
JSS Journal of Statistical Software
August 2004, Volume 11, Issue 5. http://www.jstatsoft.org/

Note on Marsaglia’s Xorshift Random Number

Generators

Richard P. Brent
Oxford University

Abstract

Marsaglia (2003) has described a class of“xorshift”random number generators (RNGs)
with periods 2n − 1 for n = 32, 64, etc. We show that the sequences generated by these
RNGs are identical to the sequences generated by certain linear feedback shift register
(LFSR) generators using “exclusive or” (xor) operations on n-bit words, with a recurrence
defined by a primitive polynomial of degree n.
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1. Introduction

Marsaglia (2003) suggests “xorshift RNGs” using the “exclusive or” operation on 32-bit or
64-bit words with left- or right-shifted versions of the same word. The generators have period
2n−1 where n is 32 or a small multiple of 32. For example, in the case n = 64, the generators
have period 264 − 1 and produce all possible 64-bit words except the word of all zero bits.
Note that the same is true for a linear feedback shift register (LFSR) generator (Menezes, van
Oorschot, and Vanstone 1997) using a recurrence defined by a primitive polynomial P (z) of
degree 64 and operating in parallel on 64-bit words. This suggests that the two RNGs might
be related. In fact, as we show in §5, there is a primitive polynomial and starting conditions
such that the two generators produce identical sequences of pseudo-random numbers. Thus,
Marsaglia’s xorshift RNGs inherit all the good (and bad) theoretical properties of LFSR
generators. They have better statistical properties than LFSR generators based on primitive
trinomials of degree n because the number W (P (z)) of nonzero terms in P (z) is typically
much larger than 3 (see the examples in §4).

From the point of view of a software developer, Marsaglia’s idea is useful, because his im-
plementation requires less space than a standard implementation of the corresponding LFSR
generator. This is possible because the initial conditions are special. Marsaglia’s imple-
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mentation may also be faster, requiring only about three xor and shift operations (and a
comparable number of loads and stores), whereas the standard implementation of an LFSR
generator requires W (P (z))− 2 xor operations.
First we introduce some notation and describe LFSR and xorshift random number genera-
tors, then we show how the LFSR and xorshift generators are related.

2. Some Notation and Theory

Let F2 = GF(2) be the finite field with two elements {0, 1}. We write the field operations as
+ and ×. If 0 is regarded as “false” and 1 as “true”, then the field operations are “exclusive
or” (xor or ⊕) and “and” (∧). In the following, vectors and matrices have elements in F2,
and polynomials have coefficients in F2. For consistency with Marsaglia (2003), we use row
rather than column vectors.
If a polynomial P (z) has degree n > 1 and the powers zk mod P (z) are distinct for 0 ≤ k ≤
2n − 2, then P (z) is primitive. If P (z) is primitive then its reverse P̃ (z) = znP (1/z) is also
primitive. For more background on polynomials over finite fields, see for example Lidl and
Niederreiter (1994) or Menezes et al. (1997).
Let A ∈ Fn×n

2 be an n×n matrix over F2. The characteristic polynomial C(z) of A is defined
by

C(z) = det(A− zI) .

The Cayley-Hamilton theorem states that A satisfies its own characteristic polynomial, that
is

C(A) = 0 .

The minimal polynomial of A is the monic polynomial P (z) of mimimal degree such that
P (A) = 0. Clearly P (z) divides C(z).
Suppose that A is nonsingular. The period of A is the minimal positive integer ρ such that
Aρ = I. From the Cayley-Hamilton theorem, any positive power of A can be expressed
as a linear combination of {I, A,A2, A3, . . . , An−1}, and there are at most 2n − 1 nonzero
possibilities. Thus, ρ ≤ 2n − 1. The maximum period ρ = 2n − 1 is attained iff the minimal
polynomial P (z) is a primitive polynomial of degree n.
If v = (v1, v2, . . . , vn) ∈ F 1×n

2 is an n-vector over F2, then we define the norm ||v|| to be the
Hamming weight of v, that is the number of nonzero components of v. Thus, for two vectors
u, v, the usual Hamming distance is ||u− v||.

3. LFSR Generators

A Linear Feedback Shift Register (LFSR) sequence (Menezes et al. 1997, §6.2.1) is a sequence
(xj) satisfying a linear recurrence of the form

d∑
k=0

αkxj−k = 0 for j ≥ d, (1)

where α0, α1, . . . , αd ∈ F2 and we assume that α0 = 1. The recurrence defines xj as a linear
combination of xj−1, . . . , xj−d. If x0, x1, . . . , xd−1 are given as initial conditions, then all xj

for j ≥ d are uniquely defined by the recurrence.
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In hardware implementations of LFSR sequences, the xj are usually single bits (elements of
F2), but in software implementations it is easy and more efficient to operate on whole words.
In the literature (Marsaglia 2003; Menezes et al. 1997), the term “LFSR generator” or “shift
register generator” is used to describe random number generators that operate either on single
bits or on words. Thus, we assume that the xj can be scalars or vectors of any fixed size (the
recurrence applies independently to each component of the vectors).

The connection polynomial P (z) corresponding to the recurrence (1) is the polynomial

P (z) =
d∑

k=0

αkz
k ,

and by standard techniques (Knuth 1997, §1.2.9) the generating function

G(z) =
∞∑

m=0

xmzm ,

regarded as a formal power series, is given by

G(x) = P0(z)/P (z) .

Here P0(z) is a polynomial (or vector of polynomials) of degree at most d− 1, depending on
the initial conditions. If P (z) is primitive of degree d and P0(z) 6= 0, then the sequence (xj)
is periodic with period 2d − 1.

4. Marsaglia’s Xorshift Generators

Let β ∈ F 1×n
2 be a nonzero row-vector whose components are in F2. If we are using a computer

with word-length n bits, then we can regard β as a computer word. In the following, β is the
seed for one of Marsaglia’s xorshift RNGs.

Let T ∈ Fn×n
2 be any nonsingular n× n matrix over F2. A pseudo-random sequence of n-bit

vectors (xj)j≥0 can be defined by
xj = βT j (2)

and computed using the recurrence x0 = β, xj = xj−1T for j ≥ 1. With a suitable choice
of T , we get Marsaglia’s 32-bit and 64-bit generators. If n > 64 then Marsaglia’s generators
return only 32 or 64 bits of xj to the user, but the mathematical theory is similar, so for
simplicity we assume that n ≤ 64.

Marsaglia’s idea is to take T of the form1

T = (I + La)(I + Rb)(I + Lc) , (3)

where

L =


0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


1There is a typo in Marsaglia (2003, line 15 of §3), where (I + La)(I + Rb)(I + Rc) should be (I + La)(I +

Rb)(I + Lc).
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is the “left shift” matrix such that

(v1v2 . . . vn−1vn)L = (v2v3 . . . vn0),

R = LT is the “right shift” matrix such that

(v1v2 . . . vn−1vn)R = (0v1 . . . vn−2vn−1),

and (a, b, c) is a suitable triple of positive integers.

Marsaglia considers T acceptable if its period is the maximum possible, that is ρ = 2n−1. In
other words, T ρ = I but T j 6= I for 0 < j < ρ = 2n − 1. From §2, this occurs if the minimal
polynomial of T has degree n and is primitive.

For example, if n = 32 we can take (a, b, c) = (1, 3, 10), and the minimal polynomial is

x32 + x29 + x28 + x27 + x21 + x19 + x18 + x16 + x12 + x11 + x10 + x9 + x6 + x5 + 1.

If n = 64 we can take (a, b, c) = (1, 1, 54), and the minimal polynomial is

x64 + x63 + x62 + x60 + x56 + x48 + x32 + x9 + x5 + x + 1.

For many other possible triples, see Marsaglia (2003, §3).

We note a small error in Marsaglia (2003, §3). He considers the simpler candidate

T = (I + La)(I + Rb) , (4)

and writes “when n is 32 or 64, no choices for a and b will provide such a T with the required
order”. This is true for n = 32, but when n = 64 we can take (a, b) = (7, 9) to get T with
order 264 − 1. In fact T has minimal polynomial

P (z) = z64 + z49 + z40 + z33 + z19 + z18 + z16 + z14 + z11 + z10 + z6 + x + 1

and P (z) is primitive. The choice (4) of T gives a generator that is slightly faster than
the choice (3). We do not necessarily recommend the choice (4) for a high-quality random
number generator, because T = (I + La)(I + Rb) is very sparse and hence maps vectors with
low Hamming weight to other vectors with low Hamming weight, in fact ||xT || ≤ 4||x||. For
a matrix T satisfying (3) the corresponding inequality is ||xT || ≤ 8||x||.

5. Xorshift and LFSR Generators

Suppose that (xj) is any sequence of n-vectors satisfying (2). As we have seen in §4,
Marsaglia’s xorshift generators give such a sequence if β is the seed and T is chosen suitably.

Let P (z) =
∑d

k=0 αkz
d−k be the minimal polynomial of T . We can assume that P (z) is monic

of degree d ≤ n, so α0 = 1 and
d∑

k=0

αkT
d−k = 0 .

Thus, multiplying on the left by βT j−d, we have

d∑
k=0

αkβT j−k = 0 for all j ≥ d.
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Since xj = βT j , it follows that

d∑
k=0

αkxj−k = 0 for all j ≥ d.

This is just the linear recurrence (1) considered in §3. Thus, we see that the sequence can be
generated by a LFSR whose connection polynomial is P̃ (z) =

∑d
k=0 αkz

k.

In the case of Marsaglia’s xorshift generators, the condition that the period is 2n − 1 can be
satisfied iff d = n and P (z) is primitive.
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