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Abstract

In  this  paper  we  introduce  a  new  quartet-based
method.  This  method  makes  use  of  the  Bayes  (or
quartet)  weights  of  quartets  as  those  used  in  the
quartet  puzzling.  However,  all  the  weights from the
related  quartets  are  accumulated  to  form  a  global
quartet weight matrix. This matrix provides integrated
information  and  can  lead  us  to  recursively  merge
small  sub-trees  to  larger  ones  until  the  final  single
tree is  obtained. The experimental  results  show that
the probability for the correct tree to be among a very
small number of trees constructed using our method is
very  high.  These  significant  results  open  a  new
research  direction  to  further  investigate  more
efficient algorithms for phylogenetic inference.

1. Introduction

There has been strong interest in reconstruction of
large  evolutionary  trees  from  small  sub-trees  in  the
computational  biology  community  in  recent  years
[2,3,4,5,6,8,10,11,18,19,22]. The quartet-based method
may be the simplest and the most cost-effective one for
such  reconstruction.  This  approach  takes  two  major
stages to complete, i.e., first generates the most likely
sub-tree(s) for every possible four sequences, or quartet
from a  set  of  n DNA  or  protein  sequences using  a
general  phylogeny  method  [21],  such  as  maximum
parsimony, maximum likelihood, or neighbour joining,
and  next  applies  a  combinatorial  technique  to
reconstruct the entire evolutionary tree topology based
on  the  topological  properties  of  the  generated  four-
sequence or quartet trees. It is well known that it is hard
to  obtain  correctly  resolved  quartet  trees  by  using
currently  existing  methods  [1,14].  Though  there  are

interesting  theoretical  properties,  many  quartet-based
algorithms assume a fully resolved tree for each quartet
and this unreasonable assumption seriously hinders the
quartet-based approach from being widely adopted in
practice.  Therefore,  the  main  concern  in  designing a
good and  practical  quartet-based algorithm is how to
tolerate errors in the quartet trees when reconstructing
the entire tree topology in the second stage.

Several techniques were proposed to try to improve
the  accuracy  of  the  quartet-based  approach.  A
prominent approach which is widely used in practice is
known  as  quartet  puzzling  [19].  This  method  was
originally developed to try to reduce the computational
cost of the  maximum likelihood method. Though the
method  has  problems,  such  as  accuracy,  the
introduction  of  weighted  quartet  trees and  likelihood
mapping [20] gives hopes for further developments of
quartet-based algorithms which can be used in practice.
The quartet puzzling takes both resolved and unresolved
quartet  trees  into  consideration.  However,  it  is
essentially a local optimization process and thus is very
sensitive to quartet errors [16].

In  this  paper  we  introduce  a  novel  quartet-based
algorithm.  Like  the  quartet  puzzling,  this  algorithm
rebuilds  the  evolutionary  tree  using  quartet  weights.
However,  it  takes  a  global  view  by  looking  at  all
possible quartet trees when merging a pair of sub-trees.
Similar  to  the  distance-based  neighbour  joining,  it
recursively merges one pair of sub-trees at each merge
step based on global statistics provided by a symmetric
matrix which is called global quartet weight matrix in
this  paper.  Accumulating  all  related  quartet  weights
from all possible quartets generates this matrix. Because
we use global information from all the quartets, we are
able to determine, with high confidence, which two sub-
trees should be merged at each step. We can also easily



identify  those  critical  points  where  the  ambiguity
occurs, i.e., the places where several pairs of sub-trees
could be merged in about the same probability, and then
take proper actions. Our current algorithm generates a
limited  number  of  trees  and  the  initial  experimental
results, using the benchmarks which consist of 48,000
synthetic data sets of DNA sequences generated by the
LIRMM  Methods  and  Algorithms  in  Bioinformatics
research group [23], show that  the probability for the
correct tree to be among the generated trees is very high.
These significant results open a new research direction
to  further  investigate  more  efficient  algorithms  for
phylogenetic inference.

The paper is organized as follows: In Section 2 we
describe the global quartet  weight matrix and give an

efficient  )( 2n  algorithm for  generating  the  matrix

from a given unrooted binary tree topology. In Section 3
we show that with a simple modification this algorithm
can be used to  reconstruct  the  original  tree  topology
from its generated weight matrix. Therefore, there is a
one-to-one mapping between a given tree topology and
its generated global quartet weight matrix. This forms
the basis of our quartet-based neighbour-joining (QBNJ)
method  which  is  discussed  in  Section  4.  Section  5
presents  some experimental  results.  Conclusions and
future work are discussed in Section 6.

2. Global Quartet Weight Matrix

A quartet,  or a set of four  sequences is associated
with  one  of  seven  possible  graphs  [7]:  three  fully
resolved unrooted  trees,  three  partially  resolved trees
for which we are unable to distinguish between two of
the  three  fully  resolved  trees,  and  a  completely
unresolved tree. The three possible fully resolved trees
for a quartet {a,  b,  c,  d} are depicted in Fig. 1. In the
figure  )|( ztxy  indicates  how  the  sequences,
represented by leaf nodes, are divided into two pairs by
cutting the middle edge (so-called bi-partitioning), and
thus shows the neighbourhood relations of the quartet in
terms of topology.

We can plot all the quartets from a given n sequences
in a two-dimensional graph to see how many quartets
are  resolved  (and  how  many  unresolved)  using  the
likelihood-mapping  procedure  [20].  With  the
likelihood-mapping  procedure,  likelihood  values  for
each  of  the  three  possible  resolved  trees  are  first
calculated  and  then  these  likelihood  values  are
transformed  into  posterior  probabilities,  or  Bayes

weights (or quartet weights in this paper) i
w  for i = 1,

2,  and  3,  by  applying  Bayes’  theorem  assuming  a
uniform prior for all three trees. Three quartet weights
of  each  quartet  are  further  mapped  onto  a  two-
dimensional  simplex.  With this mapping we may see
how closely the maximum-likelihood (ML) method can

resolve each quartet into one of the three possible trees.
A  generalized  method,  called  quartet  mapping,  was
developed based on the same principle to measure other
approaches for  quartet  tree  construction  and  used  to
compare different methods in their abilities to indicate
the correct topology [12]. 

Fig.  1.  The  three  possible  fully  resolved  trees  for  a
quartet {a, b, c, d}.

For a  given  n sequences and  the  associated set  of
quartets,  we can generate  a  symmetric global  quartet
weight  matrix  of  size  ,nn  each  row  or  column
corresponding  to  one  particular  sequence.  Let

),|( wklij  denote a quartet tree with a quartet weight w.
Our global quartet weight matrix is generated by adding
each w to entries ij, ji, kl and lk, using a complete set of
quartets from the given sequences. 
Given  a  tree  topology of  n leaves,  we can  uniquely

determine  a  set  of  







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n
 quartet  trees  which  are

consistent with the original tree, i.e., each quartet tree
separates the four leaves into two pairs in the same way
as the  original  tree  through  bi-partitioning.  For  each
quartet there can only be one fully resolved tree in the
set  of  these  quartet  trees  and  it  is  described  as

).0.1 ,|( cdab  From  a  given  tree  topology  a  global
quartet weight matrix is also uniquely determined. This
is because our  matrix  is  generated  using  the  quartet
weights of the associated quartet trees. In the following

we present an )( 2n  algorithm to construct the weight

matrix from a given tree topology. In next  section we
describe an algorithm which can reconstruct the original
tree  topology from its  generated  weight  matrix.  This
shows  a  one-to-one  mapping  between  a  given  tree
topology and its generated global quartet weight matrix.

              
Fig. 2. Calculating the number of quartet  trees which
have the  form of  (ij|xy,  1.0) using the  bi-partitioning
technique.



To determine the entry value on row i and column j
of the global weight matrix from a given tree topology,
we need to calculate the total number of quartet trees
with  the  form   ,)0.1 ,|( pqij for  .or  ,or , jiqp  This
can be done using the bi-partitioning technique. We first
determine a unique path from leaf node i to node j, as
shown in Fig. 2. For each internal node on that path we
make a cut on the third edge which is not on the path to
separate the tree into two sub-trees. This ensures that
leaves  i and  j will  always be  in  the  same sub-tree.
Counting the number of leaves in  the sub-tree which
does not contain leaves  i and  j,  the number of quartet
trees  with  the  form  )0.1 ,|( pqij  from  this  bi-

partitioning will be  
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n
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Therefore, the total number of such quartet trees, or the
value  for  entry  ij in  the  weight  matrix  will  be
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 where L is the number of internal nodes

on the path. 
Note that it is not efficient to use the bi-partitioning

procedure to calculate each entry value of the weight
matrix the same way as described above. This is because
for each leaf node we need to find the paths to every
other node and then for each path we also need to set
cuts for every node on the path and count for each bi-
partitioning the number of nodes in the other sub-tree.
This way the tree has to be traversed many times and
there will be a great amount of redundant calculations.
Using  dynamic  programming,  we  can  eliminate  the
redundant  calculations  and  obtain  a  very  efficient
algorithm.

Fig. 3. Each internal node is associated with three sub-
trees in an unrooted tree.

Each internal  node in  an unrooted binary tree has
three edges. Therefore, a tree will be divided into three
sub-trees  when  an  internal  node  is  removed.  For
example,  in  Fig.  3  three  sub-trees  a,  b and  x are
connected by node ol  which has three edges connecting

to  nodes  ,al  ,bl  and  xl  in  the  three  sub-trees,

respectively.  Node  ,al  (or  ,bl  or  xl )  is  called  the
leading node of a sub-tree since it is the only node for
the  sub-tree  to  be  linked  with  other  sub-trees.  Our
interest is to calculate the total number of quartet trees
with the form (ij|pq, 1.0) where i is a leaf node in sub-
tree a and j a leaf node in sub-tree b. It is obvious that
nodes ,al ol  and bl must be on the path from leaf node
i to leaf node j. The calculation for the total number of
quartet trees which have the concerned form can then be
divided into three parts according to the three sub-trees,
that is, the quartet trees of the concerned form generated
in  sub-tree  a from leaf  node  i along the  path  to  the
leading node ,al  the quartet trees generated in sub-tree

b from node j to node ,bl  and those generated through a

bi-partitioning on the third edge of node .ol  

After  removing  the  third  edge  of  node  ,ol  we
partition  the  tree  into  two  sub-trees,  one  being  the
combination of sub-trees a and b and the other being the
entire sub-tree x. Assume that we know the number of
leaf nodes in sub-trees a and b which are ,an  and ,bn

respectively. The number of leaf nodes in sub-tree x will
be )( ba nnn   for n the total number of leaf nodes in
the  tree.  The  number  of  quartet  trees  which  can  be
generated to have the form (ij|pq, 1.0) through this bi-

partitioning is simply equal to .
2
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further that  we know the total  number of the quartet
trees with the concerned form in sub-tree  a from leaf
node i along the path to the leading node ,al  is ,im  and

the number in sub-tree b from node j to node bl  is .jm

The total  number of the  quarte  trees which have the
form (ij|pq, 1.0) can then be obtained as 
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This is also the entry value on row i and column j of the
global weight matrix.

After every entry value ijm  associated with the leaf

nodes in sub-trees a and b are calculated, we merge the
two sub-trees into one.  Node  ol  will  be the  leading

node and the number of leaf nodes becomes ba nn   for

the new sub-tree, i.e., 
.bao nnn               (2)

For each leaf node in sub-tree a, we add 
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i.e.,
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This is because when we further merge this new and
larger sub-tree with another sub-tree, we need to know
the number of concerned quartet  trees from each leaf
node i of the original sub-tree a to the new leading node

.ol  However, we already know the number from node i

to node  .al  We need only to make an additional bi-

partitioning by cutting the third edge of node .ol  This
will  make  the  original  sub-tree  b be  completely

separated from the rest. Therefore,  

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
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n
 more quartet

trees of  the  concerned form can be generated  on the
path from leaf node i, which is originally in sub-tree a,

to the new leading node .ol  For the same reason 


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will be added to jm  which is associated with each leaf

node in sub-tree b, i.e., 
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With  the  above  four  equations  we  can  obtain  an
efficient algorithm for obtaining the entry values of the
global  matrix  from  a  given  tree  topology.  In  this
algorithm each leaf node is associated with a variable

im  to store the number of quartet trees of the concerned
form obtained from the current sub-tree. It seems that
for each node i we might need 1n  variables to store
the  numbers for  different  ij pairs. However,  a  single
variable will be enough since the path from node i to the
leading node is the common sub-path for node i to reach
any other nodes outside the sub-tree. Each sub-tree is
associated with a variable  in  to record the number of
leaf nodes in the sub-tree. Initially, every leaf node is
considered  as a  separate  sub-tree  containing  a  single
node. Thus the values  im  and  in  are set to zero and
one,  respectively.   Sub-trees  are  recursively  merged
together according to the tree topology using the above
four  equations  until  there  left  only  a  single  tree.  A
pseudocode of the algorithm is shown in Fig. 4.

 

Fig. 4. An algorithm for generating the quartet matrix.

The size of each sub-tree will be no greater than  n.
Each For loop in the above takes only )(n  operations.

Thus it takes )(n  operations to merge two sub-trees.
There are 1n  such steps to merge all leaf nodes into a
single tree according to the tree topology. Therefore, the
total  computational  cost  of  this  algorithm  will  be

).( 2n

3. Tree Reconstruction from the Generated
Global Weight Matrix

In  the  previous  section  we  developed  an  )( 2n
algorithm which can generate the global quartet weight
matrix  from  a  given  tree  topology.  With  a  simple
modification of that algorithm we can obtain a new one
which  can  reconstruct  the  original  tree  from  its
generated matrix. 

In  the algorithm for generating the weight matrix,
each row in the matrix corresponds to a particular leaf
node and is associated with a variable im which records
the number of the concerned quartet trees generated on
the path from the leaf node to the leading node of the
sub-tree. Each sub-tree is also associated with a variable

in  to record the number of leaf node in the sub-tree.
When there is more than one leaf node in a sub-tree, we
choose  one  node  as  representative  for  that  sub-tree.
Initially  every  leaf  node  is  considered  as  a  sub-tree.
Therefore,  each row in  the  matrix  will  be associated
with the two variables and they are set to  0im  and

.1in  Since we only have a generated matrix, but have
no a tree topology to follow when merging sub-trees, to
find the correct edges in the original tree we need to use
a special procedure.



With two representative nodes  i and  j of the  sub-

trees, we can calculate a value ijd  using equation 
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This equation is exactly the same as that in (1) we
used to calculate entry values of the matrix.  The two
sub-trees are directly connected in the original tree only

if  ijd  is equal to the corresponding value  ijm  in the

matrix. We can then define a confidence value
./ ijijij dmc              (5)

For  any  two  sub-trees  to  be  merged  together  the
corresponding confidence value must be equal to one. 

When there are more than one leaf nodes in each

sub-tree, there is no need to calculate all the ijc  values

associated with  every leaf  node  pair,  one  node  from
each  sub-tree.  When  two  sub-trees  are  directly

connected in the original tree, the confidence value ijc

for every associated node pair  must  be equal  to  one.
Therefore,  we  need  only  to  use  their  representative
nodes.  We  us  one  additional  variable  ig  for

representative node i to store index j when .1ijc  This

can greatly save the computational cost. 
It is easy to verify that the total cost of this modified

algorithm is also ).( 2n

4.  Tree  Construction  from  Inaccurate
Global Weight Matrices

In the previous section we discussed an algorithm for
rebuilding the  original  tree  from its  generated  global
weight  matrix.  The  same algorithm  may be  used  to
construct  an  evolutionary  tree  for  a  given  set  of  n
sequences if  all  the  associated quartets  are fully  and
correctly resolved. Unfortunately, this is only an ideal
case and in reality it is very hard for us to have all the
quartets  fully  and  correctly  resolved,  Therefore,  the
global weight matrix  generated from a set of quartets
will  be inaccurate  and  the  algorithm in  the  previous
section  for  tree  topology  reconstruction  from  its
generated  weight  matrix  cannot  be  used  without
modification. To deal with inaccurate weight matrices
we make three major changes to the original algorithm.

Average  confidence  value ijc :  Since  the  entry

values of the global weight matrix are no longer ideal,
different node pairs, one from each of the two sub-trees,
may produce different confidence values. A simple way
to alleviate this problem is to calculate the confidence
values for all leaf node pairs, average them and use this

averaged value as the confidence value ijc  for each pair

of sub-trees. 

Since  the  entry  values  of  the  weight  matrix  are

inaccurate, we may not obtain 1ijc  for a pair of sub-

trees during the computation. In addition to the three
variables, namely, ,ig im  and ,in  associated with each

sub-tree, we need a new variable ic to record the highest
average confidence  value  for  sub-tree  i with  another
sub-tree  j for  i<j. At each step we compare the stored
values in  ic  and  choose to  merge the  two sub-trees
which have the highest average confidence value. 

Quartet  weight correction:  After  two sub-trees are
merged, we restore the associated entries in the matrix
to their “true” values, i.e.,  change the quartet  weights
based  on  the  currently  reconstructed  sub-trees  and
update  the  weight  matrix  accordingly.  In  particular,
after each merge we need to correct the weights of all
those quartets containing four nodes {i, j, p, q} to (ij|pq,
1.0) where i is a leaf node in one merged sub-tree, j is a
leaf node in the other merged sub-tree and p and q the
leaf  nodes  from  the  rest.  If  the  weights  are  not
corrected, the distributed errors may significantly affect
the  correct  decision  making  in  the  following  merge
steps. With quartet weight correction procedure we are
able to  force the way a tree is constructed by setting

certain particular average confidence value  ijc  to one

and modify the corresponding quartet weights.  This is a
very important procedure for us to change the direction
of tree reconstruction.

With the above two modifications we can have an
algorithm which is able to deal with inaccurate quartet
weights. This algorithm is depicted in Fig. 5.

At each merge step the three major contributors to
the total computational cost are: (1) the updating of im

values  for  each  leaf  node,  (2)  the  quartet  weight
correction,  and  (3)  calculation  of  average confidence
values for each sub-tree to find the highest one. We can
easily prove that the costs for first and third contributors

mentioned above are )( 2n  and   ),( 3n  respectively,

after  n merge steps. Each quartet  weight  is corrected
once only  during  the  computation. The total number
of  quartets  for  a  given  set  of  n sequences  is

)(
4

4n
n
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
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

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
 and thus the total cost for quartet weight

correction. Therefore, the total  computational cost for

the algorithm will be  ).( 4n  It  should also be noted

that this cost is much less than the cost for computing
quartet  weights using the  maximum likelihood which

requires )( 4sn operations where s is the length of the

sequences, usually a few hundreds to a few thousands.



Fig.  5.  An  algorithm  for  tree  construction  from
inaccurate quartet weight matrices. 

Multiple tree reconstruction: Since the matrix is not
accurate,  it  may not  always be the  right  decision to
merge  the  two  sub-trees  that  have  the  highest
confidence  value.  After  the  highest  confidence value

ijc  is obtained, we then check whether there is another

sub-tree k which has a reasonably high confidence value
associated with one of the two sub-trees i and j, that is,

we  check  whether  , )(or  ijkiik ccc   or

ijkjjk ccc  )(or    where   is  a  threshold  which  is

smaller than, but close to one. (If there are several sub-
trees which satisfy this condition, in our current version
we simply choose the one with the highest confidence
value among them.) At each of these critical points we
can have three different  super quartet  trees with four
sub-trees i,  j,  k, and the rest as its four super nodes at
different places. The problem is which one will be the
correct one leading us to find the correct tree topology.
In the current version of our algorithm we keep all three
different  patterns.  Therefore,  we  will  reconstruct
multiple  trees and  hope that  the  correct  tree  will  be
included in these generated trees. However, we need a
control  on  the  number  of  trees  to  be  reconstructed.

Otherwise, we may end up with about n3  different trees

if  every  merge  step  is  a  critical  point.  We  use  a
parameter s to limit the total number of trees. Each time
a  critical  point  is  encountered,  two  extra  trees  are

generated until  s such stages are encountered for each
tree.  Therefore,  the  maximum number  of  trees to  be

generated will be limited to .3s  

4. Experimental Results

In our experiment we use the benchmarks developed
by Ranwez and Gascuel who used these benchmarks to
test and compare different phylogeny methods [16]. Six
model trees, each consisting of 12 leaf nodes, are used
to generate test data sets under various situations. Three
model  trees,  named AA, AB and  BB,  are molecular
clock-like,  while the other three,  named CC, CD and
DD, present varying substitution rates among lineages.
Four  evolutionary  rates  conditions  are  considered,
ranging from low to very fast, for which the maximum
pair-wise divergence  (MD)  is  from 0.1 to  about  2.0
substitutions  per  site.  With  these  model  trees  and
varying evolutionary conditions, a total of 48,000 test
data sets of DNA sequences are generated using Seq-
Gen[15]. A detailed description of these synthetic test
data  sets  can  be  found  on  their  Web  site  at
www.lirmm.fr.

In our experiments we set  to 0.85. The number of
stages was set to 0 (QBNJ0, to allow only a single tree),
4 (QBNJ4, maximum 81 trees), 5 (QBNJ5, maximum
243 trees) and infinity (QBNJINF, to allow unlimited
number of trees). We measured the average number of
trees  generated  per  data  set  and  the  percentage  of
correctly inferred trees. (Note that the correctly inferred
tree  here  means  the  correct  tree  topology  is  found
among a number of trees generated for a data set.) Some
experimental results are depicted in Table 1 for DNA
sequences  of  length  300  and  Table  2  for  DNA
sequences of length 600. The figure yx /  in the tables
denotes the percentage of correctly inferred trees / the
average number  of  trees  generated  per  data  set.  The
figures are all rounded to their nearest integers. 



Table  1.  Experimental  results for DNA sequences of
length 300.

Table  2.  Experimental  results for DNA sequences of
length 600.

In  the  tables  we  also  present  the  results,  i.e.,
percentages of  correctly inferred trees,  obtained from
DNAPARS (the parsimony program (version 3.5c) of
the PHYLIP package), BIONJ (an improved neighbour
joining method [9]) and FASTDNAML (the maximum-
likelihood program (version 1.2) [13]) for the same data
sets. These data  are simply copied from [16] for  the
purpose of comparison.

We can see from the tables that the basic version of
our  algorithm,  i.e.,  QBNJ0 for  which the  number of
stages is set to 0, does not perform as well as all other
three methods except  model tree AA for which some
results obtained by QBNJ0 are comparable to the others.
The accuracy of quartet-based algorithms is dependent
on  the  quality  of  quartet  weights  (or  quartet  trees
generated).  Even  though  the  globally  integrated
information from all the quartets is used at each step to
determine the merge operation (and we saw that QBNJ0
constantly performs better than TREE-PUZZLE using
the same sets of quartet trees in our experiments), the
basic version of our  algorithm is still  sensitive to  the
errors of  quartet  trees.  When  the  number  of  trees is
allowed  to  increase,  however,  the  percentage  of
correctly  inferred  trees is  higher  than  all  other  three
methods under all the categories and in certain cases can
be much higher. For DNA sequences of length 300 and

,1.0MD   for example,  the average number of trees
constructed  using  QBNJ4  is  only  around  50.  This
number, or even the maximum number of trees allowing
to be constructed, is tiny when it is compared with the
total number of possible trees for a set of 12 sequences.
However, the percentage of the correct trees which are
found among the constructed trees, on an average from
all  six model trees, is about 3.5 times the percentage
obtained  using  DNAPARS,  or  BIONJ,  and  about  3
times the percentage obtained using FASTDNAML. For
QBNJ5 and QBNJINF the figures are even higher. This
comparison  seems unfair  since  our  method  builds  a
number  of  trees  for  each  data  set,  but  the  others
construct only one. To our knowledge so far, however,
no  existing  phylogenetic  methods  can  guarantee  to
produce better results than ours for obtaining the correct
tree by constructing only a very limited number of trees.
These significant results obtained from our experiments
verify the effectiveness of our quartet-based neighbour-
joining method. 

5. Conclusions

In  this  paper  we  introduced  a  new  quartet-based
method for  phylogenetic  inference.  The  experimental
results  show  that  our  method  can  significantly
outperform most existing popular methods if a limited
number  of  trees  is  allowed  to  be  generated.  We  are
conducting more experiments using other data sets both
synthetic  and  practical  to  test  our  method  and  then
make further improvement.

In  practice  it  is  very  important  and  desirable  to
construct a number of trees for a posterior analysis since
no existing methods can guarantee to construct a correct
tree for many hard problems in practice. However, the
issues are the probability that the correct tree is among
the generated trees,  and the probability that  a correct
tree can be derived from a number of generated trees.



The probability is very high for the correct tree to be
among a very limited number of trees constructed using
our method. We can also provide important information
on where the trees differ (i.e.,  critical points). We are
doing experiments using the maximum likelihood as the
criterion at  each critical point  to try to find the right
direction for constructing correct trees and so to reduce
the number of trees to be generated.

We also use the maximum likelihood to calculate the
likelihood  values  of  the  reconstructed  trees  obtained
using our quartet-based method and then select one tree
with  the  highest  likelihood  value.  If  the  maximum
likelihood is able to correctly identify the correct trees,
it is clear that just adding this one more procedure at the
end,  our  method  will  significantly  outperform  most
existing popular  methods on the basis of constructing
only a  single tree!  We shall  present  some interesting
results in the near future.

It is well known that the accuracy of a quartet-based
method strongly depends on the quality of quartet trees.
Our method is quartet based and has no exception. It is
thus  important  to  find  more  efficient  methods  to
improve the quality of quartet trees, or reduce quartet
errors. This will be our future research topic.
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