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Abstract. Consider polynomials over GF(2). We describe efficient al-
gorithms for finding trinomials with large irreducible (and possibly prim-
itive) factors, and give examples of trinomials having a primitive factor
of degree r for all Mersenne exponents r = ±3 mod 8 in the range
5 < r < 107, although there is no irreducible trinomial of degree r.
We also give trinomials with a primitive factor of degree r = 2k for
3 ≤ k ≤ 12. These trinomials enable efficient representations of the
finite field GF(2r). We show how trinomials with large primitive factors
can be used efficiently in applications where primitive trinomials would
normally be used.

1 Introduction

Irreducible and primitive polynomials over finite fields have many applications
in cryptography, coding theory, random number generation, etc. See, for example,
[13, 15, 17, 20, 21].

For simplicity we restrict our attention to the finite field Z2 = GF(2); the
generalization to other finite fields is straightforward. All polynomials are assumed
to be in Z2[x], and computations on polynomials are performed in Z2[x] or in a
specified quotient ring. A polynomial P (x) ∈ Z2[x] may be written as P if the
argument x is clear from the context. We recall some standard definitions.

Definition 1.1 A polynomial P (x) with P (0) 6= 0 has period ρ if ρ is the least
positive integer such that xρ = 1 mod P (x). We say that x has order ρ mod P (x).
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Definition 1.2 A polynomial P (x) is reducible if it has nontrivial factors; oth-
erwise it is irreducible.

Definition 1.3 A polynomial P (x) of degree n > 0 is primitive if P (x) is
irreducible and has period 2n − 1. (Recall our assumption that P (x) ∈ Z2[x].)

If P (x) is primitive, then x is a generator for the multiplicative group of the
field Z2[x]/P (x), giving a concrete representation of GF(2n). See Lidl and Nieder-
reiter [20] or Menezes et al. [21] for background information.

There is an interest in discovering primitive polynomials of high degree n for
applications in random number generation [4, 7] and cryptography [21]. In such
applications it is often desirable to use primitive polynomials with a small number
of nonzero terms, i.e. a small weight. In particular, we are interested in trinomials
of the form xn +xs +1, where n > s > 0 (so there are exactly three nonzero terms).

If P (x) is irreducible and deg(P ) = n > 1, then the order of x in Z2[x]/P (x)
is a divisor of 2n − 1. To test if P (x) is primitive, we must test if the order of x is
exactly 2n−1. To do this efficiently1 it appears that we need to know the complete
prime factorization of 2n−1. At the time of writing these factorizations are known
for n < 713 and certain larger n, see [8].

We say that n is a Mersenne exponent if 2n − 1 is prime. In this case the fac-
torization of 2n−1 is trivial and an irreducible polynomial of degree n is necessarily
primitive. Large Mersenne exponents are known [14], so there is a possibility of
finding primitive trinomials of high degree. To test if a trinomial of prime degree n
is reducible takes time O(n2), so to test all trinomials of degree n takes time O(n3).

Several authors [16, 18, 19, 27] have computed primitive trinomials whose de-
gree is a Mersenne exponent, up to some bound imposed by the computing resources
available. Recently Brent, Larvala and Zimmermann [6] gave a new algorithm, more
efficient than those used previously, and computed all the primitive trinomials of
Mersenne exponent n ≤ 3021377 (subsequently extended to n ≤ 6972593).

For some n ≥ 2, irreducible trinomials of given degree n do not exist. Swan’s
theorem (see §2) rules out n = 0 mod 8 and also most n = ±3 mod 8. Since about
half of the known Mersenne exponents are ±3 mod 8, we can only hope to find
primitive trinomials of degree n for about half the Mersenne exponents n.

In the cases where primitive trinomials are ruled out by Swan’s theorem, the
conventional approach is to use primitive polynomials with more than three nonzero
terms. A polynomial with an even number of nonzero terms is divisible by x + 1,
so we must use polynomials with five or more nonzero terms [18, 19, 21]. This
is considerably more expensive in applications because the number of operations
required for multiplication or division by a sparse polynomial is approximately
proportional to the number of nonzero terms.

In §2 we discuss Swan’s theorem, then in §3 we introduce “almost irreducible”
and “almost primitive” polynomials as a way of circumventing the implications of
Swan’s theorem. An algorithm (AIT) for computing almost irreducible trinomials,
and an extension (APT) for almost primitive trinomials, are described in §4. Algo-
rithm APT has been used to find almost primitive trinomials with high degree in
cases where Swan’s theorem shows that primitive trinomials do not exist. Compu-
tational results and examples are given in §§5–6. In §7 we give some computational
results on almost primitive trinomials that are useful for representing the finite

1Here “efficiently” means in time polynomial in the degree n.
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fields GF(22k

), k ≤ 12. In §8 we explain how to use almost irreducible/primitive
trinomials efficiently in applications. Finally, in §9, we conclude with some theoret-
ical results on the density of almost irreducible and almost primitive polynomials,
and some computational results on the density of the corresponding trinomials. We
thank Shuhong Gao and the referees for their comments on a draft of this paper.

2 Swan’s theorem and its implications

Swan’s theorem is a rediscovery of results of Pellet [23], Stickelberger [24], Dick-
son [10] and Dalen [9] – see Swan [25, p. 1099] and von zur Gathen [12]. Let ν(P )
denote the number of irreducible factors (counted according to their multiplicity)
of a polynomial P ∈ Z2[x].

Theorem 2.1 Swan [25, Corollary 5]. Suppose n > s > 0, n − s odd. Then
ν(xn + xs + 1) = 0 mod 2 iff one of the following holds:
a) n even, n 6= 2s, ns/2 mod 4 ∈ {0, 1};
b) 2n 6= 0 mod s, n = ±3 mod 8;
c) 2n = 0 mod s, n = ±1 mod 8.

If both n and s are odd, we can replace s by n − s (leaving the number of
irreducible factors unchanged, since ν(xn + xs + 1) = ν(xn + xn−s + 1)) and apply
Swan’s theorem. If n and s are both even, then T = xn+xs+1 is a square and ν(T )
is even. Thus, in all cases we can determine ν(T ) mod 2 using Swan’s theorem.

Since a polynomial that has an even number of irreducible factors is reducible,
we have:

Corollary 2.2 If n is prime, n = ±3 mod 8, s 6= 2, s 6= n−2, then xn +xs +1
is reducible over Z2.

Corollary 2.2 shows that there are no irreducible trinomials with degree a
Mersenne exponent n = ±3 mod 8 (except possibly for s = 2 or n − 2). This
appears to prevent us from using trinomials with periods 2n − 1 in these cases.
Fortunately, there is a way to circumvent Swan’s theorem and avoid paying a sig-
nificant speed penalty in most applications of irreducible/primitive trinomials. We
describe this in the following section.

3 Almost primitive trinomials

Tromp, Zhang and Zhao [26] asked the following question: given an integer
r > 1, do there exist integers n, s such that

G = gcd(xn + xs + 1, x2r−1 + 1)

is a primitive polynomial of degree r? They verified that the answer is “yes” for
r ≤ 171, and conjectured that the answer is always “yes”.

Blake, Gao and Lambert [3] confirmed the conjecture for r ≤ 500. They also
relaxed the condition slightly and asked: do there exist integers n, s such that G
has a primitive factor of degree r? Motivated by [3], we make some definitions.

Definition 3.1 A polynomial P (x) of degree n is almost primitive (almost
irreducible) if P (0) 6= 0 and P (x) has a primitive (irreducible) factor of degree r,
for some r > n/2. We say that P has exponent r and increment n− r.
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For example, the trinomial x16 + x3 + 1 is almost primitive with exponent 13
and increment 3, because

x16 + x3 + 1 = (x3 + x2 + 1)D13(x),

where

D13(x) = x13 + x12 + x11 + x9 + x6 + x5 + x4 + x2 + 1

is primitive. From a computational viewpoint it is more efficient to work in the
ring Z2[x]/(x16 + x3 + 1) than in the field F = Z2[x]/D13(x). In §8 we outline
how it is possible to work in the field F , while performing most arithmetic in the
ring Z2[x]/(x16 + x3 + 1), and without explicitly computing the dense primitive
polynomial D13(x).

Note that, according to Definition 3.1, a primitive polynomial is a fortiori an
almost primitive polynomial (the case r = n). Similarly, an irreducible polynomial
other than 1 or x is almost irreducible. The restriction r > n/2 in Definition 3.1
ensures that polynomials such as (x3+x+1)2 are not regarded as almost irreducible.

In practice we choose the smallest possible increment δ for given exponent r,
e.g. in Tables 1–2 we have δ ≤ 16. For most practical purposes, almost primitive
trinomials of exponent r and small increment are almost as useful as primitive
trinomials of degree r (see §8).

4 Searching for almost irreducible/primitive trinomials

In this section we outline algorithms for finding almost irreducible or almost
primitive trinomials with large exponent r. In the latter case we assume that the
complete factorization of 2r − 1 is known. The algorithms are generalizations of
those given in [6, 13, 21], which handle the case δ = 0.

4.1 An algorithm for almost irreducible trinomials. Suppose 0 ≤ δ < r,
0 < s < r + δ, and we wish to test if the trinomial T (x) = xr+δ + xs + 1 is almost
irreducible with exponent r (see Definition 3.1). If it is not then we discard it, and
(perhaps) try again with different (r, s, δ).

We first state the algorithm, then explain the steps whose justification is not im-
mediately obvious. Input to the algorithm is (r, s, δ) and a sieving bound B ∈ [δ, r).
The optimal B is implementation-dependent: see the discussion in [6]. In the com-
putation of Table 1 we used B = min(r − 1,max(δ, 4 + blog2 rc)). Recall that
polynomials are in Z2[x], so computations on polynomials are performed in Z2[x]
or in a quotient ring such as Z2[x]/T (x).

Algorithm AIT(r, s, δ, B)
1. If gcd(r + δ, s) = 0 mod 2 then return false.
2. d := 0; k := 0; S := 1; T := xr+δ + xs + 1;

for i := 2 to δ do
g := gcd(T, (x2i

mod T ) + x);
g := g/ gcd(g, S); S := g × S;
d := d + deg(g); k := k + deg(g)/i;

3. if (d 6= δ) or (k = ν(T ) mod 2) then return false.
4. for i := δ + 1 to B do

g := gcd(T, (x2i

mod T ) + x);
if S mod g 6= 0 then return false.
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5. if ((x2r

mod T ) + x)S 6= 0 mod T then return false.
6. for each prime divisor p 6= r of r

if gcd(((x2r/p

mod T ) + x)S, T ) 6= S then return false.
7. return true. [T is almost irreducible with exponent r.]
If δ = 0, Algorithm AIT reduces to a standard algorithm for finding irreducible

trinomials. We can assume that δ 6= 1, because the only irreducible polynomials
of degree 1 are x and x + 1, and neither can be a factor of a trinomial. Hence, we
need only consider δ ≥ 2.

Step 1 discards trinomials that are squares (see Theorem 4.1 below). If this
step is passed then gcd(T, T ′) = 1, so T is square-free.

Step 2 may be called sieving, although it is done by GCD computations. By
computing gcd(T, (x2i

mod T )+x) for 2 ≤ i ≤ δ, we find the product S = P1 · · ·Pk

of all irreducible factors Pj of T such that deg(Pj) = dj ≤ δ. We have T = SD,
where D is some polynomial of degree n− d, and gcd(S, D) = 1.

Step 3 returns false if d or k is incompatible with the assumption that T has
an irreducible factor of degree r. Note that Swan’s theorem gives ν(T ) mod 2.

In Step 4, suppose S mod g 6= 0. Thus f = g/ gcd(S, g) is a factor of D = T/S,
and f 6= 1. If f 6= D then D is reducible. If f = D then D splits into factors of
degree at most B < r, so again D is reducible. Thus, we can return false.

In Step 5, sieving has failed to discard T , so a full irreducibility test of D is
required. We can discard T (i.e. return false) if x2r 6= x mod D, but D is in general
a dense polynomial, so we perform an equivalent computation that only involves
exponentiation mod T . Note that the computation of x2r

mod T takes only O(r2)
bit-operations, since T is a trinomial.

Finally, we should return false if gcd(x2q

+x, D) 6= 1 for any divisor q of r, q 6= r.
Step 6 implements an equivalent test that is more efficient because the operations
are performed mod T and only maximal divisors q = r/p of r are checked. Step 6
is trivial if r is prime.

4.2 Algorithm APT for almost primitive trinomials. To search for
almost primitive trinomials with exponent r, we apply Theorem 4.2 below, and
then algorithm AIT, to find a candidate trinomial that is almost irreducible with
exponent r. Unless 2r − 1 is prime, it is necessary to verify that the irreducible
factor D of degree r has period 2r − 1 and not some proper divisor of 2r − 1. This
can be done by verifying that, for each prime divisor p of 2r − 1,

((x(2r−1)/p mod T ) + 1)S 6= 0 mod T .

4.3 Refinements. Several refinements are possible.
1. The fast algorithm of [6, §4] can be used to accelerate the computation of

x2i

mod T in steps 2, 4–6 of Algorithm AIT if r + δ is odd.
2. Sieving can often be curtailed. Suppose that step 2 of Algorithm AIT

has been performed for i ≤ δ̂ < δ, so we have found all k̂ irreducible factors of
degree ≤ δ̂. Suppose that the sum of their degrees is d̂. If

d̂ < δ < d̂ + δ̂ + 1, (4.1)

then the constraint d = δ can not be satisfied and we can return false. Also, if
k̂ 6= ν(T ) mod 2, then (4.1) can be replaced by the weaker condition

d̂ < δ < d̂ + 2(δ̂ + 1). (4.2)
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3. If r is a Mersenne exponent, computation of the small factor S can be
avoided. Define F = lcm(2dj − 1), so F is a multiple of the period of S, and
gcd(F, 2r − 1) = 1. Step 2 of Algorithm AIT can easily be modified to compute F
instead of S, and to save gi = deg g at iteration i. Step 4 can be modified to return
false if deg g >

∑
j|i,2≤j≤δ gj . Step 5 can be modified to return false if

(xF )2
r

6= xF mod T (x). (4.3)

The computation involved is almost the same as for the “standard” method of
testing irreducibility of a trinomial [6, §3]: the significant difference is that we start
with xF instead of x. This variation of algorithm AIT was used to compute most
of the entries in Table 1.

4. Theorems 4.1–4.2 allow us to discard many trinomials quickly.

Theorem 4.1 Let T (x) = xn+xs+1 be an almost irreducible trinomial. Then
gcd(n, s) is odd.

Proof Assume that gcd(n, s) is even. Then T (x) = (xn/2 + xs/2 + 1)2 is a
square, so can not have an irreducible factor of degree greater than n/2.

We remark that x6 + x3 + 1 is irreducible (though not primitive) over Z2, and in
this case gcd(n, s) = 3.

Theorem 4.2 Let T (x) = xn + xs + 1 be an almost primitive trinomial. Then
gcd(n, s) = 1.

Proof Suppose g = gcd(n, s) > 1. From Theorem 4.1 we can assume that
g ≥ 3. Write y = xg. Thus T (x) = yn̂ + yŝ + 1, where n̂ = n/g, ŝ = s/g. The order
of y is at most 2n̂ − 1. Thus, the order of x is at most g(2n̂ − 1) = g(2n/g − 1). If
T (x) is almost primitive with exponent r, then the order of x is 2r − 1. Thus

2r − 1 ≤ g(2n/g − 1).

Now n + 1 ≤ 2r by Definition 3.1, so

2(n+1)/2 − 1 ≤ g(2n/g − 1). (4.4)

The right-hand side of (4.4) is a decreasing function of g for g ≥ 3. Thus,

2(n+1)/2 − 1 ≤ 3(2n/3 − 1). (4.5)

It is easy to verify that (4.5) can not hold for n ≥ 6, but if n < 6 then n/g < 2,
which is a contradiction. Hence g = 1.

5 Computational results

We conducted a search for almost primitive trinomials whose exponent r is also
a Mersenne exponent. For all Mersenne exponents r = ±1 mod 8 with r ≤ 6972593,
primitive trinomials of degree r are known, see [6]. Here we consider the cases
r = ±3 mod 8, where the existence of irreducible trinomials xr + xs + 1 is ruled
out by Swan’s theorem (except for s = 2 or r − 2, but the only known cases are
r = 3, 5). For each exponent r we searched for all almost primitive trinomials with
the minimal increment δ for which at least one almost primitive trinomial exists.
The search has been completed for all Mersenne exponents r < 107.

In all cases of Mersenne exponent r = ±3 mod 8, where 5 < r < 107, we have
found at least one almost primitive trinomial with exponent r and some increment
δ ∈ [2, 12]. The results are summarized in Table 1. The first four entries are
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r δ s f Small factors and remarks
13 3 3 7 x3 + x2 + 1
19 3 3 7 x3 + x + 1
61 5 17 31 x5 + x3 + x2 + x + 1
107 2 8 3 x2 + x + 1

14 3 x2 + x + 1
17 3 x2 + x + 1

2203 3 355 7 x3 + x2 + 1
4253 8 1806 255 x8 + x7 + x2 + x + 1

1960 85 x8 + x6 + x5 + x4 + x2 + x + 1
9941 3 1077 7 x3 + x2 + 1
11213 6 227 63 x6 + x5 + x3 + x2 + 1
21701 3 6999 7 x3 + x2 + 1

7587 7 x3 + x2 + 1
86243 2 2288 3 x2 + x + 1
216091 12 42930 3937 x12 + x11 + x5 + x3 + 1

= (x5 + x4 + x3 + x + 1)·
(x7 + x5 + x4 + x3 + x2 + x + 1)

1257787 3 74343 7 x3 + x2 + 1
1398269 5 417719 21 x5 + x4 + 1 = (x2 + x + 1) · (x3 + x + 1)
2976221 8 1193004 85 x8 + x7 + x6 + x5 + x4 + x3 + 1
13466917 ? ? ? None for δ < 3 or δ = 4

Table 1

Some almost primitive trinomials over Z2.
xr+δ + xs + 1 has a primitive factor of degree r;

δ is minimal; 2s ≤ r + δ; the period ρ = (2r − 1)f .

from [3, Table 4]; the other entries are new. They were computed using Algorithm
APT, with some simplifications that are possible because r is a Mersenne exponent
(see §4.3.3 above).

For all but two of the almost primitive trinomials xr+δ +xs+1 given in Table 1,
the period ρ = (2r − 1)f satisfies ρ > 2r+δ−1. Thus, the period is greater than
the greatest period (2r+δ−1− 1) that can be obtained for any polynomial of degree
less than r + δ. In the two exceptional cases the small factors of degree 8 are not
primitive, having period 85 = 255/3.

For the largest known Mersenne exponent, r = 13466917, we have not yet
started an extensive computation, but we have shown that δ ≥ 3 and δ 6= 4 (see
Theorem 6.3).

6 Examples and special cases

We considered the almost primitive trinomial x16 + x3 + 1 in §3. Here we give
an example with much higher degree: r = 216091, δ = 12. We have

x216103 + x42930 + 1 = S(x)D(x),

where

S(x) = x12 + x11 + x5 + x3 + 1,
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and D(x) is a (dense) primitive polynomial of degree 216091. The factor S(x) of
degree 12 splits into a product of two primitive polynomials, x5 + x4 + x3 + x + 1
and x7 + x5 + x4 + x3 + x2 + x + 1. The contribution to the period from these
factors is f = lcm(25 − 1, 27 − 1) = 3937.

Theorem 6.1 If T is an almost irreducible trinomial with exponent 216091
and increment δ, then δ /∈ {0, 1, 2, 4, 6}.

Proof As T is a trinomial, it is not divisible by x or x + 1, so δ 6= 1.
Assume that T = xn + xs + 1 is almost irreducible with deg(T ) = n = r + δ, where
δ ∈ {0, 2, 4, 6}. Thus T = SD where D is irreducible, deg(D) = r = 216091, n is
odd and we can assume that s is even (otherwise replace s by n− s). Since r is a
Mersenne exponent, D is primitive and T is almost primitive. Let ν2 = ν(T ) mod 2.
We consider the cases δ = 0, 2, 4, 6 in turn and show that each case leads to a con-
tradiction.
A. δ = 0. n = 3 mod 8 and ν2 = 1, so by Swan’s theorem s | 2n. From The-
orem 4.2, gcd(n, s) = 1, so the only possibility is s = 2. Now n = 1 mod 3, so
xn +x2 +1 = x2 +x+1 mod x3−1. Thus x2 +x+1 | xn +x2 +1, a contradiction.
B. δ = 2. n = 0 mod 3, so T = xs mod x3− 1. Thus x2 + x + 1 does not divide T ,
but x2 + x + 1 is the only irreducible polynomial of degree 2, and hence the only
possibility for S, a contradiction.
C. δ = 4. deg(S) = 4, but S can not have irreducible factors of degree 2, since
x2 + x + 1 is the only irreducible polynomial of degree 2, and T is square-free.
Thus S is irreducible of degree 4 and a divisor of x15 − 1. We have n = −1 mod 8
and ν2 = 0, so by Swan’s theorem and Theorem 4.2 we must have s = 2. Now
n = 5 mod 15, so T = x5 +x2 +1 mod x15− 1, but x5 +x2 +1 is irreducible. Thus
T has no factor of degree 4, a contradiction.
D. δ = 6. S could be of the form S6, S2S4 or S3Ŝ3, where Sj , Ŝj are irre-
ducible of degree j. If S = S6 then ν2 = 0 and, by Swan’s theorem and The-
orem 4.2, s = 2. However, n = 1 mod 3, so x2 + x + 1 | xn + x2 + 1, a con-
tradiction. If S = S2S4 then deg(gcd(T, x15 − 1)) = 6. Now n = 7 mod 15, so
T = x7 + xs mod 15 + 1 mod x15 − 1, and in each of the 15 cases we find that
deg(gcd(T, x15 − 1)) ≤ 4. If S = S3Ŝ3 then deg(gcd(T, x7 − 1)) = 6. Now
n = 0 mod 7, so T = xs mod 7 mod x7 − 1, and gcd(T, x7 − 1) = 1. Thus δ 6= 6.

Theorem 6.2 If T is an almost irreducible trinomial with exponent 2976221
and increment δ, then δ /∈ {0, 1, 2, 4}.

Proof The proof is similar to that of Theorem 6.1. Assume that δ ∈ {0, 2, 4}
and that s is even. If δ = 0 we must have s = 2. Now n = 3 mod 7, so
T = x3 + x2 + 1 mod x7 − 1, and thus T has an irreducible factor x3 + x2 + 1.
If δ = 2, again we must have s = 2. In this case T = x118 + x2 + 1 mod x255 − 1,
and a computation shows that x8 + x7 + x3 + x2 + 1 | T . Finally, if δ = 4, we have
T = xs mod 15 mod x15 − 1, so T has no irreducible factor of degree 4.

Theorem 6.3 If T is an almost irreducible trinomial with exponent 13466917
and increment δ, then δ /∈ {0, 1, 2, 4}.

Proof As above, we can assume that δ 6= 1, n = r + δ is odd, and without
loss of generality s is even. If δ = 0 the only case to consider is s = 2, but
n = 1 mod 3, so T = x2 + x + 1 mod x3 − 1, and thus T is divisible by x2 + x + 1.
If δ = 2 then T = xs mod 3 mod x3 − 1, so T is never divisible by x2 + x + 1. If
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k r δ s f Small factor S(x)
3 8 5 1 31 x5 + x4 + x3 + x + 1

2 7 (x2 + x + 1)(x3 + x + 1)
4 16 11 2 7 (x3 + x + 1)(x8 + x7 + x6 + x3 + x2 + x + 1)
5 32 8 3 1 x8 + x6 + x5 + x4 + x2 + x + 1
6 64 10 3 21 (x4 + x + 1)(x6 + x5 + x4 + x + 1)

21 341 x10 + x7 + x6 + x5 + x3 + x2 + 1
7 128 2 17 1 x2 + x + 1
8 256 16 45 1 x16 + x15 + x14 + x11 + x9 + x7 + x3 + x + 1
9 512 9 252 31 (x4 + x + 1)(x5 + x3 + 1)
10 1024 3 22 7 x3 + x2 + 1
11 2048 10 101 341 x10 + x9 + x8 + x7 + x5 + x4 + 1
12 4096 3 600 7 x3 + x + 1

628 7 x3 + x + 1
1399 7 x3 + x2 + 1

Table 2

Some almost primitive trinomials over Z2.
xr+δ + xs + 1 has a primitive factor of degree r = 2k;

δ is minimal; 2s ≤ r + δ; the period ρ = (2r − 1)f .

δ = 4 then S must be irreducible of degree 4, and the only possibility is s = 2.
Now T = x11 + x2 + 1 mod x15 − 1, but x11 + x2 + 1 is irreducible, so T has no
irreducible factor of degree 4.

7 The Fermat connection

If we have found an almost irreducible trinomial T = xn +xs +1 with exponent
r = n− δ, then to check if T is almost primitive we need the complete factorization
of 2r − 1. In §5 we chose r so the factorization was trivial, because 2r − 1 was a
Mersenne prime. Another case of interest, considered in this section, is when r is a
power of two, say r = 2k. Then

2r − 1 = F0F1 · · ·Fk−1,

where Fj = 22j

+1 is the j-th Fermat number. The complete factorizations of these
Fj are known for j ≤ 11 (see [5]) so we can factor 22k − 1 for k ≤ 12.

In Table 2 we give almost primitive trinomials T = xr+δ +xs +1 with exponent
r = 2k for 3 ≤ k ≤ 12. Thus T = SD where D is primitive and has degree 2k. We
also give S in factored form. The irreducible factors of S are not always primitive.
The period of T is lcm(2r − 1, period(S)) = (2r − 1)f .

By Swan’s theorem, a primitive trinomial of degree 2k does not exist for k ≥ 3.
However, we can work efficiently in the finite fields GF(22k

), k ∈ [3, 12], using the
trinomials listed in Table 2 and the implicit algorithms of §8.

8 Implicit algorithms

Suppose we wish to work in the finite field GF(2r) where r is the exponent
of an almost primitive trinomial T . We can write T = SD, where deg(S) = δ,
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deg(D) = r. Thus

GF (2r) ≡ Z2[x]/D(x),

but because D is dense we wish to avoid working directly with D, or even explicitly
computing D. We show that it is possible to work modulo the trinomial T .

We can regard Z2[x]/T (x) as a redundant representation of Z2[x]/D(x). Each
element A ∈ Z2[x]/T (x) can be represented as

A = Ac + AdD,

where Ac ∈ Z2[x]/D(x) is the “canonical representation” that would be obtained if
we worked in Z2[x]/D(x), and Ad ∈ Z2[x] is some polynomial of degree less than δ.

We can perform computations such as addition, multiplication and exponen-
tiation in Z2[x]/T (x), taking advantage of the sparsity of T in the usual way.
If A ∈ Z2[x]/T (x) and we wish to map A to its canonical representation Ac, we use
the identity

Ac = (AS mod T )/S,

where the division by the (small) polynomial S is exact. A straightforward imple-
mentation requires only O(δr) operations. We avoid computing Ac = A mod D
directly; in fact we never compute the (large and dense) polynomial D: it is suffi-
cient that D is determined by the trinomial T and the small polynomial S.

In applications such as random number generation [7], where the trinomial
T = xn + xs + 1 is the denominator of the generating function for a linear recur-
rence uk = uk−s + uk−n, it is possible (by choosing appropriate initial conditions
that annihilate the unwanted component) to generate a sequence that satisfies the
recurrence defined by the polynomial D. However, this is not necessary if all that
matters is that the linear recurrence generates a sequence with period at least 2r−1.

9 The density of almost irreducible/primitive polynomials

In this section we state some theorems regarding the distribution of almost
irreducible polynomials. The proofs are straightforward, and similar to the proof of
Theorem 1.2 in [11], which generalizes our Corollary 9.2. We would like to prove
similar theorems about almost irreducible trinomials, but this seems to be difficult.

Let In denote the number of irreducible polynomials of degree n, excluding the
polynomial x, and let Nr,δ denote the number of almost irreducible polynomials with
exponent r and increment δ. Thus

∑
d|n dId = 2n − 1 and, by Möbius inversion,

In =
1
n

∑
d|n

µ(d)
(
2n/d − 1

)
=

2n

n

(
1 + O(2−n/2)

)
.

Theorem 9.1 If 0 ≤ δ < r, then Nr,δ = 2max(0,δ−1)Ir.

Proof The case δ = 0 is immediate, so assume that δ > 0. Thus r > 1. For
each irreducible polynomial D of degree r, and each polynomial S of degree δ such
that S(0) 6= 0, there is an almost irreducible polynomial P = SD. Also, by the
constraint δ < r, P determines S and D uniquely. Thus, the result follows by
a counting argument, since there are 2δ−1 possibilities for S and Ir possibilities
for D.
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Corollary 9.2 If n = r + δ, 0 < δ < r, and P is chosen uniformly at random
from the 2n−1 polynomials of degree n with P (0) 6= 0, then the probability that P is
almost irreducible with exponent r is 1

r

(
1 + O(2−r/2)

)
.

Corollary 9.3 If n ≥ 1 and P is chosen uniformly at random from the 2n−1

polynomials of degree n with P (0) 6= 0, then the probability that P is almost
irreducible with some valid exponent is ln 2 + O(1/n).

An analogy. There is an analogy between polynomials of degree n and
n-digit numbers, with irreducible polynomials corresponding to primes. A result
analogous to Corollary 9.3 is: the probability that a random n-digit number has a
prime factor exceeding n/2 digits is ln 2 + O(1/n) (see for example [22]).

The density of almost primitive polynomials. The number of primitive
polynomials of degree n is Pn = φ(2n− 1)/n, where φ denotes Euler’s phi function,
see for example Lidl [20]. If Ir is replaced by Pr in Theorem 9.1, then we obtain the
number of almost primitive polynomials with exponent r and increment δ. It is easy
to deduce an analogue of Corollary 9.2. To obtain an analogue of Corollary 9.3 for
almost primitive polynomials we would need to estimate

∑
n/2<r≤n φ(2r−1)/(r2r).

For n = 1000 the approximate value is 0.507.

Computational results for trinomials. Let Nait(n) be the number of al-
most irreducible trinomials xn +xs +1 with 0 < s < n. Consider the smoothed and
normalized value Eait(n) = 2

n(n−1)

∑n
m=2 Nait(m). If a result like Corollary 9.3

applies for trinomials, at least in the limit as r, δ → ∞, then it is plausible to
conjecture that

lim
n→∞

Eait(n) = c (9.1)

for some positive constant c. We have computed Nait(n) and Eait(n) for n ≤ 1000;
the numerical results support the conjecture (9.1) with c < ln 2 ≈ 0.6931. For
example, Eait(500) ≈ 0.4765 and Eait(1000) ≈ 0.4713. For almost primitive trino-
mials the corresponding limit seems smaller (if it exists). Our computations give
Eapt(500) ≈ 0.3124 and Eapt(1000) ≈ 0.3104.

Existence of almost irreducible/primitive trinomials. We have shown
by computation that an almost irreducible trinomial of degree n exists for all
n ∈ [2, 10000]. Similarly, we have shown that an almost primitive trinomial of
degree n exists for all n ∈ [2, 2000]\{12}. In the exceptional case (degree 12),
x12 +x+1 has primitive factors of degrees 3, 4, and 5, but degree 5 is too small, so
x12 +x+1 is not “almost primitive” by Definition 3.1. The other candidate that is
not excluded by Theorem 4.2 is x12 + x5 + 1; this is irreducible but not primitive,
having period (212 − 1)/5.

Rather than asking for an almost irreducible (or almost primitive) trinomial
of given degree, we can ask for one of given exponent. This is close to the spirit
of [3, 26]. For all r ∈ [2, 2000] there is an almost irreducible trinomial xr+δ +xs +1
with exponent r and (minimal) increment δ = δait(r) ≤ 23. The extreme increment
δait(r) = 23 occurs for (r, s) = (1930, 529), and the mean value of δait(r) for
r ∈ (1000, 2000] is ≈ 2.14. A plausible conjecture is that δait(r) = O(log r).

Similarly, for all r ∈ [2, 712] there is an almost primitive trinomial with expo-
nent r and (minimal) increment δapt(r) ≤ 43. The extreme δapt(r) = 43 occurs for
(r, s) = (544, 47), and the mean value of δapt(r) for r ∈ (356, 712] is ≈ 3.41.
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