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Abstract

Jacobi-based algorithms have attracted attention as they have a high degree of potential parallelism and may be more accurate

than QR-based algorithms. In this paper we discuss how to design efficient Jacobi-like algorithms for eigenvalue decomposition of a

real normal matrix. We introduce a block Jacobi-like method. This method uses only real arithmetic and orthogonal similarity

transformations and achieves ultimate quadratic convergence. A theoretical analysis is conducted and some experimental results are

presented.
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1. Introduction

A real matrix A is said to be normal if it satisfies the
equation

AAT ¼ AT A;

where AT is the transpose of matrix A: A normal matrix
can be reduced to diagonal form using unitary similarity
transformations

QHAQ ¼ D;

where D is diagonal, Q is unitary and QH is the
conjugate transpose of Q: The standard sequential
method for eigenvalue decomposition of this kind of
matrix is the QR algorithm. However, when massively
parallel computation is considered, the parallel version
of the QR-based algorithms for solving unsymmetric
eigenvalue problems may not be very efficient because
the algorithms are difficult to scale.
One alternative to the QR method is a Jacobi method.

Jacobi-based algorithms have recently attracted atten-
tion as they have a higher degree of potential parallelism
and may be more accurate than QR-based algorithms
[4]. The Jacobi method, though originally designed for

symmetric eigenvalue problems, can be extended to
solve eigenvalue problems for unsymmetric normal
matrices [5,23]. A problem is that we have to use
complex arithmetic even for real-valued normal ma-
trices. Complex operations are expensive and should be
avoided if possible. A quaternion-Jacobi method was
introduced in [17]. In this method a 4� 4 symmetric
matrix can be reduced to a 2� 2 block diagonal form
using one orthogonal similarity transformation. This
method can also be extended to compute eigenvalues of
a general normal matrix. Difficulties with this method
are that the original matrix has to be divided into a sum
of a symmetric matrix and a skew-symmetric matrix,
and that the algorithm cannot be used to solve the
eigenvalue problem of near-normal matrices. Another
parallel Jacobi-like algorithm, named the Real Two-
Zero (RTZ) algorithm, was proposed in [18]. This
method uses real arithmetic and orthogonal similarity
transformations. It is claimed that quadratic conver-
gence can be obtained when computing eigenvalues of a
real near-normal matrix with real distinct eigenvalues.
However, a serious difficulty with this algorithm is that
the process may fail to converge if the matrix has
complex eigenvalues.
In this paper we discuss a block Jacobi-like method

for computing the eigenvalue decomposition of a real
normal matrix. The method uses only real arithmetic
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and orthogonal similarity transformations. The theore-
tical analysis and experimental results show that
ultimate quadratic convergence can be achieved for
general real normal matrices with distinct eigenvalues.
Our aim is to design scalable algorithms which can be
implemented efficiently on parallel machines.
Real normal matrices are generalisations of real

symmetric matrices. A real symmetric matrix is normal,
but a real normal matrix is not necessarily symmetric.
We focus our attention on the unsymmetric case although
the method to be described applies to both cases.
The paper is organised as follows. The basic idea of

the block method is described in Section 2. In Section 3
we give a theoretical analysis which indicates how to
choose orthogonal similarity transformations so that
ultimate quadratic convergence can be obtained. Some
experimental results are presented in Section 4. In
Section 5 we describe a parallel ring Jacobi ordering which
is equivalent to the sequential cyclic Jacobi ordering in
terms of both ordering and sorting and can thus directly be
applied for parallel implementation of our block method.
Finally, the conclusions are given in Section 6.

2. Basic idea

Before discussing the basic idea of our block method,
we first sketch a proof of the following lemma. Here jjAjj
denotes the Frobenius norm, and e is a small parameter.

Lemma 1. Let a normal matrix A be divided into blocks

as follows:

A ¼

A11 A12 ? A1m

A21 A22 ? A2m

^ ^ & ^

Am1 Am2 ? Amm

0
BBB@

1
CCCA; ð1Þ

where the size of each block Aij is p � p:
If A is nearly block upper triangular, that is,X

k4i

jjAkijj2 ¼ OðeÞ; for all i;

then A will be nearly block diagonal. Similarly if A is

nearly block upper triangular.

Proof. Since the matrix A is normal, and ðAATÞii ¼P
k AikAT

ik and ðAT AÞii ¼
P

k AT
kiAki; where ðX Þij de-

notes the ði; jÞth block of matrix X ; we have

ðAAT � AT AÞii ¼
X

k

AikAT
ik �

X
k

AT
kiAki ¼ 0: ð2Þ

Taking the sum on both sides of the above equation, we
obtain the following relation for all i:X
kai

ðjjAkijj2 � jjAikjj2Þ ¼ 0: ð3Þ

When i ¼ 1; this implies thatX
k41

jjA1kjj2 ¼
X
k41

jjAk1jj2 ¼ OðeÞ:

When i ¼ 2; we haveX
k42

jjA2kjj2 þ jjA21jj2 ¼
X
k42

jjAk2jj2 þ jjA12jj2

orX
k42

jjA2kjj2 ¼
X
k42

jjAk2jj2 þ jjA12jj2 � jjA21jj2

p
X
k42

jjAk2jj2 þ
X
k41

jjA1kjj2

¼OðeÞ:

Proceeding in this way, we can easily prove by induction
thatX
k4i

jjAikjj2 ¼ OðeÞ: &

From the above lemma we see that, if we can reduce a
real normal matrix to a block upper triangular form
using orthogonal similarity transformations, the matrix
will become block diagonal. The initial idea of our
method is as follows. To avoid using complex arith-
metic, we choose the size of each block to be 2� 2 (set
p ¼ 2 in (1)) and each block Aij will have the form

Aij ¼
a2i�1;2j�1 a2i�1;2j

a2i;2j�1 a2i;2j

 !
; ð4Þ

where a2i�x;2j�y (for iX1; jX1; 0pxp1 and 0pyp1) are
scalar elements in the original matrix A: We apply a
sequence of orthogonal similarity transformations
(purely real arithmetic) to annihilate the off-diagonal
blocks only in the lower triangle. If the procedure
converges, a real normal matrix will become block
diagonal with each pair of conjugate complex eigenva-
lues being grouped in the same block. A key problem is
how to choose the orthogonal transformation matrices
during the computation. If the orthogonal transforma-
tion matrices are not chosen properly, quadratic
convergence may not be guaranteed. This is the main
topic that we discuss in the next two sections.
It should be noted that the convergence problem is

directly related to ordering schemes for reducing a
matrix to a triangular form. The key to design a good
parallel Jacobi (or Jacobi-like) algorithm is to design a
parallel Jacobi ordering. Fortunately, many existing
schemes for parallel Jacobi ordering, for example those
described in [2,3,16,22,26,27], have been proved to be
equivalent to the well-known sequential cyclic ordering
[16,26]. If we can prove that our method works well with
the cyclic Jacobi ordering, it will then work well with
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equivalent parallel Jacobi ordering schemes. To simplify
our discussion, therefore, in the next two sections we
only use the cyclic Jacobi ordering. In Section 5 we show
how to implement our method on a parallel machine
using a parallel ring Jacobi ordering.
The basic structure of our block Jacobi-like method

using cyclic Jacobi ordering is sketched in Fig. 1. In this
figure the value of totalBlocks is equal to the number of
lower triangular off-diagonal blocks, or number of
iterations in a sweep, which is equal to nðn � 2Þ=8 for n

the size of the original matrix A: (We assume that
padding is used if necessary to ensure that n is even.)
Because the size of each block is 2� 2; the submatrix B is
then of size 4� 4: A counter zeroBlocks is used to check
how many off-diagonal blocks in the lower triangle are
zero to working accuracy. The process stops if the value of
this counter equals totalBlocks in a complete sweep.

3. Theoretical analysis

We show in the next three lemmas that, if the
orthogonal transformation matrices are chosen properly
and if the process converges for a normal matrix with
distinct eigenvalues, then the convergence rate will
ultimately be quadratic.
In the following discussion submatrix B has a form as

in Fig. 1. Submatrix Bij is also a block matrix in the
same form as B; that is, when the original matrix is
divided into a block matrix with each block Aij of size
2� 2; Bij will be a 2� 2 block submatrix in the same
form as B: The difference is that B in Fig. 1 represents
the block submatrix on the main diagonal, but Bij is
more general.

Lemma 2. If a normal matrix A is divided into blocks Bij

then the main diagonal blocks have the following

property:

jjBiiB
T
ii � BT

ii Biijjp
X
kai

ðjjBkijj2 þ jjBikjj2Þ: ð5Þ

Proof. Since the matrix A is normal, we have

ðAAT � AT AÞii ¼
X

k

BikBT
ik �

X
k

BT
kiBki ¼ 0

or

BiiB
T
ii � BT

ii Bii ¼
X
kai

ðBT
kiBki � BikBT

ikÞ:

Then

jjBiiB
T
ii � BT

ii Biijjp
X
kai

jjBT
kiBki � BikBT

ikjj

p
X
kai

ðjjBT
kiBkijj þ jjBikBT

ikjjÞ:

Since jjBT
kiBkijjpjjBT

kijj jjBkijj ¼ jjBkijj2; we thus have
jjBiiB

T
ii � BT

ii Biijjp
X
kai

ðjjBkijj2 þ jjBikjj2Þ: &

It can be seen from above lemma that, if the norm of
every off-diagonal block is small, each block matrix Bii

on the main diagonal will be close to normal, that is,
jjBiiB

T
ii � BT

ii Biijj ¼ Oðe2Þ if maxðjjBijjjÞ ¼ e for iaj:
The next lemma shows that, when a matrix of size

4� 4 is reduced to a block triangular form, with the size
of each block being 2� 2; through an orthogonal
similarity transformation, the norm of its upper off-
diagonal block will also be decreased if the matrix is
close to normal.

Lemma 3. Assume that matrix B of size 4� 4; is close to

normal and has the property

jjBBT � BT Bjj ¼ OðZÞ; ð6Þ
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where Z is a small positive number, and that B has four

nonzero eigenvalues and can be reduced to a block

triangular form through an orthogonal similarity trans-

formation, that is,

QT BQ ¼ D; ð7Þ

where Q is a real orthogonal matrix and

D ¼
D11 D12

0 D22

 !
ð8Þ

for each block Dij being of size 2� 2:
Let the eigenvalues of D11 and D22 be l1i and l2i for

i ¼ 1; 2; respectively. (These are also the eigenvalues of

B:) If these eigenvalues are bounded and the eigenvalues of

D11 are separated from those of D22; that is,

1� l1i

l2j

����
����4c ð9Þ

for c some positive constant, then we have

jjD12jj ¼ OðZÞ:

Proof. Since B ¼ QDQT and BT ¼ QDT QT ; we have

jjBBT � BT Bjj ¼ jjQðDDT � DT DÞQT jj:
Thus

jjDDT � DT Djj ¼ OðZÞ: ð10Þ
It is easy to see that the second block of the first column
in DDT � DT D is D22D

T
12 � DT

12D11: We know that
jjD12jja0: Otherwise, B becomes a normal matrix. Since
jjD12jja0 and the eigenvalues are nonzero and distinct,
jjD22D

T
12 � DT

12D11jj may be nonzero. However, it is easy
to see from (10) that it must, when being divided into
blocks, be of order Z at most, that is,

jjD22D
T
12 � DT

12D11jj ¼ OðZÞ: ð11Þ
Matrix B has four nonzero eigenvalues and both D11

and D22 have full rank. The following inequality holds:

jjDT
12 � D�1

22 DT
12D11jjpjjD�1

22 jj jjD22D
T
12 � DT

12D11jj: ð12Þ
Since the eigenvalues of matrix B are bounded and
nonzero, the eigenvalues of jjD�1

22 jj must also be
bounded. We then obtain

jjDT
12 � D�1

22 DT
12D11jj ¼ OðZÞ: ð13Þ

Let

D11 ¼ Q1R1Q
H
1

and

D�1
22 ¼ Q2R2Q

H
2

be the eigenvalue decomposition of D11 and D�1
22 for Q1

and Q2 unitary and R1 and R2 upper triangular, and
define

QH
2 DT

12Q1 ¼ E:

We then have

jjE � R2ER1jj ¼ jjQ2ðE � R2ER1ÞQH
1 jj

¼ jjDT
12 � D�1

22 DT
12D11jj

¼OðZÞ: ð14Þ

Let

E ¼
e11 e12

e21 e22

 !
;

R1 ¼
r
ð1Þ
11 r

ð1Þ
12

0 r
ð1Þ
22

 !

and

R2 ¼
r
ð2Þ
11 r

ð2Þ
12

0 r
ð2Þ
22

 !
:

Expanding G ¼ E � R2ER1; we obtain

G ¼
s11e11 � r

ð2Þ
12 r

ð1Þ
11 e21 s12e12 � r

ð2Þ
11 r

ð1Þ
12 e11 � r

ð2Þ
12 r

ð1Þ
12

e21 � r
ð2Þ
12 r

ð1Þ
22 e22

s21e21 s22e22 � r
ð2Þ
22 r

ð1Þ
12 e21

0
BB@

1
CCA;

where sji ¼ 1� r
ð2Þ
jj r

ð1Þ
ii :

However, r
ð1Þ
ii is an eigenvalue of D11 and 1=r

ð2Þ
jj is an

eigenvalue of D22: From (9), we have

jsjij ¼ j1� r
ð2Þ
jj r

ð1Þ
ii j

¼ 1� l1i

l2j

����
����

4 c:

According to Eq. (14) all the elements in G must be of
order Z; that is,

js21e21j ¼OðZÞ;

js11e11 � r
ð2Þ
12 r

ð1Þ
11 e21j ¼OðZÞ;

js22e22 � r
ð2Þ
22 r

ð1Þ
12 e21j ¼OðZÞ;

js12e12 � r
ð2Þ
11 r

ð1Þ
12 e11 � r

ð2Þ
12 r

ð1Þ
12 e21 � r

ð2Þ
12 r

ð1Þ
22 e22j ¼OðZÞ:

From the first equation we can obtain je21j ¼ OðZÞ
because js21j greater than a constant c: After we know
that je21j is of order Z; we can easily verify that je11j (and
je22j) is of order Z from the second equation (and the
third equation). Because je11j; je21j and je22j are all of
order Z and js12j4c; we obtain je12j ¼ OðZÞ from the
fourth equation. Therefore, jjEjj must be of order Z and
we have

jjD12jj ¼ jjQ2EQH
1 jj

¼ jjEjj
¼OðZÞ: &

Assume that a normal matrix is divided into blocks of
size 2� 2 and that the norm of each off-diagonal block
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is of order e: According to Lemma 2 the norm of
submatrix B in Fig. 1 must satisfy the equation

jjBBT � BT Bjj ¼ Oðe2Þ:

After an orthogonal similarity transformation which
reduces B to a block upper triangular matrix, the norm
of the upper off-diagonal block in B should have the
same order as jjBBT � BT Bjj according to the above
lemma. Therefore, it will be of order e2: In the following
we show that, if the orthogonal transformation matrices
are chosen properly, ultimate quadratic convergence can
be achieved.
Explicitly write matrices B and Q in (7) as 2� 2 block

matrices, that is,

B ¼
A11 A12

A21 A22

 !

and

Q ¼
Q11 Q12

Q21 Q22

 !

and assume that jjA12jj ¼ OðeÞ and jjA21jj ¼ OðeÞ: Then
we have the following lemma.

Lemma 4. Assume that an orthogonal matrix is found

such that

Q11 Q12

Q21 Q22

 !T
A11 A12

A21 A22

 !
Q11 Q12

Q21 Q22

 !

¼
D11 D12

0 D22

 !
: ð15Þ

Further assume that the eigenvalues of A11 and A22 are

g1k; g2k for k ¼ 1; 2; respectively, and the eigenvalues of

D11 and D22 are l1l and l2l for l ¼ 1; 2: If the eigenvalues

gik of Aii and the eigenvalues gjl of Djj satisfy the following

inequality:

1� gik

ljl

����
����4c ð16Þ

for iaj; and c being a constant greater than zero, then the

norms of both Q12 and Q21 in the generated orthogonal

matrix must be of order e; that is,

jjQ12jj ¼ OðeÞ
and

jjQ21jj ¼ OðeÞ:

Proof. From (15) we have

A21Q11 þ A22Q21 ¼ Q21D11

or

A21Q11 ¼ Q21D11 � A22Q21

or

A21Q11D
�1
11 ¼ Q21 � A22Q21D

�1
11 ð17Þ

and

A11Q12 þ A12Q22 ¼ Q11D12 þ Q12D22

or

ðA12Q22 � Q11D12ÞD�1
22 ¼ Q12 � A11Q12D

�1
22 : ð18Þ

Since jjA21jj ¼ OðeÞ; jjA12jj ¼ OðeÞ and jjD12jj ¼ Oðe2Þ
which can be obtained by combining the results of
Lemmas 1 and 3, the norms of the left-side of the
equations in (17) and (18) must be of order e: We thus
have

jjQ21 � A22Q21D
�1
11 jj ¼ OðeÞ ð19Þ

and

jjQ12 � A11Q12D
�1
22 jj ¼ OðeÞ: ð20Þ

The above two equations have the same form as in (13).
Adopting the same technique that we used in Lemma 3
to prove jjD12jj ¼ OðZÞ; we can easily obtain jjQ21jj ¼
OðeÞ and jjQ12jj ¼ OðeÞ: (Note that as the inequality (9)
played a key role in proving jjD12jj ¼ OðZÞ; so does
the corresponding inequality (16) in proving this
lemma.) &

Using an orthogonal transformation matrix with
jjQ21jj ¼ OðeÞ and jjQ12jj ¼ OðeÞ to update (premultiply)
a vector ð0 0 v3 v4ÞT (or ðv1 v2 v3 v4ÞT for v1 and v2 of
order e2), the zero elements in the vector will become
Oðe2Þ (or v1 and v2 will retain their original order) if
both v3 and v4 are of order e: This is a key factor for
obtaining ultimate quadratic convergence.
Consider a 4� 4 block matrix A for each block being

of size 2� 2 and that after k sweeps the norm of each
off-diagonal block becomes the order of e; that is,

AðkÞ ¼

A11 e12 e13 e14
e21 A22 e23 e24
e31 e32 A33 e34
e41 e42 e43 A44

0
BBB@

1
CCCA;

where the off-diagonal block Aij is represented by eij

which means jjAijjj is of order e:
Assume that the cyclic ordering is adopted in the

computation. At the ðk þ 1Þth sweep A21 will be
annihilated first. According to the structure depicted in
Fig. 1, a submatrix B is formed, that is,

B ¼
A11 e12
e21 A22

 !
:

Since all off-diagonal blocks Aij are of order e; from
Lemma 2 we have

jjBBT � BT Bjj ¼ Oðe2Þ:
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After an orthogonal similarity transformation on B to
annihilate A21; the norm of A12 will become Oðe2Þ
according to Lemma 3.
Next A31 is annihilated. For the same reason we have

jjA13jj ¼ Oðe2Þ after the orthogonal similarity transfor-
mation. However, A21 will become nonzero again.
If the norms of the off-diagonal blocks of the
generated orthogonal matrix are of order e; we can
guarantee jjA21jj ¼ Oðe2Þ and jjA12jj ¼ Oðe2Þ after the
updating.
It can be seen from above discussion that jjAjijj will

become Oðe2Þ after Aij is annihilated for i4j and during
the successive transformations both jjAjijj and jjAijjj can
remain of order e2 if at each step the orthogonal
transformation matrix is chosen properly such that the
norms of its off-diagonal blocks (of size 2� 2) are of
order e: After the ðk þ 1Þth sweep the matrix will
become

Aðkþ1Þ ¼

A11 Oðe2Þ Oðe2Þ Oðe2Þ
Oðe2Þ A22 Oðe2Þ Oðe2Þ
Oðe2Þ Oðe2Þ A33 Oðe2Þ
Oðe2Þ Oðe2Þ Oðe2Þ A44

0
BBB@

1
CCCA:

Therefore, asymptotic quadratic convergence is ob-
tained.
Now the problem is how to choose the orthogonal

transformation matrix so that the norms of its off-
diagonal blocks are of order e: Inequality (16) plays a
crucial role in proving Lemma 4. When B is close to
normal, the eigenvalues of A11 and A22; the diagonal
blocks of B; will be very close to the true eigenvalues of
B: If an orthogonal transformation also involves (either
implicitly or explicitly) a permutation on rows and
columns between blocks, the eigenvalues of D22 can be
very close to those of A11: In that case inequality (16)
will not be satisfied. We then do not know if the
generated orthogonal matrix still has the desired
form.
A natural way to alleviate this problem is to

incorporate sorting with Jacobi ordering. With the use
of sorting, diagonal blocks settle down more quickly.
After the diagonal blocks settle down, there will be no
permutation of rows and columns between blocks and
thus inequality (16) is guaranteed. Experiments (e.g.
those presented in [19,26]) have shown that to incorpo-
rate sorting with Jacobi ordering can improve perfor-
mance for symmetric matrices. In the next section we
give some experimental results to show that ultimate
quadratic convergence can be obtained for general
normal matrices by incorporating a sorting procedure
with the cyclic ordering when the QR algorithm with
double implicit shift is used in the block Jacobi-like
method for the local block submatrix reduction.

4. Experimental results

In our experiments the basic algorithm for reducing B

in Fig. 1 to a block triangular matrix at each step is
the QR algorithm with double implicit shift and
relevant subroutines in EISPACK [21] are used. (Note
diagonal eigenvalues sometimes have to be swapped to
ensure the norm of the lower off-diagonal block
jjAjijj ¼ 0:)
The stopping criteria used in our experiment is the

same as that in EISPACK, that is, an off-diagonal
element aij is considered as zero if jaijjpðjaiij þ jajj jÞ �
emach for emach the machine precision. The norm of a
lower triangular off-diagonal block jjAjijj is considered
as zero if all the elements in it are considered as zero.
The computation stops if all the lower triangular off-
diagonal blocks are considered as zero.
Three different matrices are used in our experiments.

The first matrix has distinct real eigenvalues, the second
one has half of its eigenvalues real and the other half
complex, and the third contains distinct complex
eigenvalues.
In our first experiment we did not adopt any special

sorting procedure. The procedures used to find an
orthogonal matrix (the first step in the IF statement in
Fig. 1) are as follows:

1.1. Reduce B to a block triangular form using
standard QR with double implicit shift;

1.2. If jjAjijj is nonzero, shift eigenvalues so that
jjAjijj ¼ 0:

The second procedure is used to ensure that the lower
block triangular norm is zero.
Some experimental results are depicted in Table 1. It

can be seen from the table that the algorithm performs
well for the matrix which has only complex eigenvalues,
but not so well for matrices which contain real
eigenvalues. Note that the standard QR with double
implicit shift does not sort real eigenvalues. Though
it does not order complex eigenvalues either, the lower
2� 2 block will converge to the true eigenvalues rapidly
when it is close to a pair of conjugate complex
eigenvalues because of the double shift. Therefore, the
rows and columns of the block submatrix will not be
exchanged during the orthogonal similarity transforma-
tion. The effect is similar to sorting although the
eigenvalues are not sorted in the usual way. This may
be the reason why a matrix with only complex
eigenvalues can converge quadratically to block diagonal
form.
In our second experiment the same QR algorithm was

used for block submatrix reduction. However, we added
a sorting procedure to sort real eigenvalues, that is,

1.1. Reduce B to a block triangular form using
standard QR with double implicit shift;
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1.2. If jjAjijj is nonzero, shift eigenvalues so that
jjAjijj ¼ 0

1.3. Sort real eigenvalues in B in a nonincreasing order.

When the real eigenvalues in each block submatrix are
sorted in a nonincreasing order, the cyclic ordering can
guarantee that all the real eigenvalues will be sorted in
nonincreasing order. Table 2 shows the experimental
results when the same matrices are used as those in

our first experiment. It can be seen that quadratic
convergence is obtained for all the matrices after the
sorting procedure is incorporated. This is an evidence
for the importance of sorting in block Jacobi-like
methods.
Some experimental results for matrices of different

sizes are given in Table 3. We can see from this table that
it takes a few more sweeps to converge for a matrix with
complex eigenvalues than for a matrix with all real

ARTICLE IN PRESS

Table 1

Sweeps and lower block triangular norms for 40� 40 matrices obtained by using the block algorithm without sorting

Sweep Lower block triangular norm

Matrix 1 Matrix 2 Matrix 3

0 1.216919467218377 1.942474075382786 2.496954343408182

1 0.8439242118214305 1.444070030260214 1.849869669358216

2 0.6715976208966092 0.9099848524494509 1.085259770981389

3 0.5694434773575591 0.5781929865448607 0.4617255166054944

4 0.4741511123441828 0.3448206046877936 0.1168896666930765

5 0.4158622482882098 0.2100276271297201 2.394464637809306e-02

6 0.3396277313047820 0.1199726773598173 1.947540032820058e-04

7 0.2952900301463802 9.980169372632480-02 9.808465071791773e-09

8 0.2670511113785617 9.139422480738207e-02 1.177560482223073e-15

9 0.1976341619796229 6.635400959295680e-02 3.205392919010865e-16

23 2.982459710120542e-02 2.170532650662510e-09

24 1.472832625703867e-02 2.183222832088858e-09

25 1.366728263813406e-02 9.386963954187879e-11

26 1.125831279655028e-02 3.310682565962637e-16

27 4.490752073166923-03

28 4.213903185722646-03

29 3.239742746922371e-03

30 2.037809355066387e-03

Table 2

Sweeps and lower block triangular norms for 40� 40 matrices obtained by the block algorithm with the use of sorting

Sweep Lower block triangular norm

Matrix 1 Matrix 2 Matrix 3

0 1.216919467218377 1.942474075382786 2.496954343408182

1 0.6750246824159247 1.461835195736259 1.839162340923474

2 0.2199706803702323 0.9192624818874845 1.094029846622824

3 4.559208067945802e-02 0.4212417065916218 0.3932978785936760

4 2.000134475041065e-03 7.792134902151260e-02 7.739108958000541e-02

5 5.069396887509214e-06 4.672120103780485e-03 2.036895300210892e-03

6 1.708986452402760e-11 8.243231692930333e-06 8.707250423915960e-07

7 3.322903255620598e-16 1.606329703756845e-11 1.568197532065648e-13

8 1.764324938059070e-16 1.246328515799187e-16

Table 3

Sweeps taken for matrices of various sizes

Matrix size 40 80 120 160 200

1 7 8 9 9 10

2 8 10 11 12 13

3 8 10 11 12 13
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eigenvalues. We tried sorting the complex eigenvalues to
improve the performance, but no significant improve-
ment was achieved. It seems that the problem is harder
to solve by the block Jacobi-like method when a matrix
has complex eigenvalues, or when a normal matrix is
unsymmetric.

5. Parallel ring Jacobi ordering

Our aim is to design a method for parallel imple-
mentation of eigenvalue decomposition of real normal
matrices. The key to design a parallel Jacobi algorithm is
to find an effective parallel ordering for simultaneous
Jacobi rotations. The parallel ordering should be
equivalent to the sequential cyclic Jacobi ordering to
ensure quadratic convergence. In this section we first
review a parallel Jacobi ring ordering algorithm [26].
When the order of generating different Jacobi rotations
in each sweep is considered, this algorithm is equivalent
to a well-known parallel round robin ordering [3] (and
thus equivalent to the classical sequential cyclic-by-row
ordering). However, one of the distinct features of this
ring ordering algorithm is that parallel sorting of
eigenvalues can be done by using the same procedure
as parallel Jacobi ordering, and then ordering and
sorting can be performed simultaneously in each sweep.
Therefore, this ordering algorithm is equivalent to the
cyclic Jacobi ordering in terms of both ordering and
sorting, and is well suited for parallel implementation of
our block method for eigenvalue decomposition of a real
normal matrix. We briefly describe how our block
method can be implemented in a parallel system using
this parallel ring ordering.
Jacobi’s method for eigenvalue decomposition works

by applying a series of 2� 2 Jacobi rotations to the left
and right of the matrix to drive it to a desired diagonal
form. As in the traditional Jacobi algorithm, the
rotations are performed in a fixed sequence called a
sweep. Each sweep consists of nðn � 1Þ=2 rotations
which are used to annihilates every off-diagonal
elements exactly once. The iterative procedure termi-
nates if one complete sweep occurs in which all off-
diagonal elements are zeros to working accuracy. If the
rotations in a sweep are chosen in a reasonable,
systematic order, the convergence rate is ultimately
quadratic [8,11]. Exceptional cases in which cycling
occurs are easily avoided by the use of a threshold
strategy [25]. Since each Jacobi rotation only affects two
rows and two columns of the matrix, different rotations
can easily be applied in parallel to disjoint pairs of rows
and columns of the matrix. This makes it very attractive
for parallel processing.
Many parallel Jacobi ordering algorithms have been

introduced in the literature [1–3,6,7,9,13–16]. Most of
these orderings can be classified into two equivalent

groups by the definition of ordering equivalence, that is,
two orderings are equivalent if they can generate the
same set of index pairs at the same step by a relabelling
of the initial indices. The odd–even ordering [15] and the
round robin ordering [3] are good representatives for
each of these two groups. The issue of equivalence of
orderings was originally discussed in [16]. However, our
experimental results show that two orderings satisfying
this definition may not share the same convergence
properties even for symmetric eigenvalue decomposition
since an ordering which can also sort the diagonal
elements in each sweep will converge faster than one
which does not [4,12,20,26]. We then introduced a new
ordering algorithm called ring Jacobi ordering, as
illustrated in Fig. 2.
Our ring Jacobi ordering consists of two procedures,

forward sweep and backward sweep, as shown in Fig.
2(a) and (b), respectively. These two procedures are
applied alternately during the computation. In either
forward or backward sweep the n indices are organised
into two rows. Any two indices in the same column at a
step form one index pair. One index in each column is
then shifted to another column as shown by the arrows
so that different index pairs are generated at the next
step. The up-and-down arrow in the figure indicates the
exchange of two indices in the column before one is
shifted. This arrow plays a crucial rule in both ordering
and sorting. Without it the indices initially placed in the
same row can never meet each other and the elements
will not be sorted. Both forward and backward sweeps
will take n � 1 steps to generate nðn � 1Þ=2 different
index pairs in a complete sweep. Fig. 2 also shows that
the ring ordering is equivalent to the well-known round
robin ordering, that is, it can generate the same index
pairs in each step after a permutation of the initial index
positions.
One distinct feature of the ring ordering is that it can

be used to sort the values of n elements into non-
decreasing order (forward sweep) or nonincreasing
order (backward sweep) [26]. The sorting procedure
using a forward sweep is described as follows: The n

elements to be sorted are initially placed in two rows.
During sorting the data flow pattern will be the same as
that for ordering. A compare-exchange operation is
applied to each index pair. Each step now consists of
two sub-steps. The first sub-step compares the two
elements in each column and places the smaller one on
the top and the larger one at the bottom except in even
steps the larger element is placed on the top if the
column has a up-and-down arrow in it. The second sub-
step simply shifts the elements located at the bottom to
the next column according to the arrow ring. The n

elements can be sorted in a nondecreasing order after
n � 1 such steps.
The parallel ring Jacobi ordering is equivalent to the

cyclic Jacobi ordering in terms of both ordering and
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sorting and it has been implemented for symmetric
eigenvalue decomposition and SVD computations.
Therefore, the parallel implementation of our block
method using this ring Jacobi ordering is straightfor-
ward. In the following we briefly describe how this can
be done in a parallel system in which the processors are
configured as a one-dimensional ring (though the
method can also be implemented on parallel machines
of different configurations).
It should be noted that an algorithm without

partitioning is not very useful in practice for general-
purpose parallel computation because the system con-
figuration is fixed, but the size of the user’s problem may
vary. We shall adopt a very efficient partitioning
strategy for Jacobi’s method which is described in [22].
For simplicity, we assume that the given system has p

processors and 4p divides n for n the original matrix size.
(If n is not divisible by 4p; we may simply pad extra zero
columns and rows.) We first divide the original matrix of
size n into a block matrix of size m for m ¼ n=2 and thus
each block being of size 2� 2: Next we further divide
the m block columns into 2p groups with each group
containing m=2p block columns (or n=4p columns).
These groups are distributed evenly to p processors with
each processor holding exactly two groups. Each group
will have m=2p main diagonal blocks of size 2� 2: These

groups are numbered and each is associated with one
index as depicted in Fig. 2. They will move among the
processors according to our parallel ring ordering in
each sweep. At the beginning of a sweep, an initial step
is required to annihilate the lower triangular off-
diagonal blocks corresponding to the main diagonal
blocks in the same group exactly once. This can be done
by using the cyclic ordering. After that, in each step only
those lower triangular off-diagonal blocks correspond-
ing to two main diagonals from different groups are
annihilated once, but the off-diagonal blocks associated
with the main diagonals from the same group will not be
annihilated again. Therefore, it is guaranteed that every
lower triangular off-diagonal blocks is annihilated once
and only once in one complete sweep.
When a lower triangular off-diagonal block is

annihilated, the corresponding main diagonal elements
are sorted at the same time. To sort the main diagonal
elements of the entire matrix, we first sort the diagonal
elements in each individual group using the cyclic
ordering on each individual processor. (It is actually
the bubble sort.) We then use our parallel ring ordering
to sort diagonal elements in different groups. On each
processor we can also adopt the cyclic ordering to sort
diagonal elements in two groups (which can be
considered as two super-indices in our ring ordering)
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Fig. 2. The ring Jacobi ordering, (a) forward sweep, (b) backward sweep, and (c) the round robin ordering with a new initialisation of indices.
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in each step. The main diagonal elements of the entire
matrix are then sorted after a complete sweep. Note that
this sorting procedure is incorporated in the Jacobi
ordering procedure and they are done simultaneously.
Before one group is moved to another processor at the

end of each step, the rows and columns of the matrix
need to be updated. Because the system is configured as
a one-dimensional ring, the updating of the columns can
be performed locally on each processor. However, the
orthogonal transformation matrices need to be accu-
mulated and sent to other processors for updating
blocks of the corresponding rows.
The computation stops if all the off-diagonal blocks

in the lower triangle are zero to working accuracy in a
complete sweep. This can be done by adding a counter
to each processor. At the end of each sweep the counter
values are accumulated to see if the sum is equal to the
number of the lower triangular off-diagonal blocks.
It can be seen that both computation and commu-

nication are quite balanced across the processors during
the execution. This is one of the factors which make
Jacobi’s method attractive.

6. Conclusions

In this paper we discussed a block Jacobi-like method
for the eigenvalue decomposition of a real normal
matrix using real arithmetic. The basic idea of our
method is first to divide the original matrix into blocks
of size 2� 2 and then treat each block as a single
element and use the Jacobi method to reduce the block
matrix to a block triangular form by applying a
sequence of orthogonal similarity transformations
(purely real arithmetic) to annihilate the off-diagonal
blocks in the lower triangle. If the procedure converges,
a real normal matrix will become block diagonal with
each pair of conjugate complex eigenvalues grouped in
the same block.
Our theoretical analysis and experimental results

show that to achieve a quadratic convergence we have
to incorporate a sorting procedure in each sweep for
annihilating the off-diagonal blocks in the lower
triangle. In our experiment the QR algorithm with
double implicit shift is used for submatrix reduction.
However, it is not the only candidate. For example,
similar results were obtained when we used a scheme
which combines the RTZ and the QR algorithms for
local block submatrix reduction [28]. The key to success
is to incorporate sorting with Jacobi ordering.
We also described a parallel ring Jacobi ordering. This

parallel ordering can perform sorting and is thus
equivalent to the well-known sequential cyclic Jacobi
ordering in terms of both ordering and sorting. There-
fore, it can be adopted in our method for parallel
computation of eigenvalue decomposition of a real

normal matrix. We showed an example of implementing
the method on a parallel machine which is configured as
a one-dimensional ring.
In this paper we have introduced a new method that

can be implemented in parallel for eigenvalue decom-
position of real normal matrices. However, there are still
many technical issues relating to efficient implementa-
tion of the method on parallel machines, for example,
the problems of blocking and cache effects when
implementing the method on a particular parallel
machine; the issue of pipeline processing [10]; the
performance issue (i.e., if our method is comparable to
the more general parallel QR-based method [24] for
eigenvalue decomposition of real normal matrices on
high-performance parallel computers); and the issue of
the use of our method for real near-normal matrices.
These are interesting topics for future research.
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