).

It is possible to perform interleaving using only r/w + O(1) words, by splitting the required
permutation into a product of cycles [12]. However, such an algorithm would be complicated
and difficult to implement with word-operations, so we have not tried it.

8



To summarise, in comparison with the standard algorithm of §3, the new algorithm has 75%
fewer ⊕ operations. Perhaps more significant than the number of operations is the number
of memory references, which is reduced by 56%, from 8r/w + O(1) loads/stores to 7r

2w + O(1)
loads/stores4. Also, the working set size is reduced by 25%, so memory references are more
likely to be in the cache. In practice the improvement provided by the new algorithm depends
on many factors: the values of r and (to a lesser extent) s, the cache size, the compiler and
compiler options used, whether inner loops are written in assembler, etc, but it is generally at
least a factor of two (see Table 2).

5 Effectiveness of Sieving

Suppose that we sieve by computing GCD(x2n
+ x, P (x)) for n = 1, 2, 3, . . .. Let fn be the

fraction of trinomials P (x) = xr + xs + 1 discarded at step n. Here, we are averaging over all s,
0 < s < r, and then taking the limit (assumed to exist) as r → ∞ through prime values. The
fraction remaining after step n is

rn =
n∏

j=1

(1− fj) .

It is easy to see that a trinomial is never discarded by the first sieve step (n = 1) because
P (x) = xr + xs + 1 is not divisible by x or 1 + x. (Thus, the first sieve step can be omitted.)

Consider the sieve with n = 2. There is precisely one irreducible polynomial of degree 2,
namely Φ2,1(x) = 1+x+x2. Note that x4 = x mod Φ2,1(x), so xr+xs+1 mod Φ2,1(x) has period
3 as s varies with r fixed. Since r is a prime and we can assume r > 3, we have r = ±1 mod 3
and xr + xs + 1 is divisible by Φ2,1(x) iff r + s = 0 mod 3. This occurs in one case out of three,
so f2 = 1/3. (The result is given in Swan [24, p. 1106].)

A generalization of this argument seems to be difficult, and we shall not attempt it here. The
results of a program to evaluate fn for n ≤ 11 are given in Table 1 (columns headed “predicted”)
and are in good agreement with empirical data for r = 859433 (columns headed “observed”).
The observed data for r = 756839 and r = 3021377 (incomplete) are similar.

In our program we estimate the time Ts(n) for sieving at step n > 2 using the empirical
approximation

Ts(n) ≈
n−1∑
j=1

Ts(j) ,

where the Ts(j) values on the right hand side are known (because the sieving has already been
performed). This approximation is plausible because the polynomials involved in the GCD are
very sparse, but tend to fill in after a few steps of the Euclidean algorithm.

We also use the approximation fn ≈ 1/n which is reasonable, in view of Table 1. The time
Tf (r) required for the full reducibility test of §4 can be estimated quite accurately by performing
a small number of iterations of the square-reduce-interleave loop. If, using the estimated values
of Ts(n) and Tf (r),

nTs(n) < Tf (r) ,

then the expected benefit from sieving is greater than the expected cost, so we perform step n
of the sieve. Otherwise we abandon sieving and perform the full reducibility test.

4More precisely, the standard algorithm loads 4r + O(1) bits and stores 4r + O(1) bits for one iteration of
squaring and reduction; the new algorithm loads 2r + O(1) bits and stores 3r/2 + O(1) bits for one iteration of
(implicit) squaring, reduction and interleaving; the exact number of word-level loads/stores depends on details of
the implementations. In our Pentium implementation we use 64-bit loads/stores where possible, so long as these
do not cross eight-byte boundaries.

9



Because of the dynamic criterion, the sieving cutoff varies with the trinomial being considered
and the machine being used. For r = 3021377, in most cases we sieve for n ≤ 24, and sieving takes
about 8% of the overall time while eliminating about 93% of the trinomials from consideration.
The remaining 7% of the trinomials require the full reducibility test, which takes about 92% of
the total computing time.

n 1/fn 1/fn 1/fn rn rn

predicted predicted observed predicted observed
2 3 3.0000 3.0000 0.6667 0.6667
3 7/2 3.5000 3.5000 0.4762 0.4762
4 5 5.0000 4.9999 0.3810 0.3809
5 31/6 5.1667 5.1666 0.3072 0.3072
6 15/2 7.5000 7.5001 0.2663 0.2663
7 127/18 7.0556 7.0574 0.2285 0.2285
8 34/3 11.333 11.345 0.2084 0.2084
9 949/118 8.0424 8.0325 0.1824 0.1824
10 275/26 10.577 10.596 0.1652 0.1652
11 2047/176 11.631 11.590 0.1510 0.1510
12 14.72 0.1407
13 12.80 0.1297
14 14.51 0.1208
15 15.59 0.1130
16 17.35 0.1065
17 18.13 0.1006
18 20.64 0.0958
19 19.82 0.0909
20 22.25 0.0868

Table 1: Predicted fn and rn, and observed values for r = 859433

10



6 Performance

We expect the running time of our program (excluding sieving) to be T = 10−9cr2 sec for a
full reducibility test, where c is machine-dependent and approximately constant. In practice,
because of cache effects, c is not independent of r. In Table 2 we give c for r = 3021377 on
various machines. For IBM PCs (P-II and P-III) we give the size of the L2 cache. If the cache
size is given as “large” this means that it is significantly larger than the working set size (3r/2
bits). Since 3r/2 bits is 553KB, only slightly more than 512KB, the program performs much
better on PCs with a 512KB cache than a 256KB cache. The program run on PCs had inner
loops written in assembler5, unless otherwise noted; for other machines the program was written
purely in C (the times quoted are for the best compiler options, discovered by experiment).

processor algorithm compiler/assembler cache size c

300 Mhz P-II standard C code (gcc) 512KB 7.86
” ” assembler (NASM) ” 6.31
” new C code (gcc) ” 3.54
” ” assembler without overlap ” 2.60
” ” assembler with overlap ” 1.64

400 Mhz P-II new assembler with overlap 512KB 1.24
500 Mhz P-III ” ” ” 0.77
833 Mhz P-III ” ” 256KB 1.66
300 Mhz Ultrasparc 10 ” C code (gcc) large 2.90
195 Mhz SGI R10000 ” C code (cc -64 -Ofast) ” 1.80
300 Mhz SGI R12000 ” ” ” 1.16
667 Mhz DEC Alpha ” C code (gcc -O4) ” 0.60

Table 2: Normalised time to test reducibility, c = time(nsec)/r2, r = 3021377

Table 2 is split into three sections:

1. We compare the standard and new algorithms (both C and assembler implementations)
on the same machine. The version marked “without overlap” does not overlap arrays as
described in §4.3, so its working set is about 2r bits instead of 3r/2 bits. It avoids copying
overhead by using two arrays alternately, as suggested at the end of §4.2.

2. We compare the new algorithm on different Pentium processors (note the dramatic influ-
ence of the cache size on performance – an 833 Mhz Pentium P-III with 256KB cache runs
slower than a 300 Mhz Pentium P-II with a 512KB cache).

3. Finally we compare the C implementation on some other machines (Sparc, SGI R10000
and R12000, and DEC Alpha).

5The NASM [25] assembler routines use MMX instructions, which operate on 64-bit registers [10]. The speedup
over pure C code is approximately a factor of two. This is due to the effective increase in wordlength from 32 to
64 bits, to careful use of the MMX registers to avoid inessential memory references and avoid alignment problems,
to prefetching data well before it is needed, and to careful ordering of instructions to maximise the number of
instructions executed per machine cycle [6].

11



In Table 3 we show the time for a full reducibility test with our new algorithm and various
r on a machine (300 Mhz Pentium P-II) with 512KB L2 cache. The times given in the table do
not include sieving, but this is relatively insignificant (e.g. sieving to n = 24 for r = 3021377
takes about 1200 seconds or 7.4% of the total time). The observed times depend to some extent
on s and on whether other programs are running concurrently and competing for the cache.

r time T (sec) c = 109T/r2

19937 0.42 1.06
44497 2.10 1.06
110503 14.4 1.18
132049 21.7 1.24
756839 812 1.42
859433 1027 1.39
3021377 15010 1.64
6972593 198000 4.10

Table 3: Time to test reducibility on 300 Mhz P-II

Note that Table 3 gives the worst case time for testing reducibility, i.e. the time for the full
reducibility test of §4. When testing many trinomials, the average time is less than 10% of the
worst case time, because most of the trinomials are shown to be reducible by sieving (see §5)
and do not require the full reducibility test.

7 Computational Results

In Table 5 we give a table of primitive trinomials xr + xs + 1 where r is a Mersenne exponent
(i.e. 2r − 1 is prime). We assume that 0 < 2s ≤ r (so xr + xr−s + 1 is not listed). Entries
with r = ±3 mod 8 are unlikely, since s = 2 (or r − 2) is then the only possibility, by Swan’s
theorem6. The only cases known are r = 3 and r = 5.

Early references are [8, 22, 23, 27]. The entries r ≤ 11213 are given by Zierler [30], and those
for 11213 < r ≤ 216091 are given by Heringa et al. [9]. We have confirmed these entries.

The entries for r < 3021377 have been checked by running at least two different programs
on different machines. During this checking process, the entry with r = 859433, s = 170340
was found. This was surprising, because Kumada et al. [14] claimed to have searched the whole
range for r = 859433. It turns out that Kumada et al. missed this entry because of a bug in
the sieving routine [19].

The three entries for r = 756839 are new (Kumada et al. did not search for this r), as are the
two entries for r = 3021377. At the time of writing, the search for r = 3021377 is incomplete7 .

6See Swan [24, Corollary 5]. Swan’s main result is due to Stickelberger (1897) – see [24, footnote on pg. 1099].
A generalization due to Blake et al. [2] is given in Menezes et al. [20, Fact 4.75].

7By 17 December 2000 we had searched about 60 percent of the range for r = 3021377. From the current
rate of progress, we estimate that the search will be completed in April 2001. After completing the search
for r = 3021377 we plan to continue with r = 6972593. For information on current status and results, see
http://www.comlab.ox.ac.uk/oucl/work/richard.brent/trinom.html

12



Since the average time for a single reducibility test is O(r2), the time required to test all
trinomials of degree r is O(r3). Thus, ignoring the variability of c and the effect of different
sieving cutoffs, we expect the search for r = 3021377 to take about 43 times as long as that for
859433, and the search for r = 6972593 to take about 12 times as long as that for r = 3021377.

There is a large gap between some of the Mersenne exponents r for which primitive trinomials
exist. For example, in Table 5 there are no entries in the interval 132049 < r < 756839. In
Table 4 we give some irreducible trinomials to fill this gap. As usual, we only list s ≤ r/2. The
exponents r were chosen to be close to the arithmetic progression 105, 2× 105, 3× 105, . . . with
the constraints that:

1. r is prime.

2. r = ±1 mod 8.

3. 2r − 1 is composite, but no prime factors of 2r − 1 are known. Such factors are certainly
larger than 232 (see [7]).

Because of these constraints, we can be sure that the trinomials listed are irreducible. They are
extremely likely to be primitive, but we can not prove this without knowing the factorisation of
2r − 1.

r s Search status
100151 4764, 15503 complete
200033 10175, 55224, 95397, 96236, 97575, 98763 complete
300073 – complete
300151 49950, 87430 complete
400033 17865, 103623 complete
500231 4862, 10101, 203207, 205310 complete
600071 111503 in progress
700057 24829 in progress
800057 ? in progress
900217 ? in progress
1000121 ? in progress

Table 4: Some irreducible trinomials with prime exponent

8 Summary

In this preliminary report we have outlined our new algorithm for testing reducibility of trino-
mials over GF(2), and given our computational results up to the end of 2000. These include a
correction to Kumada et al. [14] and two new primitive trinomials of record degree 3021377.

Acknowledgements

Some of the computations were performed by the third author on DEC alpha workstations at
INRIA Lorraine. We thank the users of several workstations at INRIA Lorraine and Oxford
University Computing Laboratory for making their idle time available. The Oxford Supercom-
puting Centre provided time to run the first author’s programs on Oscar, an SGI Origin 2000,
and Tosca, a PC cluster. Mark Rodenkirch contributed some CPU cycles, and Mike Yoder
verified the new entries in Table 5 with his independently-written Ada program.

13



r s Notes
2 1 Only even r
3 1 Only known case r = 3 (mod 8)
5 2 Only known case r = 5 (mod 8)
7 1, 3 Watson [27]
13 – Swan; Watson [27]
17 3, 5, 6 Watson [27]
19 – Swan; Watson [27]
31 3, 6, 7, 13 Watson [27]
61 – Swan; Watson [27]
89 38 Watson [27]
107 – Swan; Stahnke [23]
127 1, 7, 15, 30, 63 Rodemich and Rumsey [22]
521 32, 48, 158, 168 Rodemich and Rumsey [22]
607 105, 147, 273 Rodemich and Rumsey [22]
1279 216, 418 Rodemich and Rumsey [22]
2203 – Swan; Rodemich and Rumsey [22]
2281 715, 915, 1029 Zierler [30]
3217 67, 576 Zierler [30]
4253 – Swan; Zierler [30]
4423 271, 369, 370, 649, 1393, 1419, 2098 Zierler [30]
9689 84, 471, 1836, 2444, 4187 Zierler [30]
9941 – Swan; Zierler [30]
11213 – Swan; Zierler [30]
19937 881, 7083, 9842 Kurita and Matsumoto [15]
21701 – Swan; Kurita and Matsumoto [15]
23209 1530, 6619, 9739 Kurita and Matsumoto [15]
44497 8575, 21034 Kurita and Matsumoto [15]
86243 – Swan; Kurita and Matsumoto [15]
110503 25230, 53719 Heringa et al. [9]
132049 7000, 33912, 41469, 52549, 54454 Heringa et al. [9]
216091 – Swan; Heringa et al. [9]
756839 215747 Brent et al., 14 June 2000

267428 Brent et al., 11 June 2000
279695 Brent et al., 9 June 2000

859433 170340 Brent et al., 26 June 2000
288477 Kumada et al. [14]

1257787 – Swan; Kumada et al. [14]
1398269 – Swan; Kumada et al. [14]
2976221 – Swan; Kumada et al. [14]
3021377 361604 Brent et al., 8 August 2000

1010202 Brent et al., 17 Dec 2000
? Search in progress

6972593 ? Not yet searched

Table 5: Primitive trinomials with Mersenne exponent

14



References

[1] S. L. Anderson, Random number generators on vector supercomputers and other advanced
architectures, SIAM Rev. 32 (1990), 221–251.

[2] I. F. Blake, S. Gao and R. Lambert, Constructive problems for irreducible polynomials over
finite fields, in Information Theory and Applications, Lecture Notes in Computer Science
793, Springer-Verlag, Berlin, 1994, 1–23.

[3] R. P. Brent, Uniform random number generators for supercomputers, Proc.
Fifth Australian Supercomputer Conference, Melbourne, December 1992, 95–104.
http://www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub132.html

[4] R. P. Brent, On the periods of generalized Fibonacci recurrences, Math. Comp. 63 (1994),
389–401. MR 94i:11012. http://www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/
pub133.html

[5] R. P. Brent, Random number generation and simulation on vector and parallel comput-
ers (extended abstract), Proc. Fourth Euro-Par Conference, Lecture Notes in Computer
Science 1470, Springer-Verlag, Berlin, 1998, 1–20. http://www.comlab.ox.ac.uk/oucl/
work/richard.brent/pub/pub185.html

[6] A. Fog, How to Optimize for Pentium Microprocessors, version 2000-07-03, available from
http://www.agner.org/assem/ .

[7] GIMPS, The Great Internet Prime Search, http://www.mersenne.org/

[8] S. W. Golomb, Shift register sequences, Holden-Day, San Francisco, 1967. MR 39#3906.

[9] J. R. Heringa, H. W. J. Blöte and A. Compagner. New primitive trinomials of Mersenne-
exponent degrees for random-number generation, International J. of Modern Physics C 3
(1992), 561–564.

[10] Intel Corporation, MMX Technology Programmer’s Reference Manual. Available from
http://developer.intel.com .

[11] F. James, A review of pseudorandom number generators, Computer Physics Communica-
tions 60 (1990), 329–344.

[12] A. Jones, Cycles of a simple permutation, Australian Mathematical Society Gazette 27, 4
(October 2000), 158–160.

[13] D. E. Knuth, The art of computer programming, Volume 2: Seminumerical algorithms
(third ed.), Addison-Wesley, Menlo Park, CA, 1997.

[14] T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5)
over GF(2) whose degree is a Mersenne exponent, Math. Comp. 69 (2000), 811–814.

[15] Y. Kurita and M. Matsumoto, Primitive t-nomials (t = 3, 5) over GF(2) whose degree is a
Mersenne exponent ≤ 44497, Math. Comp. 56 (1991), 817–821.

[16] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge
Univ. Press, Cambridge, second edition, 1994.

15



[17] G. Marsaglia, A current view of random number generators, in Computer Science and
Statistics: The Interface (edited by L. Billard), Elsevier Science Publishers B. V. (North-
Holland), 1985, 3–10.

[18] G. Marsaglia and L. H. Tsay, Matrices and the structure of random number sequences,
Linear Algebra Appl. 67 (1985), 147–156.

[19] M. Matsumoto, Private communication by email, 17 July 2000.

[20] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.

[21] J. F. Reiser, Analysis of additive random number generators, Ph. D. thesis, Department of
Computer Science, Stanford University, Stanford, CA, 1977. Also Technical Report STAN-
CS-77-601.

[22] E. R. Rodemich and H. Rumsey, Jr., Primitive trinomials of high degree, Math. Comp. 22
(1968), 863–865.

[23] W. Stahnke, Primitive binary polynomials, Math. Comp. 27 (1973), 977–980.

[24] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962),
1099–1106. MR 26#2432.

[25] S. Tatham and J. Hall, NASM v0.98, the Netwide Assembler, available from http://
www.web-sites.co.uk/nasm/docs/ .

[26] R. C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math.
Comp. 19 (1965), 201–209.

[27] E. J. Watson, Primitive polynomials (mod 2), Math. Comp. 16 (1962), 368–369. MR
26#5764.

[28] N. Zierler and J. Brillhart, On primitive trinomials (mod 2), Inform. and Control 13 (1968),
541–554. MR 38#5750.

[29] N. Zierler and J. Brillhart, On primitive trinomials (mod 2), II, Inform. and Control 14
(1969), 566–569. MR 39#5521.

[30] N. Zierler, Primitive trinomials whose degree is a Mersenne exponent, Inform. and Control
15 (1969), 67–69.

16


