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Abstract

For the solutions of linear systems of equations with unsymmetric coefficient matrices, we have proposed an improved version of the
quasi-minimal residual (IQMR) method [Proceedings of The International Conference on High Performance Computing and Networking
(HPCN-97) (1997); IEICE Trans Inform Syst ES0-D (9) (1997) 919] by using the Lanczos process as a major component combining elements
of numerical stability and parallel algorithm design. For the Lanczos process, stability is obtained by a coupled two-term procedure that
generates Lanczos vectors scaled to unit length. The algorithm is derived so that all inner products and matrix—vector multiplications of a
single iteration step are independent and the communication time required for inner product can be overlapped efficiently with computation
time. In this paper, a theoretical model of computation and communications phases is presented to allow us to give a quantitative analysis of
the parallel performance with a two-dimensional grid topology. The efficiency, speed-up, and runtime are expressed as functions of the
number of processors scaled by the number of processors that gives the minimal runtime for the given problem size. The model not only
evaluates effectively the improvements in performance due to communication reduction by overlapping, but also provides useful insight into
the scalability of the IQMR method. The theoretical results on the performance are demonstrated by experimental timing results carried out

on a massively parallel distributed memory Parsytec system. © 2002 Published by Elsevier Science Ltd.

1. Introduction

One of the fundamental tasks of numerical computing is
the requirement to solve linear systems with unsymmetric
coefficient matrices. These systems arise very frequently in
scientific computing, for example from finite difference or
finite element approximations to partial differential equa-
tions, as intermediate steps in computing the solution of
nonlinear problems or as subproblems in linear and
nonlinear programming.

One solution method, the quasi-minimal residual (QMR)
algorithm [10], uses the Lanczos process [9] with look-
ahead, a technique developed to prevent the process from
breaking down in case of numerical instabilities, and in addi-
tion imposes a quasi-minimization principle. This combina-
tion leads to a quite efficient algorithm, among the most
frequently and successfully used iterative methods. Such
methods are widely used for very large and sparse problems,
which are often solved on massively parallel computers.

The basic time-consuming computational kernels of the
QMR method are usually: inner products, vector updates
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and matrix—vector multiplications. In many situations,
especially when matrix operations are well-structured,
these operations are suitable for implementation on vector
and shared memory parallel computers [7]. But for parallel
distributed memory machines, the matrices and vectors are
distributed over the processors, so that even when the matrix
operations can be implemented efficiently by parallel opera-
tions, we still can not avoid global communication, i.e.
communication among all processors, required for inner
product computations. Vector updates are perfectly parallel-
izable and, for large sparse matrices, matrix—vector multi-
plications can be implemented with communication only
between nearby processors. The bottleneck is usually due
to inner products enforcing global communication. Detailed
discussions of the communication problem on distributed
memory systems can be found in Refs. [4,6,16]. Global
communication costs become relatively more important
when the number of parallel processors increases and thus
they have the potential to affect the scalability of the algo-
rithm in a negative way [4,6].

Recently, we have proposed a new improved two-term
recurrence Lanczos process [19,20] without look-ahead as
the underlying process of the corresponding improved
quasi-minimal residual method (IQMR). The idea is
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motivated by the modified approach (we refer to as the
MQMR method below) presented in Refs. [2,3], where
there is only one global synchronization point each iteration.
The IQMR algorithm is reorganized without changing its
numerical stability. More importantly, compared with the
MQMR method, the improved method is derived so that not
only are all inner products independent (one global synchro-
nization), but also matrix—vector multiplications are inde-
pendent within a single iteration step. At the same time,
communication required for inner products can be over-
lapped efficiently with computation of vector updates.
Therefore, the cost of global communication on parallel
distributed memory computers can be significantly reduced
over that of the MQMR method. The resulting IQMR
method maintains the favorable properties of the Lanczos
process while not increasing computational costs. The
detailed advantages over the original QMR and MQMR
methods have been demonstrated by timing experiments
in Refs. [19,20].

In this paper, a theoretical model of computation and
communications phases is presented based on Refs. [5,18]
to allow us to give a quantitative analysis of the parallel
performance on a massively distributed memory computer
with two-dimensional grid topology. The efficiency, speed-
up, and runtime are expressed as functions of the number of
processors scaled by the number of processors that gives the
minimal runtime for the given problem size. This provides a
natural way to analyze the performance characteristics for
the range of the number of processors that can be used
effectively. The model not only shows clearly the influence
of global communication on the performance, but also eval-
uates effectively the improvements in performance due to
communication reductions by overlapping. The model also
provides useful insight into the scalability of the IQMR
method although it is limited by assumptions on the load
balance and communication model. Further generalizations
are being studied. The theoretical results on the performance
are demonstrated by experimental timing results carried out
on a massively parallel distributed memory computer Parsy-
tec system.

The paper is organized as follows. In Section 2, we will
describe briefly the classical unsymmetric Lanczos algo-
rithm based on a three-term recurrence. A sketch of a new
improved variant used as the underlying process is given in
Section 3. The IQMR method is derived in detail in Section
4. In Section 35, the parallel performance model is presented,
including the communication model and assumptions for
computation time and communication costs. Finally, the
effect of communication reduction and parallel performance
are described in using both theoretical complexity analysis
and experimental observations.

2. Lanczos process based on three-term recurrences

The classical unsymmetric Lanczos process [14] based

on three-term recurrences reduces a matrix A € RV to
tridiagonal form 7 using a similarity transformation which
leads to the following three relations that serve to define the
unsymmetric Lanczos process:

wiv =1, AV = VT, ATw = wrT, 1)

where [ is the identity matrix and 7 is a tridiagonal matrix.
More precisely, this process, starting with two vectors v; and
w; satisfying wjv, = 1, iteratively generates two finite
sequences of vectors v, and w, such that, forn = 1,2,...

K,(v1,A) = span{v{,v,,...,v,},

KH(WI’AT) = span{wlvw2, '-~,Wn}’

where K,(v;,A) = span{v;,Av,,...,A" 'v;}, is the nth
Krylov subspace with respect to v; and A and the two sets
are biorthogonal as follows

. {O if m # n,

Wmvn =

1 itm=n.
where and in the sequel, we denote by V = [v{,v,,...,v,]
and W = [wy,w,, ..., w,], the matrices containing the Lanc-
zos vectors v, and w, as columns.

This process leads to two inner products per iteration
which require global communication on massively parallel
distributed memory computers. Some improvements on the
global communication required by inner product have been
investigated in Ref. [13].

3. Lanczos process based on two-term recurrences

Although Lanczos used a similar technique built on
coupled two-term recurrences in the early of 1950s the
majority of papers deal with the three-term recurrences
process. Recently, Freund et al. [11] reused Lanczo’s idea
to improve numerical stability. They claimed that, the two-
term variant of the Lanczos process may be numerically
more stable. This is why we consider this unsymmetric
Lanczos process with two-recurrences as the underlying
process of the QMR method.

Recently, Biicker et al. [2,3] proposed a new parallel
modified version of the quasi-minimal residual method
(MQMR) based on the coupled two-term recurrences Lanc-
zos process without look-ahead strategy. The algorithm has
the property that both generated sequences of Lanczos
vectors are scalable and there is only a single global
synchronization point per iteration. Based on a similar
idea on their papers and further improvement, we will
present a new improved two-term recurrence Lanczos
process without look-ahead technique where, compared
with the MQMR method, the improved Lanczos process
has the property that not only are all inner products inde-
pendent (one global synchronization), but also matrix—
vector multiplications are independent within a single
iteration step. Also, communication required for inner
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product can be overlapped efficiently with computation of
vector updates.

Here we suppose that the tridiagonal matrix 7 has an LU
decomposition as

T=LU, 2)

where the factors L and U are of lower and upper bidiagonal
form, respectively. It is the bidiagonal structure of L and U
that results in coupled two-term recurrences.

It has been pointed out by several authors [8,10,15,17]
that in practice we should scale both sequences of Lanczos
vectors to unit length in order to avoid over and underflow.
This can only be achieved by giving up the bidiagonality
WTv =T and setting wlv =D instead, where D is a dia-
gonal matrix with entries §; # 0 fori =1,2,...,N.

The principal idea of the new approach suggested in Refs.
[2,3] is to start from the scaling described above by using
LU decomposition as well as introducing P = VU ~! and
Q =wpD™! UT, which leads to

wlv =D, V = PU, (3)
and
O=wp 'U", Ap=vL, A"wW=0L"D. 4)

Suppose that the matrices introduced above have column
vectors according to

P= [pl’pZ"'-’pn] and Q: [QI’ZD’-“’QrL]'

Then, after a complicated derivation, we obtain

1 N T, .
Pn= —Vu =™ MaPn-1, Vatl = Uy — —Vps

Y n

1 . Ty .
u, = 7Avn = Mpllp—1, Wontl = 4n = 7 Was

n fn

_ 1 T ~ Ynln
A —

qn = & Wn n—1

&n &n

where the corresponding coefficients are

Yn+1 = (Vn+1’vn+])a §n+1 = (Wn+l’wn+l)7
— s AT ~
Pn+1 = (Wn+lavn+l)a En+]( Wn+l’vn+1)’
_ ‘Ynérllpn+1 _ €1+1 _
Mp+1 = s T+l = Yo+1Mn+1-
Yn+1TnPn Pn+1

Algorithm 1: improved Lanczos process
Nn=0,vm), w=0 &=

T ~ -~ ~
25y =AW, pp =00, 7)), € =(51,V)), 1| = %;

5 @yt =d4qn — §_“Wn7
T ~

6 Sn+1 =A Wh+1s

7 ty = AVy;

. | _ .
8: U, = Ztn MnUp—15

. v —_— Tn 5.
9: Vo1 = Uy — -y_vn’

. — 1= _ .
10: Pn= Zvn MnPn—15
11: Yn+1 = (Vn+1’vn+l);
12: §n+l = (Wn+l9wn+l);
130 pur1 = Wps 15 Vi 1)3

14: €+l = (anrl’ﬁnJrl);

15: — YobuPut1 .

Man+1 1T’
16: Th+1 = p:ill ~ Ynt+t1Mn+1s
17: end for

Now we can reschedule the algorithm, without changing
the numerical stability so that all inner products and
matrix—vector multiplications of a single iteration step are
independent and communication required for inner product
can be overlapped efficiently with computation. The frame-
work of this improved Lanczos process based on two-term
recurrences is given as Algorithm 1. Under the assumptions,
the improved Lanczos process can be efficiently parallelized
as follows:

e The inner products of a single iteration step (11), (12),
(13) and (14) are independent.

e The matrix—vector multiplications of a single iteration
step (6) and (7) are independent.

e The communications required for the inner products (11),
(12), (13) and (14) can be overlapped with the update for
p, in (10).

Therefore, the cost of communication on parallel dis-
tributed memory computers can be significantly reduced
compared with the original QMR and the MQMR methods.

The biorthogonality relationships (3) and (4) are used to
derive the algorithm. We can show that, in exact arithmetic,
the vectors ¥; and Ww; generated by the above algorithm are
biorthogonal.

Theorem 1. Assuming no breakdown occurs, the vectors
V; and W; generated by improved Lanczos process satisfy

0 ifi# ],
P #0 ifi=].

T ~
w; Vj =

4. Improved quasi-minimal residual method

The improved Lanczos process now is used as a major
component to a Krylov subspace method for solving a
system of linear equations

Ax = b, where A € RV x b € RV, (5)

In each step, it produces approximation x, to the exact

solution of the form
X, = xo + K,(rg,A), n=12,.. (6)

Here x, is any initial guess for the solution of linear systems,
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ro =b — Axy is the initial residual, and K,(ry,A) =
span{ry, Ary, A" ro}, is the nth Krylov subspace with
respect to ry and A.

Given any initial guess x, the nth Improved QMR iterate
is of the form

x, =x0 + V,z2,, @)

where V, is generated by the improved unsymmetric Lanc-
zos process, and z, is determined by a quasi-minimal
residual property which will be described later.

For the improved Lanczos process, the nth iteration step
generates

Vn+1 = [Vl,v2,..., Vn+1] and Pn = [p1’p27'"apn]’

satisfying

Pn = VnU;;la APn = Vn+1Lns (8)

where L, and U, are the leading principal (n + 1) X n and
nXn submatrices of the bidiagonal matrices L and U
generated by the Lanczos algorithm. Note that L, has full
rank since we assume no breakdown occurs. The setting of
v, = U,z, can be used to reformulate the improved QMR
iterate in term of y, instead of z, giving

Xp = Xo + Pnyn‘ (9)

The corresponding residual vector in term of y, is obtained
by the above scenario, namely

1
r, = b— Axn =Ty — Vn+anyn = n+1(yle(1n+ ) — Lnyn)’

where the improved Lanczos process starts with v, =
(U||rolln)r and €V = (1,0,...,0)". Rather than minimiz-
ing ||r,|l,, generally and expensive task, the quasi-minimal
residual property reduces costs by only minimizing the
factor of the residual given in parentheses, i.e., y, is the

solution of least squares problem

(n+1) _ (n+1) _

”7161 Lnyn”Z = m_in||71€l Lny”Z
y

Since L, has full rank, the solution y, is uniquely determined
by the coupled iteration derived in Ref. [3] by avoiding the
standard approach of computing a QR factorization of L, by
means of Givens rotations

Yn—1 8n—1
yn = ! + gn’ ng = 0}’! " + Kllegl)’ (10)
0 0

where the scalars 6, and «, are supplied from the following
expressions

(= A,)

0 = K = T YnTnkKn—1
BV o EU R W o
\ = Aot o
! /\11—17;21—1 + ’y}%

withn =2, A, =1and ky = 1.

Inserting the first coupled recurrence relation yields
xn:x0+Pn—1yn—l +Pngn:xn—1 +dn, (11)

where d, = 0,P, is introduced. Using the second coupled
recurrence relation, the vector d, is updated by

dn = HnPn—lgn—l + KVLPnel(ln) = 0nd11—1 + KnDn> (12)

where the vector is generated by the improved Lanczos
process. Defining f,, = Ad,,, the residual vector is obtained
by

T'n = Tn—1 _fn» (13)
and the corresponding vector f, is given by
fn = ann—l + KnApn = Onfn—l + Kyly- (14’)

The result is an improved QMR method (IQMR) based on
coupled two-term recurrences with scaling of both
sequences of Lanczos vectors. Numerical stability can
be maintained and all inner products, matrix—vector multi-
plications of a single iteration step are independent and
communication required for inner products can be over-
lapped efficiently with computation. The framework of
this improved QMR method using the Lanczos algorithm
based on two-term recurrences as underlying process is
given in Algorithm 2.
Algorithm 2: improved quasi-minimal residual method

LV =w=rnp=b—Axg, Ay =L, kg =1,u; =0,

2: po = qo = up = do = fo. v1 = V1, 91), & = (W1, Wy),
35, =AWy, pp = (001, 7)), € = (51,7)), 1 = %;
4:forn=1,2,... do

55 g =g B

6: Wat1 = o g W

T s = AT

8: t, = A¥,;

90Uy = oty Bl

10: Py = U, — 29,3

11: an%ﬁn—

12: if (r,—,r,—;) < tol then

13: quit
14: else
15: Yor1 = Fpt 15 Vpt1);
16: §n+1 = (wnJrl’wnJrl);
17 Pn+1 = (wn+1"711+1);
18: €+1 = (sn+1"7n+l);
. — YubuPur .
19' Ml‘l+1 - ‘yann’;:z] ’
20: T+l = ;::: = Yn+1Mn+1s

2
1-1,)

21: 0 = Tu(1=A) .

. MTat vy,
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22: K, = " YnTuKn—1 .
" A”T%+yi+l ’

2 =
24: d,=0,d,_| + Kk,p,;
25: fo=0,fi—1 T KU
26: X, = Xx,—1 td,;

27: Tp = Fpeq1 — fu3

28: end if

29: end for

Under the assumptions, the improved QMR method using
Lanczos algorithm as underlying process can be efficiently
parallelized as follows:

e The inner products of a single iteration step (12), (15),
(16), (17) and (18) are independent.

e The matrix—vector multiplications of single iteration step
(7) and (8) are independent.

e The communications required for the inner products (12),
(15), (16), (17) and (18) can be overlapped with the
update for p, in (11).

Therefore, the cost of communication on parallel dis-
tributed memory computers can be significantly reduced
compared with the original QMR and MQMR methods.

5. A theoretical performance model

We will make the following assumptions suggested in
Refs. [5,6,18] for our communication model. First, the
model assumes perfect load balance and the processors
are configured as a 2D grid. However these restrictions
are easily removed by changing the number of unknowns
to the number of processors times the maximum number of
unknowns over the processor grid and by changing the
factor /P to reflect the maximum distance over the pro-
cessor graph more accurately. Apart from that, this model
gives a lower bound on the performance of an efficient
implementation. In this model, we assume that the pre-
processing steps have been done in advance. Typical meth-
ods are reordering techniques like bandwidth reduction
algorithms which derive from Cuthill and MacKee’s algo-
rithm, and the minimum degree algorithm [12] to improve
the data locality. Therefore, each processor holds a suffi-
ciently large number of successive rows of the matrix, and
the corresponding sections of the vectors involved. That is,
we assume that our problems have a strong data locality.
Secondly, we can compute the inner products in two steps
because the vectors are distributed over the processor grids.
All processors start to compute the local inner product in
parallel. After that, the local inner products are accumulated
on a central processor and broadcasted. The communication
time of an accumulation or a broadcast is of the order of the
diameter of the processor grid. In other words, for an
increasing number of processors, the communication time

for the inner products increases as well, and as was pointed
out [5,6], this is a potential threat to the scalability of the
IQMR method. If the global communication for the inner
products is not overlapped efficiently, it often becomes a
bottleneck on large processor grids.

In this section, we will describe a simple performance
model including the computation time and communication
cost for the main kernels as we presented before based on
our assumptions. The following terms are used in our paper
as suggested in Ref. [6]:

e Communication cost: the term to indicate all the wall-
clock time spent in communication, that is not over-
lapped with useful computation.

e Communication time: the term to refer to the wall-clock
time of the whole communication.

In non-overlapped communication, the communication
time and the communication cost are the same.

5.1. Computation time

The IQMR algorithm contains three distinct computa-
tional tasks per iteration

e Two simultaneous matrix—vector products, A¥, and
A", whose computation time is given by 273 N/P.

e Five simultaneous inner products, (V,11,V,+1),
(W11+17Wn+l)7 (Wn+1’§n+l)’ (Sn+1"7n+l) and (rn—lvrn—l)
whose computation time is given by (2n, — 1)taN/P.

e Nine vector updates, q,,, Wy+ 1, Ups Vit 15 Pns @ frr X, and 1,
whose computation is given by 2t N/P.

Here N/P is the local number of unknown of a processor,
tg is the average time for a double precision floating point
operation and n, is the average number of non-zero elements
per row of the matrix.

The complete (local) computation time for the IQMR
method is given approximately by the following equation:

N
Timl = (19 + 2nz)Fzﬂ (15)

5.2. Communication cost

Let the 7, denote communication start-up time and the
transmission time from processor to processor associated
with a single inner product computation be 7, and the
diameter p; = +/P for a processor grid with P = p2 pro-
cessors. Then the global accumulation and broadcast time
for 1 inner product is taken as

Tiomer, = 2p(t; + 1), (16)

while the global accumulation and broadcast time for k
simultaneous inner products take 2p,(t, + kt,,). For IQMR
method the communication time is given as follows:

Togm = 2p,(t, + 5t,,). (17)
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6. Parallel performance
6.1. Theoretical complexity analysis

Before our discussion on timing experiments, we will
focus on the theoretical analysis based on the model
suggested in Refs. [5,18] on the performance of IQMR
method. Firstly the efficiency, speed-up and runtime are
expressed as functions of the number of processors scaled
by the number of processors that gives the minimal runtime
for the given problem size. Then we use this model to
evaluate the impact in parallel performance due to commu-
nication reductions by overlapping.

The total runtime for IQMR is given by the following
equation:

TIQMR — TIQMR + TIQMR

P comp comm

=19+ znz)%rﬂ + 2JP(1, + 51,,). (18)

This equation shows that for sufficiently large P the com-
munication time will dominate the total runtime.

Let P,. denote as the number of processors that
minimizes the total runtime for IQMR. Minimization of
Eq. (18) gives

wio

:<(19+2nz)Nzﬂ> (19

t, + 5t,

The percentage of the computation time in the whole
runtime Ep = T,/PTp for P, processors is given by:
Ep_=1/3 where T, = Tin¥. This means that (1/3)Py
is spent on communication.

The corresponding parallel speed-up Sp = T7/Tp for Py
processor is maximal, which is given by: Sp = (1/3)Py,4.

The runtime for 7Tp for P, is minimal and given as
follows:

TP““‘" = 3((t5 + 51‘w)2(19 + 2nz)tﬂN)l/3. (20)

For any P square processor grid, the corresponding parallel
performance in terms of P, can be stated as follows.

Theorem 2. Let the runtime Tp, the speed-up Sp, and
efficiency Ep be defined as before for any P square processor
grids. Let a be the fraction o = PIP,,,. The parallel effi-
ciency is given by

1
Ep= ——, 21
P 1+ 207 @b
the parallel speed-up Sp is given by
a
Sp = mpmaxv (22)

and the runtime Tp is given by

142"

Tp = ((t; + 56,)%(19 + 2n)taN)'>. (23)

There are several interesting feaures in Theorem 2 which
can be stated as follows:

e The number of processors that minimizes the runtime,
P.x, increases only as O(N*) and so the minimum
runtime increases necessarily as @(N'?) which means
that for a sufficient increase in N the runtime increases
as well no matter how many processors are being used. It
seems that we cannot achieve perfect scalability, to be
able to keep the runtime constant for the increasing N by
increasing the number of processors P. However, this
IQMR method scales well in the sense that the minimum
runtime increases only slowly as a function of the
problem size.

o For any number processors P < P,,,, We can improve the
runtime as follows. While increasing N we simulta-
neously increase a so that the number of processors P
increases faster than P, thereby trading efficiency
against performance.

6.2. The impact of reduction by overlapping

In this part, we will use our model to evaluate the
impact in parallel performance due to the communication
reductions by overlapping.

Since in the IQMR method, there is one possibility to
overlap the computation time with communication time,
we assume P, as the number of processors for which all
communication can be just overlapped with computation. In
other words, the communication time for five simultaneous
inner products is equal to the overlapping computation time
of one vector update. The value for P, follows from

N
VP, + 51,) = o

It is easy to obtain the theoretical result:

[ﬂN 2/3
o= ()
t, + 5t,

Based on these theoretical results, we will discuss three
different situations:

e If P < P,,, there is no significant communication visible.

e If P> P,,, the overlap is no longer complete and the
communication time is given by 2p,(t, + 5¢,) —
2ty N/P. For this case, we can see clearly that the
efficiency decreases again because the communication
time increases and the computation time in the overlap
decreases.

o If P=P,,, the communication time can just be
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overlapped by the computation time. Then the corre-
sponding runtime is given by (19 + 2n,)t;N/P. And
accordingly we have linear speed-up and 100% parallel
efficiency.

It is easy to show in general case P, < P, For the
general case, we assume that a fraction 8 of the computa-
tions in vector update can be used to overlap communication
in inner products, the runtime of one iteration for P proces-
sors and N unknowns to be

. taN
TP=(19+2nZ—2B)ﬂT +m

From the expression of the runtime we can easily drive the
number of processors P, for which T is minimal, and
hence for which Sp is maximal, is given by

. ((19 +2n, — 2B)taN )2’3
max 1, + 5t, '

(24)

The percentage of the computation time in the whole
runtime £ p for Pmax processors is given:
N 19 + 2n,

Poo ™ 3(19 + 20, — 2B)

Since it is easy to show that P, > P, the overlapping
factor 8= 1. This leads to around (2/3)Tﬁmax spent in
communication!

The corresponding parallel speed-up S‘p for P, proces-
sor is maximal, which is given:

. (19 +2n )P | &
13 = TAA A §Pmax
3(17 + 2n,)

The runtime for TP for Pmax is minimal and given
b =3t + 56,17 + 2n)taN)'.

with regard to the runtime, efficiency, and speed-up for
number of processors P with overlapped communication,
the corresponding results can be stated in the following
theorem:

Theorem 3. Let the runtime, parallel speed-up and the
parallel e]ﬁczency with overlapped communication denote
as TP, SP and Ep respectively. Let 0 be the fraction as 0 =
PIP, 0, &= (1/(19 + 2n, 2,3))2’3 and y=19 + 2n_ —
2, then the parallel efficiency Ep is given by

1, 0= ¢
Ep= +2
PE) B
P(1 +26°%)
the parallel speed-up Sp is given by
P, 0=4¢
Sp= +2B)P
’ w '8)3/2 0> ¢
P(1 +26°%)

(23 alV ,2(t, + 51,)\P )

and the runtime Tp is given by
taN
W+2B)--.  0=¢
fp = N
1
1+203%) 22,
( ) P

Some interesting remarks can be made as follows:

e The maximum speed-up in case of overlapped commu-
nication is reached for P,,,. In general we can see clearly
that P, is always smaller than P,,. Furthermore, the
speed-up for P, is always better.

e A direct comparison shows that the optimal performance
for the IQMR method with overlapping is better than the
approach without overlapping.

e With overlapping we can run faster on fewer processors,
which, of course, gives a large improvement in effi-
ciency. But the scalability of the IQMR method is not
improved by overlapping the communication.

e The number of processors that minimizes the runtime,
P, increases as O(N**), so that the runtime still
increases as O(N'"™).

6.3. Numerical timing results

Now we compare the theoretical estimates from the
model with measured performance by numerical experi-
ments on the Parsytec massively parallel system. Since we
are only interested in the delaying effects relative to the
computational time, we will consider only one iteration.

Our problem is an electrostatic problem mathematically
described by a linear partial differential equation of second
order with Dirichlet boundary conditions and discretized
using five-point centered finite difference approximations.
The resulting system of linear equations has a unsymmetric
coefficient matrix with N = 10000 whose nonzero entries
are structured at most five nonzero entries per row according
to the symmetric pattern by natural ordering of the
unknowns described in Refs. [1]. The corresponding para-
meter values are:

n, =S5, tg=3.00us, t,=530pus, t, =480 pus.

The theoretical results for P,,,, and P, of the IQMR method
are P, = 959, P,,; = 102. For P> P, P,,.. = 910. The
theoretical and measured runtimes, efficiencies and speed-
ups for the IQMR method without overlapping considera-
tion are given in Table 1. Due to the physical limitations, we
can measure only the results for the limited processors. In
order to see the trend of the performance, we use the least
squares method to estimate and predict the results when the
critical point of parallel processor numbers is larger than the
available number.

For the processor grids we used we have P < P, SO
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Table 1

Measured/estimated runtime, efficiencies and speed-ups without overlapping consideration
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Processor grid

Theoretical results

Measured/estimated results

a T, (ms) E, (%) S, T, (ms) E, (%) S,

66 0.04 24.52 98.57 35.48 24.78 98.42 35.54
10% 10 0.10 9.29 93.69 93.69 9.32 93.66 93.68
14 % 14 0.20 5.26 84.40 164.43 531 84.48 164.33
18 18 034 3.74 71.80 232.63 3.72 71.81 232.66
2222 0.50 3.08 58.24 281.87 3.10 58.29 281.41
26 % 26 0.70 2.81 45.79 309.57 2.88 46.10 310.12
30 % 30 0.95 2.62 35.48 319.34 2.58 35.44 32048
3434 121 2.79 27.42 310.98 2.62 27.58 31030
38 % 38 1.51 2.83 21.30 307.54 2.68 21.42 307.66
42x42 1.84 2.95 16.70 294.52 2.02 16.49 294.42

that the runtime decreases and speed-up increases for
increasing numbers of processors as predicted by our
theoretical analysis. When the processor grids reach
30 %30, close to P, the minimal runtime and hence
maximal speed-up can be achieved. After P > P, the
runtime increases and speed-up decreases for increasing
number of processors. For parallel efficiency, for suffi-
ciently large P, the communication time dominates the
total runtime. When P = P,,,, it is not surprising to see
that 67% is spent in communication! After P > P, the
percentage of communication time in total runtime
increases for increasing number of processors. Also the
theoretical model can predict very well on the performance
of the parallel implementation.

For the IQMR method with overlapping consideration,
the theoretical and measured runtime, efficiencies and
speed-ups for one iteration step are given in Table 2. Here
we consider processor grids between 6 X 6 and 42 X 42 as
same as the approach without overlapping consideration
to be the typical examples to investigate the parallel
performance.

For P, = 102, we see clearly for processor grid 6 X 6,
there is no significant communication visible. The corre-
sponding parallel efficiency equals almost to 100%. When

Table 2

the number of processors is increased from 6 X 6 to 10 X 10,
the parallel efficiency remains almost constant around 100%
which has been predicted by our previous analysis because
we have P < P, so that the increase in the communication
time is covered by the overlapping computation. During this
stage, the communication time is not very important for
small processor grids. For processor grids of P increases
to 10 X 10 near P,,; the communication time balance with
the overlapping computation time. Accordingly, we can
achieve near linear speed-up with near 100% parallel effi-
ciency. But for larger processor grids we cannot overlap the
communication which dominates the runtime. For the
processor grids P, < P < P, the runtime decreases
and speed-up increases for increasing numbers of proces-
sors. Since the communication dominates the runtime, the
parallel efficiency decreases slowly for increasing number
of processors. When the processor grids reach 30 X 30, close
to P, the minimal runtime and hence maximal speed-up
can be achieved. After P > P,,,,, the runtime increases and
speed-up decreases for increasing number of processors
which are predicted very well by the theoretical analysis.
With regards to parallel efficiency, when P = P, 63% is
spent in communication! After P > P, the percentage of
communication time in total runtime keeps increasing for

Measured/estimated runtime, efficiencies and speed-ups without overlapping consideration

Processor grid Theoretical results

Measured/estimated results

B 0 T, (ms) E, (%) S, T, (ms) E, (%) S,

6X6 0.21 0.04 24.17 100.00 36.00 24.42 98.22 34.91
10x 10 1.98 0.11 8.70 100.00 100.00 8.18 99.48 99.08
14x 14 1.00 0.21 4.95 89.62 175.65 5.06 89.17 175.66
18X 18 1.00 0.35 3.55 75.54 244.74 3.68 75.36 244.84
22x22 1.00 0.53 2.96 60.67 293.65 3.04 60.92 293.38
26 X 26 1.00 0.74 2.72 47.28 319.64 2.88 47.49 319.46
30 %30 1.00 0.98 2.65 36.37 327.31 2.56 36.62 327.26
34 X34 1.00 1.26 2.69 27.95 323.05 2.62 27.58 323.37
38 x38 1.00 1.58 2.78 21.61 312.08 2.88 21.44 312.28
42x42 1.00 1.93 2.92 16.89 29791 2.89 16.81 297.86
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increasing number of processors. The theoretical model can
give a very precise prediction on the performance of the
parallel implementation.

A direct comparison shows that the optimal performance
for the IQMR method with overlapping consideration is
better than the approach without overlapping. With over-
lapping we can run faster on fewer processors, which, of
course, gives a large improvement in parallel efficiency.
But the scalability is not improved by overlapping the
communication.

From the theoretical and measured results, the quantita-
tive parallel behavior is relatively well modeled for both
implementations with and without overlapping considera-
tion. There is an almost constant difference between the
measured and theoretically estimated values.

7. Conclusions

In this paper, a theoretical model of computation and
communication phases is presented to allow us to give a
quantitative analysis of the parallel performance of the
IQMR method on a massively distributed memory computer
with two-dimensional grid topology. The efficiency, speed-
up, and runtime are expressed as functions of the number of
processors scaled by the number of processors that gives the
minimal runtime for the given problem size. This provides a
natural way to analyze the performance characteristics for
the range of the number of processors that can be used
effectively. The model not only shows clearly the dramatic
influence of global communication on the performance, but
also evaluates effectively the improvements in the perfor-
mance due to communication reductions by overlapping.
The model also provides useful insight into the scalability
of IQMR method. The numerical timing results agree well
with the theoretically estimated results predicted by this
performance model.
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