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Abstract. Fast and reliable pseudo-random number generators are re-
quired for simulation and other applications in Scientific Computing. We
outline the requirements for good uniform random number generators,
and describe a class of generators having very fast vector/parallel im-
plementations with excellent statistical properties. We also discuss the
problem of initialising random number generators, and consider how to
combine two or more generators to give a better (though usually slower)
generator.

1 Introduction

Monte Carlo methods are of great importance in simulation [36], computa-
tional finance, numerical integration, computational physics [13,24], etc. Due
to Moore’s Law and increases in parallelism, the statistical quality of random
number generators is becoming even more important than in the past. A pro-
gram running on a supercomputer might use 10? random numbers per second
over a period of many hours (or even months in some cases), so 10® or more
random numbers might contribute to the result. Small correlations or other de-
ficiencies in the random number generator could easily lead to spurious effects
and invalidate the results of the computation, see e.g. [13, 34].

Applications require random numbers with various distributions (e.g. normal,
exponential, Poisson, ...) but the algorithms used to generate these random
numbers almost invariably require a good uniform random number generator. A
notable exception is Wallace’s method [7,39] for normally distributed numbers.
In this paper we consider only the generation of uniformly distributed numbers.
Usually we are concerned with real numbers u,, that are intended to be uniformly
distributed on the interval [0, 1). Sometimes it is convenient to consider integers
U, in some range 0 < U, < m. In this case we require u, = U,/m to be
(approximately) uniformly distributed.

Pseudo-random numbers generated in a deterministic fashion on a digital
computer can not be truly random. What is required is that finite segments
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of the sequence (ug,u1,--) behave in a manner indistinguishable from a truly
random sequence. In practice, this means that they pass all statistical tests that
are relevant to the problem at hand. Since the problems to which a library
routine will be applied are not known in advance, random number generators in
subroutine libraries should pass a number of stringent statistical tests (and not
fail any) before being released for general use.

Random numbers generated by physical sources are available [1,2, 15,23, 37,
38]. However, there are problems in generating such numbers sufficiently fast, and
experience with them is insufficient to be confident of their statistical properties.
Thus, for the present, we recommend treating such physical sources of random
numbers with caution. They can be used to initialise (and perhaps periodically
reinitialise) deterministic generators, and can be combined with deterministic
generators by the algorithms considered in §6. In the following we restrict our
attention to deterministic pseudo-random number generators.

A sequence (ug,u1,---) depending on a finite state must eventually be pe-
riodic, i.e. there is a positive integer p such that w,y, = u, for all sufficiently
large n. The minimal such p is called the period.

In §§2-3 we consider desiderata for random number generators. In §§4-5, we
describe one popular class of random number generators. In §6 we discuss how to
combine two or more generators to give a (hopefully) better generator. Finally,
in §7 we briefly mention some implementations.

2 Requirements for good random number generators

Requirements for a good pseudo-random number generator have been discussed
in many surveys, e.g. [5,9,11,17,20,22,25]. Due to space limitations we can
not cover all aspects of random number generation here, but we shall attempt to
summarize and comment briefly on the most important requirements. Of course,
some of the requirements listed below may be irrelevant in certain applications.
For example, there is often no need to skip ahead (§2.4). In some applications,
such as Monte Carlo integration, it may be preferable to use numbers that defi-
nitely do not behave like random numbers: they are “quasi-random” rather than
random [32].

2.1 Uniformity

The sequence of random numbers should pass statistical tests for uniformity of
distribution. This is usually easy for deterministic generators implemented in
software. For physical/hardware generators, the well-known technique of Von
Neumann, or similar but more efficient techniques [16], can be used to extract
uniform bits from a sequence of independent but possibly biased bits.

2.2 Independence

Subsequences of the full sequence (ug, uq,---) should be independent. Random
numbers are often used to sample a d-dimensional space, so the sequence of
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d-tuples (Udn, Udn+1s- - -, Udntd—1) should be uniformly distributed in the
d-dimensional cube [0,1]¢ for all “small” values of d (certainly for all d < 6).
For random number generators on parallel machines, the sequences generated
on each processor should be independent.

2.3 Long period

As mentioned above, a simulation might use 10'® random numbers. In such
a case the period p must exceed 10'S. For many generators there are strong
correlations between ug, u1, -+ - and Uy, U1, -+ -, where m = p/2 (and similarly
for other simple fractions of the period). Thus, in practice the period should be
much larger than the number of random numbers that will ever be used. A good
rule of thumb is to use at most p'/2 numbers. In fact, there are reasons, related
to the birthday spacings test [28], for using at most p'/3 numbers: see [22, §6].

2.4 Ability to skip ahead

If a simulation is to be run on a machine with several processors, or if a large
simulation is to be performed on several independent machines, it is essential
to ensure that the sequences of random numbers used by each processor are
disjoint. Two methods of subdivision are commonly used. Suppose, for example,
that we require 4 disjoint subsequences for a machine with 4 processors. One
processor could use the subsequence (ug,u4,us,---), another the subsequence
(u1,us,ug,---), etc. For efficiency each processor should be able to “skip over”
the terms that it does not require.

Alternatively, processor j could use the subsequence (U, , Um;+1, - -), where
the indices mg, m1, ma, mg are sufficiently widely separated that the (finite) sub-
sequences do not overlap, but this requires some efficient method of generating
Uy, for large m without generating all the intermediate values uy, ..., Um_1.

For generators satisfying a linear recurrence, it is possible to skip ahead by
forming high powers of the appropriate matrix (see [22, §3.5] for details). How-
ever, it is not so well known that more efficient methods exist using generating
functions. Essentially, we can replace matrix multiplications by polynomial mul-
tiplications. Multiplying two r X r matrices is much more expensive than multi-
plying two polynomials modulo a polynomial of degree r. Details are given in [4]
and an implementation that is practical for r of the order of 10° is available [3].

2.5 Proper initialization

The initialization of random number generators, especially those with a large
amount of state information, is an important and often neglected topic. In some
applications only a short sequence of random numbers is used after each initial-
ization of the generator, so it is important that short sequences produced with
different seeds are uncorrelated.

For example, suppose that a random number generator with seed s produces

a sequence (u§S>,u§S),u§S>, ...). If we use m different seeds si,$2,..., 8, and
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generate n numbers from each seed, we get an m x n array U with elements
Ui; = ugsi). We do not insist that the seeds are random — they could for example
be consecutive integers.

Packages such as Marsaglia’s Diehard [26] typically test a 1-D array of random
numbers. We can generate a 1-D array by concatenating the rows (or columns)
of U. Irrespective of how this is done, we would hope that the random numbers
would pass the standard statistical tests. However, many current generators fail

because they were intended for the case m = 1 (or small) and n large [14, 18].

The other extreme is m large and n = 1. In this case we expect ugs) to behave
like a pseudo-random function of s.

2.6 Unpredictability

In cryptographic applications, it is not sufficient for the sequence to pass stan-
dard statistical tests for randomness; it also needs to be unpredictable in the sense
that there is no efficient deterministic algorithm for predicting w,, (with probabil-
ity of success significantly greater than expected by chance) from (ug, u1, ..., un—1),
unless n is so large that the prediction is infeasible.

At first sight it appears that unpredictability is not required in scientific
applications. However, if a random number generator is predictable then we can
always devise a statistical test (albeit an artificial one) that the generator will
fail. Thus, it seems a wise precaution to use an unpredictable generator if the
cost of doing so is not too high. We discuss techniques for this in §6.

Strictly speaking, unpredictability implies uniformity, independence, and a
(very) long period. However, it seems worthwhile to state these simpler require-
ments separately.

2.7 Efficiency

It should be possible to implement the method efficiently so that only a few
arithmetic operations are required to generate each random number, all vec-
tor/parallel capabilities of the machine are used, and overheads such as those
for subroutine calls are minimal. Of course, efficiency tends to conflict with other
requirements such as unpredictability, so a tradeoff is often involved.

2.8 Repeatability

For testing and development it is useful to be able to repeat a run with exactly
the same sequence of random numbers as was used in an earlier run. This is
usually easy if the sequence is restarted from the beginning (ug). It may not
be so easy if the sequence is to be restarted from some other value, say wu,, for
a large integer m, because this requires saving the state information associated
with the random number generator.
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2.9 Portability

Again, for testing and development purposes, it is useful to be able to generate
ezactly the same sequence of random numbers on two different machines, possibly
with different wordlengths. This was more difficult to achieve in the past than it
is nowadays, when nearly all computers have wordlengths of 32 or 64 bits, and
their floating-point arithmetic satisfies the IEEE 754 standard.

3 Equidistribution

We should comment on the concept of equidistribution, which we have not listed
as one of our requirements. Definitions and examples can be found in [22, §4.2]
and in [30, §1.2].

Consider concatenating the leading v bits from k consecutive random num-
bers. According to [30], a random number generator is said to be k-distributed
to v-bit accuracy if each of the 2¥¥ possible combinations of bits occurs the same
number of times over a full period of the random number generator, except that
the sequence of all zero bits is allowed to occur once less often. Some genera-
tors with period p = 2" or 2" — 1 can be proved to satisfy this condition for
kv < r. This is fine in applications such as Monte Carlo integration. However,
the probability that a periodic but otherwise random sequence will satisfy the
condition is vanishingly small. If we perform a “chi-squared” test on the output
of a k-distributed generator, the test will be failed because the value of x2 is too
small !

To give a simply analogy: if I toss a fair coin 100 times, I expect to get
about 50 heads and 50 tails, but I would be mildly surprised to get exactly the
same number of heads as tails (the probability of this occurring is about 0.08).
If (with the aid of a computer) I toss a fair coin 10'? times, I should be very
surprised to get exactly the same number of heads as tails. (For 2n tosses, the
probability of an equal number of heads and tails occurring is about 1//nw.)
This is another reason for using at most ,/p numbers from the full period of
length p (compare §2.3).

4 Generalized Fibonacci generators

In this section we describe a popular class of random number generators. For
various generalizations, see [22].

Given a circular buffer of length r words (or bits), we can generate pseudo-
random numbers from a linear or nonlinear recurrence

Up = f(unflvunf% cee 7un77‘> .

For speed it is desirable that f(un—1,%n—2,...,Un—,) depends explicitly on only
a small number of its r arguments. An important case is the class of “generalized
Fibonacci” or “lagged Fibonacci” random number generators [17].
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Marsaglia [25] considers generators F'(r, s,0) that satisfy
U,=Un—r 0U,_s modm

for fixed “lags” r and s (r > s > 0) and n > r. Here m is a modulus (typically
2% if w is the wordlength in bits), and 6 is some binary operator, e.g. addition,
subtraction, multiplication or “exclusive or”. We abbreviate these operators by
+, —,* and @ respectively. Generators using & are also called “linear feedback
shift register” (LFSR) generators or “Tausworthe” generators. Usually U, is
normalised to give a floating-point number u,, = U, /m € [0,1).

It is possible to choose lags r,s so that the period p of the generalized
Fibonacci generators F(r,s,+) is a large prime p or a small multiple of such
a prime. Typically, the period of the least-significant bit is p; because carries
propagate from the least-significant bit into higher-order bits, the overall period
is usually 2*~!p for wordlength w. For example, [9, Table 1] gives several pairs
(r,s) with r > 10%. (The notation in [9] is different: r + § corresponds to our 7.)

There are several ways to improve the performance of generalized Fibonacci
generators on statistical tests such as the Birthday Spacings and Generalized
Triple tests [25,28]. The simplest is to include small odd integer multipliers «
and ( in the generalized Fibonacci recurrence, e.g.

U,=aU,_,+BU,_s modm.

Other ways to improve statistical properties (at the expense of speed) are to
include more terms in the linear recurrence [19], to discard some members of the
sequence [24], or to combine two or three generators in various ways (see §6).

With suitable choice of lags (r, s), the generalised Fibonacci generators satisfy
the requirements of uniformity, long period, efficiency, and ability to skip ahead.
Because there are only three terms in the recurrence, each number depends on
only two previous numbers, so there may be difficulty satisfying the requirement
for independence, at least if r is small. Because they are based on a linear
recurrence, they do not satisfy the requirement for unpredictability. In §6 we
show how to overcome these difficulties.

5 Short-term and long-term properties

When considering pseudo-random number generators, it is useful to consider
their short-term and long-term properties separately.

short-term means properties that can be tested by inspection of relatively
short segments of the full cycle. For example, suppose that a uniform random
number generator is used to simulate throws of a dice. If consective sixes never
occur in the output (or occur with probability much lower than expected), then
the generator is faulty, and this can be tested by inspection of the results of a
few hundred simulated throws. For a more subtle example, consider a single-bit
LFSR generator of the form discussed in §4, with largest lag r, and period 2" —1.
We can form an r x r matrix from r2 consecutive bits of output. This matrix
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is nonsingular (considered as a matrix over GF(2)). However, the probability
that a random 7 X r matrix over GF(2) is nonsingular is strictly less than 1
(about 0.289 for large 7, see [8]). Thus, by inspecting O(r?) consecutive bits of
the output, we can detect a short-term nonrandomness.

long-term means properties that can be tested by inspection of a full cycle
(or a significant fraction of a full cycle). For example, a uniform random number
generator might have a small bias, so the expected output is 1/2 + ¢ instead of
1/2. This could be detected by taking a sample of size slightly larger than 1/£2.

Generalized Fibonacci generators based on primitive trinomials generally
have good long-term properties, but bad short-term properties. To improve the
short-term properties we can use tempering (transforming the output vectors
by a carefully-chosen linear transformation), as suggested by Matsumoto and
Kurita (see [30] and [22, §4.5]), or the other devices mentioned in §4.

6 Improving generators

In this section we consider how generators that suffer some defects can be im-
proved.

6.1 Improving a generator by “decimation”

If (zg,x1,...) is generated by a 3-term recurrence, we can obtain a (hopefully
better) sequence (yo,y1,...) by defining y; = x;p,, where p > 1 is a suitable
constant. In other words, use every p-th number and discard the others.

Consider the case F'(r,s,®) with w =1 (LFSR) and p = 3. (If p = 2, the y;
satisfy the same 3-term recurrence as the z;.)

Using generating functions, it is easy to show that the y; satisfy a 5-term
recurrence. For example, if z,, = z,,_1 ® Tn_127, then ¥, = Yn_1 D Yn_a3 B
Yn—85 D Yn—127. A more elementary approach for p < 7 is given in [40].

A possible improvement over simple decimation is decimation by blocks [24].

6.2 Combining generators by addition or xor

We can combine some number K of generalized Fibonacci generators by addi-
tion (mod 2"). If each component generator is defined by a primitive trinomial
Ti(x) = ™ 4 2% + 1, with distinct prime degrees ry, then the combined gen-
erator has period at least 2w~1 Hle(Z”’ — 1) and satisfies a 3%-term linear
recurrence.

Because the speed of the combined generator decreases like 1/K, we would
probably take K < 3 in practice. The case K = 2 seems to be better (and more
efficient) than “decimation” with p = 3.

Alternatively, we can combine K generalized Fibonacci generators by bit-
wise “exclusive or” operating on w-bit words. This has the advantage of mixing
different algebraic operations (assuming that addition mod 2% is used in the
generalized Fibonacci recurrence). Note that the least-significant bits will be the
same for both methods.
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6.3 Combining by shuffling

Suppose that we have two pseudo-random sequences X = (zg,x1,...) and
Y = (yo,y1,...). We can use a buffer V of size B say, fill the buffer using
the sequence X, then use the sequence Y to generate indices into the buffer. If
the index is j then the random number generator returns V|[j] and replaces V[j]
by the next number in the X sequence [17, Algorithm M].

In other words, we use one generator to shuffle the output of another gener-
ator. This seems to be as good (and about as fast) as combining two generators
by addition. B should not be too small.

6.4 Combining by shrinking

Coppersmith et al [12] suggested using one sequence to “shrink” another se-
quence.

Suppose we have two pseudo-random sequences (xg,z1,...) and (yo,y1,--.),
where y; € GF(2). Suppose y; = 1 for ¢ = ig, 41, ... Define a sequence (2, 21, - . .)
to be the subsequence (z;,,Z;,,...) of (xg,z1,...). In other words, one sequence
of bits (y;) is used to decide whether to “accept” or “reject” elements of another
sequence (x;). This is sometimes called “irregular decimation” (compare §6.1).

Combining two sequences by shrinking is slower than combining the se-
quences by + or @, but is less amenable to analysis based on linear algebra or
generating functions, so is preferable in applications where the sequence needs
to be unpredictable. Note that it is dangerous to take the x; to be larger than a
single bit. For example, if we tried to speed up the combination process by taking
x; to be a whole word, then the cryptographic security could be compromised.

7 Implementations

Several good random number generators are available. Following is a small
sample, not intended to be exhaustive: Matsumoto and Nishimura’s Mersenne
twister, based on a primitive trinomial of degree 19937 with tempering to im-
prove short-term properties [30]; L’Ecuyer’s mazimally equidistributed combined
LFSR generators [21]; and the author’s ranut (Fortran) and zorgens (C) genera-
tors [3]. The zorgens generators are simple, fast, have passed all statistical tests
applied so far, and are based on a generalization of a recent idea of Marsaglia [27].
They are related to LESR generators [6], but do not use trinomials, and can be
implemented faster than most other LFSR generators because the degree r can
be chosen to be a multiple of 64.

To close with a word of warning: all pseudo-random number generators fail
some statistical tests — this is inevitable, since they are generated deterministi-
cally. It is ultimately the user’s responsibility to ensure that the pseudo-random
numbers appear sufficiently random for the application at hand.
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