The Improved Conjugate Gradient Squared (ICGS) Method on
Parallel Distributed Memory Architectures *

Laurence Tianruo Yangtf, Richard P. Brent
TDepartment of Computer Science, St. Francis Xavier University
P.0O. Box 5000, Antigonish, B2G 2W5, Nova Scotia, Canada
1 Computing Laboratory, Ozxford University
Wolfson Building, Park Road, Ozford OX1 8QD, UK

Abstract

For the solutions of large and sparse linear systems
of equations with unsymmetric coefficient matrices, we
propose an improved version of the Conjugate Gradi-
ent Squared method (ICGS) method. The algorithm is
derived such that all inner products, matriz-vector mul-
tiplications and vector updates of a single iteration step
are independent and communication time required for
inner product can be overlapped efficiently with com-
putation time of vector updates. Therefore, the cost of
global communication on parallel distributed memory
computers can be significantly reduced. The resulting
ICGS algorithm maintains the favorable properties of
the algorithm while not increasing computational costs.
Data distribution suitable for both irregularly and reg-
ularly structured matrices based on the analysis of the
non-zero matriz elements is also presented. Commu-
nication scheme is supported by overlapping execution
of computation and communication to reduce waiting
times. The efficiency of this method is demonstrated
by numerical experimental results carried out on a mas-
sively parallel distributed memory system.

1 Introduction

One of the fundamental task of numerical comput-
ing is the ability to solve linear systems. These systems
arise very frequently in scientific and engineering com-
puting, for example from finite difference or finite ele-
ment approximations to partial differential equations,
as intermediate steps in computing the solution of non-
linear problems or as subproblems in linear and non-
linear programming.

For linear systems of small size, the standard ap-
proach is to use direct methods, such as LU decomposi-

*The author’s email is lyang@stfx.ca

1530-2016/01 $10.00 © 2001 IEEE

161

tion which obtains the solution through a factorization
of the coefficient matrix. In contrast with direct meth-
ods, iterative methods use successive approximations
to obtain more accurate solutions to the linear systems
at subsequent steps. Iterative methods are computa-
tionally more attractive than the direct methods par-
ticularly for large and sparse systems [7].

A powerful iterative method for the solution of large
and sparse linear systems with unsymmetric positive
definite coefficient matrices is the family of Krylov sub-
space methods [6, 8] involving the coefficient matrix
only in the form of matrix-by-vector products. These
methods basically consist of the generation of a suit-
able basis of a vector space called Krylov subspace and
the choice of the actual iterate within that space. In
this paper, we will mainly focus on one of the Krylov
subspace methods, namely, the Conjugate Gradient
Squared algorithm [11], for large and sparse linear sys-
tems with unsymmetric coeflicient matrices.

On massively parallel computers, the basic time-
consuming computational kernels of Krylov subspace
methods are usually: inner products, vector updates,
matrix-vector multiplications. In many situations, es-
pecially when matrix operations are well-structured,
these operations are suitable for implementation on
vector and shared memory parallel computers [5]. But
for parallel distributed memory machines, the matrices
and vectors are distributed over the processors, so that
even when the matrix operations can be implemented
efficiently by parallel operations, we still can not avoid
the global communication, i.e. accumulation of data
from all to one processor, required for inner product
computations. Vector updates are perfectly paralleliz-
able and, for large sparse matrices, matrix-vector mul-
tiplications can be implemented with communication
between only nearby processors. The bottleneck is usu-
ally due to inner products enforcing global communi-

cation. The detailed discussions on the communication
problem on distributed memory systems can be found
in (3, 4, 10]. These global communication costs become
relatively more and more important when the number
of parallel processors is increased and thus they have
the potential to affect the scalability of the algorithm
in a negative way [3, 4].

Recently, Maheswaran et al.[9] propose a new modi-
fied parallel version of the Conjugate Gradient Squared
(MCGS) method, where the synchronization overhead
is effectively reduced by a factor of two. This is
achieved by changing the computation sequence in
the CGS algorithm. Based on their similar ideas, we
propose a new Improved Conjugate Gradient Squared
(CGS) method. The algorithm is reorganized with-
out changing the numerical stability so that all inner
products, matrix-vector multiplications and vector up-
dates of a single iteration step are independent, and
subsequently communication time required for inner
product can be overlapped efficiently with computa-
tion time of vector updates. Therefore, the cost of
global communication on parallel distributed memory
computers can be significantly reduced. The result-
ing CGS algorithm maintains the favorable properties
of the CGS algorithm while not increasing computa-
tional costs. The efficient parallel implementation de-
tails, in particularly, data distribution and communica-
tion scheme, will be addressed as well. The efficiency
of this method is demonstrated by numerical experi-
mental results carried out on a massively parallel dis-
tributed memory computer, the Parsytec system.

The paper is organized as follows. In section 2,
we will describe briefly the classical Conjugate Gra-
dient Squared (CGS) algorithm. A sketch of a new
improved variant, the Improved Conjugate Gradient
Squared (ICGS) method is described fully as well. In
section 3, the parallel implementation details includ-
ing data distribution and communication scheme are
presented. Numerical experiments carried out on par-
allel distributed memory computers are reported and
some comparisons between the new Improved Conju-
gate Gradient Squared (ICGS) method and other ap-
proaches are given with regards to numerical accuracy,
parallel performance and efficiency in section 4. Finally
we offer some conclusions.

2 The CGS and ICGS Methods

The Conjugate Gradient Squared (CGS) algorithm
[11] for the solution of the linear equations

Az =b, where AeR™™ z,beR". (1)

is described in the Algorithm 1. Here z¢ is any initial
guess for the solution and ro = b — Axp is the initial

162

residual. An arbitrarily chosen vectors 7y such that
7310 # 0 are input to the algorithm, in addition to the
vector b and the sparse matrix A.
Algorithm 1 The Classical CGS Method

1: 7o = b— Awo;90 = p-1 = 0;

2: p_1 = 1;po = 7g 70;

3: forn=1,23,... do

4: 8= ;f%;;

5: Un = Tn + Ban;

6: Pn = un+ B(qn + BPn-1);
7. Up = Apn;

8 O =FaUn;

9 a=Ey
10: gny1 = Up — QUp;
111 fa41 = Un + gnt1;

122 Tp41 =7Tp — @Afpig;
13: Tpg1 = Tp + afnir;
4 pp1 = FE Tntr;
150 €n41 =T 1Tnt1;
16: if (lep+1]| < tol) then
17: STOP

18: end if

19: end for

Recently, Maheswaran et al.[9]"propose a new modi-
fied parallel version of the Conjugate Gradient Squared
(MCGS) method, where the synchronization overhead
is effectively reduced by a factor of two. This is
achieved by changing the computation sequence in
the CGS algorithm. Based on their similar ideas, we
propose a new Improved Conjugate Gradient Squared
(CGS) method. The basic idea in reformulating the
ICGS algorithm is to merge the main computational
kernels such as vector updates, matrix-vector multi-
plications and inner products present in the CGS al-
gorithm so that they can be executed in parallel per
iteration of the algorithm. If we reorganize the vectors
Wn+1,Tntl aNd Tpyq of the MCGS algorithm [9], we
can get the following for the vector wp41:

)
If we define s,, = Ar, and t, = Ay,, we can get from

(2):

Wnt1 = Agni1 = A(un — ayn).

()

Similarly for the vector z,,;, if we insert g4, =
Uy, — Y, into the expression, we will have

Wnt1 = Spn + Pw, — oty

T + a(tn + gni1)
Tn + a(2u, — ay,),

Tn+1

(4)

and for the vector r, 41, if we combine w1, in equation
(3), we have

Tn — a(sp + Bwy + Wny1)

Tn+l

= 1, — 25, + 28w, — aty,). (5)

Based on the equations (3), (4), (5) and complicated
mathematical derivations, the ICGS algorithm can be
depicted as follows:

Algorithm 2 The Improved CGS Method

1: 7-1 =1;p0 = 0;90 = O;wp = 0;
2 w_1 = 0 Y-1 = 0 To = b—- Awo,so: ATO;
3: o = foTTo;ﬂo = 770T30;

4 po =Fwos A =7ay-1;p-1 =1
5: forn=1,2,3,... do

6: Bn = %;

70 On =10p + Bn(2pn + AnBn);

8: Un = Tn + Bndn;

9 Yn = Sp + 2Bnwn + Biyn—i;
10: Sp = Arn;

11: tp = Ayn;

12: w, = Agn;

13: Wpy1 = Sp + ﬂnwn — Qntn;
14 Tpi1 = Tn — @n(28n + 28wy — antn);
5. Tppl = Tp + an(2un — anyy);
16: Prtl = Fgrn+1;

17: NMnt1 = ’FO Sn+41;

18: fin41 = Fg Wny1;

190 Ant1 =g Yn;

20: €ntl1 = TZ_H’I’,H.];

21: if (|ent1| < tol) then

22: STOP

23: end if
24: end for

Under the assumptions, the Improved Conjugate
Gradient Squared (ICGS) method can be efficiently
parallelized as follows:

e The inner products of a single iteration step (16),
(17), (18), (19) and (20) are independent(parallel).

e The matrix-vector multiplications of a single it-
eration step (10), (11) and (12) are indepen-
dent(parallel).

¢ The vector updates (13), (14) and (15) are inde-
pendent, (8) and (9) are independent(parallel).

e The communications required for the inner prod-
ucts (16), (17), (18), (19) and (20) can be over-
lapped with the update for z,4+, in (15).

Therefore, the ‘cost of communication time on paral-
lel distributed memory computers can be significantly
reduced. :

3 Parallel Implementation
3.1 Data distribution

For large and sparse matrices, if you are working
on different computer system architectures or dealing

with different algorithms or data, the efficient storage
schemes should be considered differently. In this paper,
we decide to use one of the most common format called
CRS format (compressed row storage). The main rea-
son behind is that this type of storage scheme is very
suitable for both regularly and irregularly structured
large and sparse matrices. The detailed description can
be found in the literature. Briefly speaking, the non-
zeros of large and sparse matrix are stored in row-wise
in three one-dimensional arrays. The values of the non-
zeros are contained in array value. The corresponding
column indices are contained in array col_ind. The ele-
ments of row_ptr point to the position of the beginning
of each row in value and col_ind.

In order to efficiently parallelize the ICGS algo-
rithm, in particularly, on a distributed memory archi-
tecture, we first need to decide the data distribution
of matrix and vector arrays, hopefully optimally, to
each processor and then determine an efficient commu-
nication scheme by taking into account different spar-
sity patterns, not only for matrix-vector multiplication
but also for inner products, to minimize the overall
execution time. In this paper, we will mainly follow
the approach has been used in [1] for data distribution
and communication scheme which do not require any
knowledge about the matrix sparsity pattern. Also the
communication scheme are automatically determined
by the analysis of the indices of the non-zero matrix
elements.

In the following part, we will use the same notations
introduced in [1] for illustrations. Let ny and ex denote
the number of rows and no-zeros of processor k, where

=0,...,p — 1, respectively. e and n are the total
number of corresponding numbers. g is the index of
the first row of processor k, and z; is the number of
non-zeros of row i. Easily we can get the followmg
relations from [1]: n = Y27 ng,e = Y07 o €ky Gk =
1+ Zi.—.o n;, ex(gr, nk) = Eff;,?k ! 2; Based on the
analysis, the total costs of each iteration can be de-
scribed as ¢ s e + ¢; n + c3 where the first term
corresponds to the number of operations for s matrix-
vector multiplications, the second term corresponds to
the number of vector updates. Since we are mainly
dealing with large and sparse matrices, the constants
can be neglected. Now we can estimate the contribu-
tion of the operations executed on processor k to the
total number of operations by

ser+&ng
se+én

C1 S e+ C2 ng
casetcan

(=~

b

where ¢ = ¢2/c; depends on both the iterative methods
and also the processor architecture. Ideally, the com-
putational load balance should be distributed in such
a way that each processor only gets p-th fraction for

the total number of operations. Based on this, we can
use the following strategy to distribute the rows of the
matrix and the vector components [1]:

Sek(t)'i-ft)l

t k=0,1,...
ng = 1gtgn—g,,+1{| se+én *p} hed
n—z?=0'n,' k=gq+1
0 k=gq+2,...,p—1

Since our main target is large and sparse matrices and
we assume p <€ n, the relationg =p—1lorg+1=p-1
always hold. It can be shown that for £ = ¢3/¢; — 0,
each processor will get nearly the same number of non-
zeros which means that the execution time of the vec-
tor updates in negligible with the execution of matrix-
vector multiplications. Tt also can be shown that for
& = ¢z /ey = oo each processor will get nearly the same
number of rows which means that the execution time
of the matrix-vector multiplications only contribute to
a very small part of the total execution time.

3.2 Communication schemes

After the discussion of data distribution, we also
need to investigate a suitable communication scheme
by preprocessing the distributed column index arrays
for efficient matrix-vector multiplications since on a
distributed memory systems, its computation requires
communication due to the partial vector on each pro-
cessor. Similarly we will use the approach proposed in
(1] for our communication schemes.

If we decide to implement the matrix vector mul-
tiplication row-wisely, components of the vector = of
y = Az are communicated. We firstly analyze the ar-
rays col.ind on each processor to determine which el-
ements result in access to non-local data. Then, the
processors exchange information to decide which local
data must be sent to which processors. Based on the
above analysis, we will reorder these two arrays col_ind
and value in such a way that the data that results in
access to processor [is collected in block I, called lo-
cal block. The motivation behind this reordering is to
perform computation and communication overlapped.
The elements of block ! succeed one another row-wise
with increasing column index per row. The detailed
description can be found in [1}.

For the parallel implementation of this operation,
each processor executes asynchronous receive-routines
to receive necessary non-local data. Then all compo-
nents of the vector = that are needed on other proces-
sors are sent asynchronously. After the required data
are available, each processor will perform operations
with it local block. After that, as soon as non-local
data arrive, processor continue the matrix vector op-
eration by accessing the elements of the correspond-
ing blocks. It will be repeated until the whole oper-
ation is completed. According to the communication

164

{ | ——linear

—=—CGS
* {..i. MCGS
-+ 1CGS

16
Processors

32

Figure 1. Experimental results of speed-up

scheme described, the communication and computa-
tion are performed overlapped so that waiting time can
be reduced.

4 Numerical Experiments

In this section, the parallel variant of the improved
CGS (ICGS) is compared with the modified version of
CGS (MCGS) proposed by Maheswaran et al. [9] and
the originally classical CGS on a massively distributed
memory Parsytec computer.

Here we mainly consider the partial differential
equation taken from [2]

Lu=f§, on 2 =1(0,1) x(0,1),

with Dirichlet boundary condition u = 0 where

Ou

Ou
Lu=-Au- 20(x% + y5§

),
and the right-hand side f is chosen so that the solution
is

u(z,y) = % sin(4nz) sin(67y).

Basically, we discretize the above differential equa-
tion using second order centered differences on a 400 x
400 with mesh size 1/441, leading to a system of 193600
linear equations with a unsymmetric coefficient matrix
of 966240 nonzero entries. Diagonal preconditioning is
used. For our numerical tests, we choose o = 0 as
initial guess and tol = 10~° as stopping parameter.

Since the vectors are distributed over the processor
grid, the inner products usually are computed in two
steps. All processors start to compute in parallel the lo-
cal inner products. After that, the local inner products
are accumulated on one central processor and broad-
casted. The communication time of an accumulation
or a broadcast increases proportionally with the diam-
eter of the processor grid. That means if the number of
processors increases then the communication time for

80% o

*
£
8 2%
= —+—MCGS vs CGS
s ~a—1CGS vs CGS
2 20%
=
3
d

10%

0%

Figure 2. Execution time reduction

the inner products increases as well, and hence this is
a potential threat to the scalability of the algorithm.

The convergence of the proposed improved CGS
(ICGS) is almost the same as the modified CGS
(MCGS) suggested by Maheswaran et al [9] and origi-
nal CGS version where ||7,||2 is computed recursively.
A similar numerical behavior to these variants is ob-
served. There is hardly any difference with respect
to the true residual norm ||b — Az,||2 in those ver-
sions. The parallel performance are given in Fig. 1
where linear is the theoretical linear speedup, ICGS is
the speedup of the improved CGS method, MCGS is
the speedup of the modified CGS method suggested
by Maheswaran et al [9] and CGS is the speedup of
the classical CGS method. These results are based on
timing measurements of a fixed number of iterations.
The speedup is computed as the ratio of the parallel
execution time and the execution time using one pro-
cessor. From the results, we can see clearly that the
modified CGS (MCGS) suggested by Maheswaran et
al (9] is faster than the original one. Meanwhile the
new approach can achieve much better parallel perfor-
mance with a higher scalability than the modified one.
In comparison to the two other approaches, the reduc-
tion in execution time by the ICGS increases with the
number of processors. More precisely, the quantity is
1 — T4(p)/TB(p), where Ta(p) and Tg(p) are the ex-
ecution times on p processors of approach A and B
respectively. In Fig. 2, first curve shows the percent-
age of reduction in execution time by our improved
CGS (ICGS) approach compared to the original one.
Another curve shows the percentage of reduction of
time for the modified CGS (MCGS) proposed by by
Maheswaran et al. [9] compared to the classical CGS
method.

5 Conclusions

We have described an improved version of the Con-
jugate Gradient Squared method (ICGS) method by
combining elements of numerical stability and parallel

algorithm design for the solution of large and sparse lin-
ear systems of equations with unsymmetric coefficient
matrices. The algorithm is derived in such a way that
all inner products, matrix-vector multiplications and
vector updates of a single iteration step are indepen-
dent and subsequently communication time required
for inner product can be overlapped efficiently with
computation time of vector updates. Therefore, the
cost of global communication on parallel distributed
memory computers can be significantly reduced. The -
resulting ICGS algorithm maintains the favorable prop-
erties of the algorithm while not increasing computa-
tional costs. Data distribution suitable for both irreg-
ularly and regularly structured matrices has been pre-
sented. Communication scheme can be supported by
overlapping execution of computation and communi-
cation to reduce waiting times. The approach demon-
strates a high scalability on a massively parallel dis-
tributed memory computer.

References

1. A. Basermann, B. Reichel, and C. Schelthoff. Precondi-
tioned CG methods for sparse matrices on massively parallel
machines. Parallel Computing, (23):381-398, 1997.

2. H. M. Biicker and M. Sauren. Parallel biconjugate gradient
methods for linear systems. In L. T. Yang, editor, Parallel
Numerical Computations with Applications, number 51-70.
Kluwer Academic Publishers, 1999.

3. E. de Sturler. A parallel variant of the GMRES(m). In Pro-
ceedings of the 13th IMACS World Congress on Computa-
tional and Applied Mathematics. IMACS, Criterion Press,
1991.

4. E. de Sturler and H. A. van der Vorst. Reducing the effect
of the global communication in GMRES(m) and CG on par-
allel distributed memory computers. Technical Report 832,
Mathematical Institute, University of Utrecht, Utrecht, The
Netherland, 1994.

5. J.J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der
Vorst. Solving Linear Systems on Vector and Shared Mem-
ory Computers. SIAM, Philadelphia, PA, 1991.

6. R. Fletcher. Conjugate Gradient Methods for Indefinite Sys-
tems. In G. A. Watson, editor, Numerical Analysis Dundee
1975, volume 506 of Lecture Notes in Mathematics, pages
73-89, Berlin, 1976. Springer.

7. R. W. Freund, G. H. Golub, and N. Nachtigal. Iterative
solution of linear systems. Acta Numerica, pages 57-100,
1991. :

8. C. Lanczos. Solutions of Systems of Linear Equations by
Minimized Iterations. Journal of Research of the National
Bureau of Standards, 49(1):33-53, 1952.

9. M. Maheswaran, K. J. Webb, and H. J. Siegel. MCGS: a
modified conjugate gradient squared algorithm for nonsym-
metric linear systems. International Journal of Supercom-
puting, 2000.

10. C. Pommerell. Solution of large unsymmetric systems of
linear equations. PhD thesis, ETH, 1992.
11. P. Sonneveld. CGS: a fast Lanczos-type solver for nonsym-

metric linear systems. SIAM Journal on Scientific and Sta-
tistical Computing, 10:36-52, 1989.

