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Abstract. Motivated by a connection with block iterative methods for solving linear systems
over finite fields, we consider the probability that the Krylov space generated by a fixed linear
mapping and a random set of elements in a vector space over a finite field equals the space itself. We
obtain an exact formula for this probability and from it we derive good lower bounds that approach
1 exponentially fast as the size of the set increases.
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1. Introduction. Let Fq denote the finite field with q elements and Fq[X] the
ring of polynomials in one variable over Fq. Let V be a vector space of dimension n
over Fq. Given a linear mapping T on V and a subset of vectors S ⊆ V of size m, the
Krylov subspace generated by S under T is defined as

Kry(T, S) :=

{
m∑
i=1

fi(T )vi : fi(X) ∈ Fq[X] and vi ∈ S for 1 ≤ i ≤ m

}
.

This is just the space spanned by all vectors of the form T iv over all nonnegative
powers of T and vectors v ∈ S. Define

κm(T ) =
1

qmn
·#{(v1, . . . , vm) ∈ V m : Kry(T, {v1, . . . , vm}) = V };

that is, κm(T ) is the density of m-tuples of vectors in V that generate the whole space
V under T . In other words, if one selects m vectors v1, . . . , vm uniformly at random
and independently from V , then κm(T ) is the probability that Kry(T, {v1, . . . , vm}) =
V . Our main goal in this paper is to find good lower bounds on κm(T ).

To state our result, we need to define some parameter depending on T . Let � be
the minimal number of vectors required to generate V under T . This number � is just
the number of invariants in the Frobenius decomposition of V under T . We call � the
Frobenius index of T . Our main result is the following theorem.

Theorem. Let T be a linear mapping on a vector space V of dimension n over
Fq. Suppose T has Frobenius index �. Then for m ≥ �

κm(T ) ≥




0.04
1+logq(n−�+1) if m = �,
1
8 if m = �+ 1 and q = 2,
1− 3

2m−� ≥ 1
4 if m ≥ �+ 2 and q = 2,

1− 2
qm−� ≥ 1

3 if m ≥ �+ 1 and q > 2.
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When m = � the lower bound is almost tight in the sense that there are values
of n such that the probability is arbitrarily close to zero; see the remark following
Corollary 10. Hence it is impossible to bound the probability away from zero in this
case. For fixed � the probability converges exponentially fast to 1 as m increases.

There are two important special cases. One is when T is the identity map, so
� = n. In this case, κm(T ) is equal to the probability that m random vectors in a
vector space of dimension n over Fq span the whole space, and a much better lower
bound can be proved (see Lemma 7). The other is when � = 1, which means that
the minimal polynomial of T equals its characteristic polynomial, and better lower
bounds are given in Theorem 9.

Our work was motivated by a connection with block iterative methods for solving
large sparse linear systems over finite fields; see [3, 4, 8, 12, 14]. It improves upon
the result in the report [15] used in an analysis of the block Wiedemann algorithm.
We note that the relation between κm(T ) and the Frobenius index � is studied in
[15] (see also [16, section 6]), although the formulae obtained are less explicit and a
somewhat different approach is taken. A more difficult and important question in
the analysis of such algorithms is to bound the probability that certain “truncated”
Krylov subspaces generate the whole space. More precisely, let

Kry(T, S; t) =

{
m∑
i=1

f(T )vi : fi(X) ∈ Fq[X],deg fi ≤ t, and vi ∈ S
}
.

For t approximately n/|S|, one requires a lower bound on the probability that the
above space is the whole space. For large finite fields, relative to the dimension n,
Kaltofen [8] and Villard [15, section 6] obtain such a bound using the Schwartz–Zippel
lemma. For some practical applications, such as integer and polynomial factorization
[5, 6, 9, 11], it is desirable to have a good bound for small fields. Using a counting
argument Coppersmith obtains a weak bound in [4, 15]; it would be of great interest
to strengthen this bound.

We use a module theoretic approach via a sequence of reductions using standard
decomposition theorems and an argument from the theory of abelian groups com-
municated to us by Simon Blackburn. Using existing results on random elements in
vector spaces over finite fields, we then obtain an exact formula (Theorem 5) for the
probability depending only on certain properties of the mapping. Finally, good lower
bounds for this expression are derived.

2. Reductions. In this section we consider various reductions which allow us to
characterize those sets of vectors which generate the whole space under T .

2.1. Module-theoretic interpretation. Let T be a linear mapping on a vector
space V of dimension n over Fq. Denote by VT the Fq[X]-module with underlying
abelian group V and action of Fq[X] on V defined as

f(X) · v := f(T )v

for any polynomial f ∈ Fq[X]. (Any element v ∈ V may be thought of as lying in
VT , and vice versa. When necessary to distinguish them we shall call elements in V
“vectors” and those in VT “module elements.”)

Lemma 1. For any set S ⊆ V the Krylov space Kry(T, S) equals V if and only if
S generates VT as an Fq[X]-module.

Proof. Let S be such that the Krylov space generated by S under T is V . Let
w ∈ V . Thus the vector w equals a linear combination over Fq of vectors of the form
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T iv, where v ∈ V . Hence the module element w is a linear combination over Fq of
module elements of the formXi.v for v ∈ S. Thus S generates VT as an Fq[X]-module.
The converse is similar.

Thus our main question is equivalent to the following: Given a set of elements S
chosen uniformly at random from the module VT , what is the probability that they
generate VT ?

2.2. Reduction to primary modules. Let the principal ideal (mT ) in Fq[X]
be the annihilator of the module VT , that is,

(mT ) = {g ∈ Fq[x] : g(T )v = 0 for all v ∈ V }.

(Thus mT , which we take to be monic, is just the minimal polynomial of the linear
mapping T .) Factorize mT as

mT =

a∏
i=1

grii ,

where gi are monic irreducible polynomials and each ri ≥ 1. Via the primary decom-
position theorem [1, Theorem 3.7.12] the module VT decomposes as

VT = V1 ⊕ V2 ⊕ · · · ⊕ Va,(1)

where the annihilator of Vi is (grii ).
For each 1 ≤ i ≤ a, let πi denote the projection of VT onto its ith factor. For a

subset S of elements in VT write πi(S) for the image of the set S under this projection.
Lemma 2. Let S be a set of elements in VT . Then S generates VT if and only if

πi(S) generates Vi for 1 ≤ i ≤ a.
Proof. The forward implication is straightforward. For the reverse, assume that

πi(S) generates Vi for 1 ≤ i ≤ a. Let v ∈ VT , so πi(v) ∈ Vi. We can write πi(v) =∑m
j=1 hij(X).vj , where S = {v1, . . . , vm}. For each j, 1 ≤ j ≤ m, using the Chinese

remainder theorem we can find a polynomial hj(X) such that hj(X) ≡ hij(X) mod
gi(X)ri for each i, 1 ≤ i ≤ a. Here we use the coprimality of the gi(X). Defining
w :=

∑m
j=1 hj(X).vj we see that πi(w) = πi(v) for all 0 ≤ i ≤ a, and hence v = w.

Thus S generates VT as we wished to show.
Thus it suffices to understand the number of generating sets of the primary mod-

ules Vi.

2.3. Reduction to irreducible exponent case. We now examine the primary
parts Vi in the decomposition of the module VT given in (1). To this end, let W
denote any Fq[X]-module with an annihilator the ideal generated by a power gr of an
irreducible polynomial g. We need to determine the probability that a set of randomly
chosen elements in W generates the whole module.

Let Rad(W ) denote the Radical of W . This is defined to be the intersection of
all maximal submodules. The following result is a special case of a module-theoretic
analogue of a result in the theory of abelian groups, namely, “a set of elements gener-
ates an abelian group if and only if its image in the quotient by the Frattini subgroup
generates the quotient” (see [13, page 135, 5.2.12]).

Lemma 3. Let W be a primary Fq[X]-module with annihilator (gr), where g
is irreducible in Fq[X]. A set S ⊆ W is a generating set if and only if S̄ := {s +
Rad(W ) | s ∈ S} is a generating set in the quotient module W/Rad(W ).
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Proof. The forward implication is easy. For the reverse, by the cyclic decomposi-
tion theorem [1, Theorem 3.7.1] we can write

W = W1 ⊕W2 ⊕ · · · ⊕Wb,

where each moduleWi is cyclic with annihilator the ideal generated by the polynomial
gri for some power of g. We may take ri ≥ ri+1 for 1 ≤ i ≤ b−1, and so r1 = r. Since
each module in the decomposition is cyclic we have the Fq[X]-module isomorphism

Wi
∼= Fq[X]/(gri),

and so

W ∼= ⊕b
i=1Fq[X]/(gri).

The intersection of all maximal submodules is just

Rad(W ) ∼= ⊕b
i=1g · (Fq[X]/(gri)),

which is just g(X)W . Hence

W/Rad(W ) ∼= Fq[X]/(g)⊕ · · · ⊕ Fq[X]/(g),

where we have b terms in the sum. Now assume that the images of the elements of
S = {vi} in the quotient generate W/Rad(W ). Let w ∈ W . Via the isomorphisms
described above we have w = (w1, . . . , wb), where each wi ∈ Fq[X]/(gri). The image of
w in the quotient W/Rad(W ) is then w̄ := (w1 mod g, . . . , wb mod g). By assumption
we can write w̄ =

∑m
i=1 hi(X).v̄i. Then w−∑m

i=1 hi(X).vi = (gw′
1, . . . , gw

′
b). Defining

w′ = (w′
1, . . . , w

′
b) ∈W and repeating the process, we can express w as a combination

of the elements vi plus an “error vector” each coefficient of which is divisible by g2.
Continuing in this way the error vector eventually reduces to zero, since our module
is annihilated by some power of g, and we have the desired combination.

As in the proof of the above lemma, for W a primary module with annihilator
(gr) the required quotient is just

W/Rad(W ) ∼= Fq[X]/(g)⊕ · · · ⊕ Fq[X]/(g),

where we have b terms in the sum. Letting d = deg(g) we see that this is just the
direct sum of b finite fields of order qd, each viewed as an Fq[X]-module. The action
of Fq[X] on each finite field is just defined for α in the finite field by X.α = βα, where
β is some element such that g(β) = 0 in the finite field. We have

W/Rad(W ) ∼= (Fqd)
b

as an Fq[X]-module. The right-hand side also has the structure of a vector space
over Fqd . A set of elements in W/Rad(W ) is a generating set if and only if the
corresponding elements on the right-hand side of the above isomorphism generates
the set (Fqd)

b as a Fqd-vector space. This follows from the description of the action of
Fq[X] on each vector space in the summand, since 1, β, . . . , βd−1 generates each finite
field as a vector space over Fq. Thus we have reduced our problem to the study of
generating sets for vector spaces over finite fields.
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2.4. Generating sets for vector spaces. For each nonnegative integer n, de-
fine the real function π(n, x) by

π(n, x) := (1− x)(1− x2) . . . (1− xn).

The following lemma is “classical.”
Lemma 4. Let U be a vector space of dimension b over Fq. Then the probability

that m ≥ b elements of U chosen uniformly at random span U is

π(m, 1/q)

π(m− b, 1/q)
.

Proof. We follow the proof for the prime field case in [10], making appropriate
modifications. (See also Theorem 1.1 in [2].) Let Φb(m, r) denote the number of
m-tuples of vectors in F

b
q which span a subspace of rank r (equivalently, the number

of rank r matrices of size b ×m over Fq). Dividing such sequences into those whose
last vector is linearly dependent/independent on the previous m − 1 we derive the
recurrence for m ≥ 1 and r ≥ 1

Φb(m, r) = qrΦb(m− 1, r) + (qb − qr−1)Φb(m− 1, r − 1).

We also have the initial conditions Φb(s, 0) = 1 for all s ≥ 1 (the zero sequence),
Φb(0, 0) = 1 (the empty sequence), and Φb(0, s) = 0 for all s ≥ 1. One can now verify
that the following formula holds for r ≥ 1:

Φb(m, r) =

r−1∏
i=0

(qb − qi)
qm−i − 1

qi+1 − 1
.

Putting r = b and cancelling in a suitable way one finds that

Φb(m, b) = (qm − 1)(qm − q) . . . (qm − qb−1).

Dividing by the number of sequences, qm, gives the required probability.

3. An exact formula. We now piece together the results proved in section 2 to
obtain an exact formula for the required probability. Let the minimal polynomial of
the linear mapping T be denoted mT and the characteristic polynomial cT . Let � be
the Frobenius index of T . We consider a cyclic decomposition [1, Theorem 3.7.1] of
the module VT as

VT = U1 ⊕ U2 ⊕ · · · ⊕ U�,

where each Ui is a cyclic module with annihilator the ideal generated by a monic
polynomial hi satisfying hi+1|hi for 1 ≤ i ≤ �−1. ThusmT = h1 and cT = h1h2 . . . h�.
As before, let gj , 1 ≤ j ≤ a, be the irreducible factors of mT . Let dj be the degree
of gj and �j the number of polynomials h1, . . . , hl divisible by gj , 1 ≤ j ≤ a. Thus
1 ≤ �j ≤ � and the cyclic decomposition of the module Vi in the primary decomposition
of VT (see (1)) has exactly �i factors.

Theorem 5. Let T be a linear mapping on a vector space V of dimension n over
Fq. Suppose T has Frobenius index � and m ≥ �. With the notation defined above, we
have

κm(T ) =

a∏
j=1

π(m, q−dj )

π(m− �j , q−dj )
,

where π(m,x) = (1− x)(1− x2) . . . (1− xm).
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Proof. By Lemma 1 one may equivalently find the probability that a uniform at
random sequence of elements S in VT generates VT as an Fq[X]-module. By Lemma 2
such a set will generate VT if and only if the set πj(S) generates each primary summand
Vj for 1 ≤ j ≤ a. Now for any choice of subsets Sj ⊆ Vj of size m, 1 ≤ j ≤ a, there
exists exactly one set S in VT such that πj(S) = Sj for each 1 ≤ j ≤ a. Conversely,
all sets S arise in this way. Thus it suffices to compute the probabilities of generating
each primary module Vi by m elements separately and to take the product.

We claim that the jth term in the product in the statement of the theorem is
the probability that a sequence of m elements chosen uniformly at random in Vj
will generate Vj . Once this claim is proved the result follows. By Lemma 3 a set
of elements Sj in Vj is a generating set if and only if its image in the quotient by
the Radical of Vj generates this quotient. If Sj is chosen uniformly at random in
Vj , the corresponding set of elements S̄j in the quotient will be uniform at random.
(Exactly |Rad(Vj)| elements of Vj map onto each element in the quotient.) Thus
we need to find the probability that m elements chosen uniformly at random in the
quotient generate it. But the quotient has the structure of a vector space of dimen-
sion �j over Fqdj . From the comments at the end of section 2.3 this probability is
equal to the probability that m elements chosen uniformly at random from a vec-
tor space of dimension �j over Fqdj span the space. The result now follows from
Lemma 4.

4. Lower bounds. The formula in Theorem 5 is elegant, but it is hard to see
the magnitude of the probability κm(T ). In this section we shall derive various simple
explicit lower bounds for κm(T ).

We shall repeatedly use the following equality and inequality:

1

qk
+

1

qk+1
+ · · ·+ 1

qm
+ · · · = 1

qk−1(q − 1)
,

(1− x1)
a1(1− x2)

a2 · · · (1− xm)am ≥ 1− (a1x1 + a2x2 + · · ·+ amxm)

for any real ai ≥ 1, 1 ≥ xi ≥ 0, q > 1, and any integer k ≥ 0. The inequality can be
seen as follows. First of all it holds if xi ≥ 1/ai for some i. So we may assume that
0 ≤ xi < 1/ai for all i. Then one sees that the inequality follows by induction from
the following two inequalities:

(1− x1)(1− x2) ≥ 1− (x1 + x2) for x1x2 ≥ 0,

(1− x)a ≥ 1− ax for 0 ≤ x <
1

a
, a ≥ 1.

The latter inequality here holds since the function a ln(1 − x) − ln(1 − ax) strictly
increases for 0 ≤ x < 1/a (for any fixed a > 1) and evaluates to 0 when x = 0.

The next lemma is an extremely crude estimation, but it is already useful for
large q.

Lemma 6. Let T be any linear map on a vector space of dimension n over Fq.
Let � be the Frobenius index of T . Then, for m ≥ �,

κm(T ) ≥ 1− n

q − 1
.
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Proof. With the notation in Theorem 5, as n ≥ a, m ≥ �j , and dj ≥ 1, we have

κm(T ) =

a∏
j=1

�j∏
i=1

(
1−

(
1

qdj

)m−�j+i
)

≥
n∏

j=1

∞∏
i=1

(
1−

(
1

q

)i
)

≥
(

1−
∞∑
i=1

1

qi

)n

≥
(
1− 1

q − 1

)n

≥ 1− n

q − 1
.

The bound in Lemma 6 is good if q is large, but it says nothing if q ≤ n+ 1. To
get a good lower bound of κm(T ) for small q, we need a more careful estimation. We
start with a simple case when T is the identity map on V .

Lemma 7. Let V be a vector space of dimension n over Fq and let m ≥ n. Then
the probability that m random vectors in V span the whole space V is

n∏
i=1

(
1− 1

qm−n+i

)
≥
{

0.288, if m = n and q = 2,
1− 1

qm−n(q−1) otherwise.

Equivalently, this also bounds the probability that a random m×n matrix over Fq has
rank n.

Proof. By Lemma 4, the probability is

π(m, 1/q)

π(m− n, 1/q)
=

(
1− 1

qm−n+1

)(
1− 1

qm−n+2

)
· · ·
(
1− 1

qm

)

≥ 1−
(

1

qm−n+1
+

1

qm−n+2
+ · · ·+ 1

qm

)

≥ 1− 1

qm−n+1

(
1 +

1

q
+ · · ·+ 1

qn−1
+ · · ·

)

≥ 1− 1

qm−n+1

1

1− 1/q
≥ 1− 1

qm−n(q − 1)
.

For m = n and q = 2, the above bound is zero, so we need a more careful analysis:(
1− 1

2

)(
1− 1

22

)
· · ·
(
1− 1

2m

)

>

(
1− 1

2

)(
1− 1

22

)(
1− 1

23

)(
1− 1

24

)(
1− 1

25

)
· · ·
(
1− 1

2m

)
· · ·

>

(
1− 1

2

)(
1− 1

22

)(
1− 1

23

)(
1− 1

24

)(
1−

(
1

25
+ · · ·+ 1

2m
+ · · ·

))

=

(
1− 1

2

)(
1− 1

22

)(
1− 1

23

)(
1− 1

24

)(
1− 1

24

)
> 0.288.

This completes the proof.
To deal with the general case we need the following result, which reduces the

problem for a general polynomial to that of a polynomial with irreducible factors of
small degrees only.
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Lemma 8. For k ≥ 1, let Ik be the number of irreducible polynomials in Fq[X] of
degree k. Let f ∈ Fq[X] of degree n and let u = �logq n�. Then for any integer q1 > 1

∏
g|f, g irred

(
1− 1

qdeg g
1

)
≥

u+1∏
k=1

(
1− 1

qk1

)Ik

.

Proof. This result is proved in [7] (i.e., the formula (6) on page 144, with q
replaced by q1).

We consider the important case when V is cyclic as an Fq[X]-module under T ;
hence � = 1 and �j = 1 in Theorem 5. In this case, the minimal polynomial of T is
equal to its characteristic polynomial, and T is called nonderogatory.

Theorem 9. Let T be a nonderogatory linear map on a vector space V of di-
mension n over Fq. Then

κm(T ) ≥




0.218
1+logq n if m = 1,

0.42 if m = 2 and q = 2,
1− 1.5

qm−1 ≥ 1
2 otherwise.

Proof. Let f be the minimal polynomial of T . Then f has degree n and all �i = 1
in Theorem 5. Hence

κm(T ) =
∏

g|f, g irred

(
1− 1

qm deg g

)
.

First assume m = 1. Then κ1(T ) is the density of polynomials in Fq[X] of degrees
< n that are relatively prime to f . In this case, by Theorem 2.1 in [7], we have

κ1(T ) ≥
(
1− 1

q

)
· 1

e0.83(1 + logq n)
>

0.218

1 + logq n
,

where the factor 1− 1/q accounts for the irreducible factor X that is excluded in [7].
Now assume m > 1. Let u = �logq n� and Ik as in Lemma 8. Note that I1 = q

and

Ik ≤ qk − 1

k
≤ qk

2
, k ≥ 2.

By Lemma 8, we have

κm(T ) ≥
u+1∏
k=1

(
1− 1

qmk

)Ik

≥
(
1− 1

qm

)q ∞∏
k=2

(
1− 1

qmk

) qk−1
k

≥
(
1− 1

qm

)q
(

1−
∞∑
k=2

qk − 1

kqmk

)

≥
(
1− 1

qm

)q
(

1−
∞∑
k=2

1

2q(m−1)k

)

≥
(
1− 1

qm

)q (
1− 1

2qm−1(qm−1 − 1)

)
,
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which is at least 0.42 when m = 2 and q = 2 and generally at least(
1− 1

qm−1

)(
1− 1

2qm−1(qm−1 − 1)

)
> 1− 1

qm−1
− 1

2qm−1(qm−1 − 1)

≥ 1− 1.5

qm−1

for all q and m.
Theorem 9 can be interpreted for the following situation. Let f ∈ Fq[X] be any

polynomial of degree n. Define κm(f) to be the probability that

gcd(f, g1, . . . , , gm) = 1

for m random polynomials g1, . . . , gm ∈ Fq[x] of degrees < n. Note that κ1(f) is the
Euler function for the polynomial f . Then for any nonderogatory linear map T on a
vector space of dimension n over Fq that has f as its minimal polynomial, we have

κm(f) = κm(T ) =
∏

g|f, g irred

(
1− 1

qm deg g

)
.

Hence the lower bounds in Theorem 9 apply to κm(f) automatically.
Corollary 10. Let f ∈ Fq[x] of degree n. Then

κm(f) ≥




0.218
1+logq n if m = 1,

0.42 if m = 2 and q = 2,
1− 1.5

qm−1 ≥ 1
2 otherwise.

Remark. By Theorem 3.4 in [7], there are infinitely many values of n such that

κ1(x
n − 1) ≤ c√

1 + logq n

for some constant c > 0 depending only on q. This means that the probability may
be arbitrarily close to zero and our lower bound is quite close to the upper bound.
This also applies to the lower bound in Theorem 11 below for m = �.

Now we turn to the general case where we obtain slightly weaker bounds. The
next result is the main theorem stated in the introduction.

Theorem 11. Let T be any linear map on a vector space of dimension n over
Fq. Let � be the Frobenius index of T and let m ≥ �. Then

κm(T ) ≥




0.04
1+logq(n−�+1) if m = �,
1
8 if m = �+ 1 and q = 2,
1− 3

2m−� ≥ 1
4 if m ≥ �+ 2 and q = 2,

1− 2
qm−� ≥ 1

3 if m ≥ �+ 1 and q > 2.

Proof. Let f be the minimal polynomial of T . Then deg f ≤ n − � + 1 as at
least one irreducible factor of f appears � times in the characteristic polynomial of T ,
which has degree n and is divisible by f . Let u = �logq(n − � + 1)�. By Theorem 5
and Lemma 8, we have
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κm(T ) =

a∏
j=1

�i∏
i=1

(
1−

(
1

qdj

)m−�i+i
)

(2)

≥
a∏

j=1

�∏
i=1

(
1−

(
1

qdj

)m−�+i
)

=

�∏
i=1

∏
g|f, g irred

(
1−

(
1

qdeg g

)m−�+i
)

≥
�∏

i=1

u+1∏
k=1

(
1−

(
1

qk

)m−�+i
)Ik

.

Assume first that m = �. Then

κm(T ) ≥
�∏

i=1

u+1∏
k=1

(
1−

(
1

qk

)i
)Ik

≥
�∏

i=1

(
1− 1

qi

) �∏
i=1

u+1∏
k=1

(
1− 1

qki

) qk−1
k

≥
�∏

i=1

(
1− 1

qi

) u+1∏
k=1

(
1− 1

qk

) qk−1
k

∞∏
k=1

∞∏
i=2

(
1− 1

qki

) qk−1
k

.

By Lemma 7, we know the first product is at least 0.288. For the second product, the
proof of Theorem 2.1 in [7] implies

u+1∏
k=1

(
1− 1

qk

) qk−1
k

≥ 1

e0.83(1 + u)
≥ 1

e0.83(1 + logq(n− �+ 1))
.

To estimate the third product, we recall the fact that

ln(1− x) ≥ −(x+ x2), 0 ≤ x ≤ 0.6.

Then

∞∏
k=1

∞∏
i=2

(
1− 1

qki

) qk−1
k

= exp

( ∞∑
k=1

∞∑
i=2

qk − 1

k
ln

(
1− 1

qki

))

≥ exp

(
−

∞∑
k=1

∞∑
i=2

qk − 1

k

(
1

qki
+

1

q2ki

))

≥ exp

(
−

∞∑
k=1

qk − 1

k

(
1

qk(qk − 1)
+

1

q2k(q2k − 1)

))

≥ exp

(
−

∞∑
k=1

(
1

qk
+

1

q3k

))

≥ exp

(
−
(

1

q − 1
+

1

q3 − 1

))

≥ exp

(
−
(
1 +

1

7

))
> 0.3189.
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Therefore, when m = �,

κm(T ) >
0.288 · 0.3189

e0.83
· 1

1 + logq(n− �+ 1)
>

0.04

1 + logq(n− �+ 1)
.

Finally assume m > �. Then from (2)

κm(T ) ≥
∞∏
i=1

(
1− 1

qm−�+i

)q ∞∏
k=2

∞∏
i=1

(
1− 1

qk(m−�+i)

) qk−1
k

.

For the first product, we have

∞∏
i=1

(
1− 1

qm−�+i

)q

≥
(
1− q

qm−�+1

)(
1−

∞∑
i=2

q

qm−�+i

)

≥
(
1− 1

qm−�

)(
1− 1

qm−�(q − 1)

)
,

which is 1/4 for m = �+ 1 and q = 2. For the second product, we have

∞∏
k=2

∞∏
i=1

(
1− 1

qk(m−�+i)

) qk−1
k

≥ 1−
∞∑
k=2

∞∑
i=1

qk − 1

kqk(m−�+i)

≥ 1−
∞∑
k=2

∞∑
i=1

1

kqk(m−�+i−1)

≥ 1−
∞∑
k=2

1

kqk(m−�−1)(qk − 1)

≥ 1−
∞∑
k=2

1

qk(m−�)

≥ 1− 1

qm−�(qm−� − 1)
,

which is 1/2 for m = � + 1 and q = 2. Therefore κm(T ) is at least 1
4 · 1

2 = 1
8 for

m = �+ 1 and q = 2. In general, when m > �, it is at least(
1− 1

qm−�

)(
1− 1

qm−�(q − 1)

)(
1− 1

qm−�(qm−� − 1)

)

≥ 1− 1

qm−�
− 1

qm−�(q − 1)
− 1

qm−�(qm−� − 1)

≥ 1− q + 1

q − 1

1

qm−�
≥ 1− 3

qm−�
.

For q = 2 and m ≥ � + 2 this is 1 − 3
2m−� ≥ 1

4 , and for q ≥ 3 and m ≥ � + 1 it is at

least 1 − 2
qm−1 ≥ 1

3 .
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