
A Novel Quartet-Based Method for Phylogenetic Inference

B. B. Zhou, M. Tarawneh, C. Wang, A. Zomaya
School of Information Technologies

University of Sydney
NSW 2006, Australia

{bbz,monther,cwang,zomaya}@it.usyd.edu.au
&

R. P. Brent
Mathematical Science Institute
Australian National University
Canberra, ACT 0200, Australia

rpb@rpbrent.co.uk

Abstract

In this paper we introduce a new quartet-based
method. This method makes use of the Bayes (or
quartet) weights of quartets as those used in the
quartet puzzling. However, all the weights from the
related quartets are accumulated to form a global
quartet weight matrix. This matrix provides integrated
information and can lead us to recursively merge
small sub-trees to larger ones until the final single
tree is obtained. The experimental results show that
the probability for the correct tree to be among a very
small number of trees constructed using our method is
very high. These significant results open a new
research direction to further investigate more
efficient algorithms for phylogenetic inference.

1. Introduction

There has been strong interest in reconstruction of
large evolutionary trees from small sub-trees in the
computational biology community in recent years
[2,3,4,5,6,8,10,11,18,19,22]. The quartet-based method
may be the simplest and the most cost-effective one for
such reconstruction. This approach takes two major
stages to complete, i.e., first generates the most likely
sub-tree(s) for every possible four sequences, or quartet
from a set of n DNA or protein sequences using a
general phylogeny method [21], such as maximum
parsimony, maximum likelihood, or neighbour joining,
and next applies a combinatorial technique to
reconstruct the entire evolutionary tree topology based
on the topological properties of the generated four-
sequence or quartet trees. It is well known that it is hard
to obtain correctly resolved quartet trees by using
currently existing methods [1,14]. Though there are

interesting theoretical properties, many quartet-based
algorithms assume a fully resolved tree for each quartet
and this unreasonable assumption seriously hinders the
quartet-based approach from being widely adopted in
practice. Therefore, the main concern in designing a
good and practical quartet-based algorithm is how to
tolerate errors in the quartet trees when reconstructing
the entire tree topology in the second stage.

Several techniques were proposed to try to improve
the accuracy of the quartet-based approach. A
prominent approach which is widely used in practice is
known as quartet puzzling [19]. This method was
originally developed to try to reduce the computational
cost of the maximum likelihood method. Though the
method has problems, such as accuracy, the
introduction of weighted quartet trees and likelihood
mapping [20] gives hopes for further developments of
quartet-based algorithms which can be used in practice.
The quartet puzzling takes both resolved and unresolved
quartet trees into consideration. However, it is
essentially a local optimization process and thus is very
sensitive to quartet errors [16].

In this paper we introduce a novel quartet-based
algorithm. Like the quartet puzzling, this algorithm
rebuilds the evolutionary tree using quartet weights.
However, it takes a global view by looking at all
possible quartet trees when merging a pair of sub-trees.
Similar to the distance-based neighbour joining, it
recursively merges one pair of sub-trees at each merge
step based on global statistics provided by a symmetric
matrix which is called global quartet weight matrix in
this paper. Accumulating all related quartet weights
from all possible quartets generates this matrix. Because
we use global information from all the quartets, we are
able to determine, with high confidence, which two sub-
trees should be merged at each step. We can also easily

identify those critical points where the ambiguity
occurs, i.e., the places where several pairs of sub-trees
could be merged in about the same probability, and then
take proper actions. Our current algorithm generates a
limited number of trees and the initial experimental
results, using the benchmarks which consist of 48,000
synthetic data sets of DNA sequences generated by the
LIRMM Methods and Algorithms in Bioinformatics
research group [23], show that the probability for the
correct tree to be among the generated trees is very high.
These significant results open a new research direction
to further investigate more efficient algorithms for
phylogenetic inference.

The paper is organized as follows: In Section 2 we
describe the global quartet weight matrix and give an

efficient)(2n algorithm for generating the matrix

from a given unrooted binary tree topology. In Section 3
we show that with a simple modification this algorithm
can be used to reconstruct the original tree topology
from its generated weight matrix. Therefore, there is a
one-to-one mapping between a given tree topology and
its generated global quartet weight matrix. This forms
the basis of our quartet-based neighbour-joining (QBNJ)
method which is discussed in Section 4. Section 5
presents some experimental results. Conclusions and
future work are discussed in Section 6.

2. Global Quartet Weight Matrix

A quartet, or a set of four sequences is associated
with one of seven possible graphs [7]: three fully
resolved unrooted trees, three partially resolved trees
for which we are unable to distinguish between two of
the three fully resolved trees, and a completely
unresolved tree. The three possible fully resolved trees
for a quartet {a, b, c, d} are depicted in Fig. 1. In the
figure)|(ztxy indicates how the sequences,
represented by leaf nodes, are divided into two pairs by
cutting the middle edge (so-called bi-partitioning), and
thus shows the neighbourhood relations of the quartet in
terms of topology.

We can plot all the quartets from a given n sequences
in a two-dimensional graph to see how many quartets
are resolved (and how many unresolved) using the
likelihood-mapping procedure [20]. With the
likelihood-mapping procedure, likelihood values for
each of the three possible resolved trees are first
calculated and then these likelihood values are
transformed into posterior probabilities, or Bayes

weights (or quartet weights in this paper) i
w for i = 1,

2, and 3, by applying Bayes’ theorem assuming a
uniform prior for all three trees. Three quartet weights
of each quartet are further mapped onto a two-
dimensional simplex. With this mapping we may see
how closely the maximum-likelihood (ML) method can

resolve each quartet into one of the three possible trees.
A generalized method, called quartet mapping, was
developed based on the same principle to measure other
approaches for quartet tree construction and used to
compare different methods in their abilities to indicate
the correct topology [12].

Fig. 1. The three possible fully resolved trees for a
quartet {a, b, c, d}.

For a given n sequences and the associated set of
quartets, we can generate a symmetric global quartet
weight matrix of size ,nn each row or column
corresponding to one particular sequence. Let

),|(wklij denote a quartet tree with a quartet weight w.
Our global quartet weight matrix is generated by adding
each w to entries ij, ji, kl and lk, using a complete set of
quartets from the given sequences.
Given a tree topology of n leaves, we can uniquely

determine a set of 







4

n
 quartet trees which are

consistent with the original tree, i.e., each quartet tree
separates the four leaves into two pairs in the same way
as the original tree through bi-partitioning. For each
quartet there can only be one fully resolved tree in the
set of these quartet trees and it is described as

).0.1 ,|(cdab From a given tree topology a global
quartet weight matrix is also uniquely determined. This
is because our matrix is generated using the quartet
weights of the associated quartet trees. In the following

we present an)(2n algorithm to construct the weight

matrix from a given tree topology. In next section we
describe an algorithm which can reconstruct the original
tree topology from its generated weight matrix. This
shows a one-to-one mapping between a given tree
topology and its generated global quartet weight matrix.

Fig. 2. Calculating the number of quartet trees which
have the form of (ij|xy, 1.0) using the bi-partitioning
technique.

To determine the entry value on row i and column j
of the global weight matrix from a given tree topology,
we need to calculate the total number of quartet trees
with the form ,)0.1 ,|(pqij for .or ,or , jiqp  This
can be done using the bi-partitioning technique. We first
determine a unique path from leaf node i to node j, as
shown in Fig. 2. For each internal node on that path we
make a cut on the third edge which is not on the path to
separate the tree into two sub-trees. This ensures that
leaves i and j will always be in the same sub-tree.
Counting the number of leaves in the sub-tree which
does not contain leaves i and j, the number of quartet
trees with the form)0.1 ,|(pqij from this bi-

partitioning will be 










2
k

n
 where k

n is the number of

leaves in that sub-tree. (Note 0
2











k

n
 if .2

k
n)

Therefore, the total number of such quartet trees, or the
value for entry ij in the weight matrix will be

 1 2
 









L
k

k
n

 where L is the number of internal nodes

on the path.
Note that it is not efficient to use the bi-partitioning

procedure to calculate each entry value of the weight
matrix the same way as described above. This is because
for each leaf node we need to find the paths to every
other node and then for each path we also need to set
cuts for every node on the path and count for each bi-
partitioning the number of nodes in the other sub-tree.
This way the tree has to be traversed many times and
there will be a great amount of redundant calculations.
Using dynamic programming, we can eliminate the
redundant calculations and obtain a very efficient
algorithm.

Fig. 3. Each internal node is associated with three sub-
trees in an unrooted tree.

Each internal node in an unrooted binary tree has
three edges. Therefore, a tree will be divided into three
sub-trees when an internal node is removed. For
example, in Fig. 3 three sub-trees a, b and x are
connected by node ol which has three edges connecting

to nodes ,al ,bl and xl in the three sub-trees,

respectively. Node ,al (or ,bl or xl) is called the
leading node of a sub-tree since it is the only node for
the sub-tree to be linked with other sub-trees. Our
interest is to calculate the total number of quartet trees
with the form (ij|pq, 1.0) where i is a leaf node in sub-
tree a and j a leaf node in sub-tree b. It is obvious that
nodes ,al ol and bl must be on the path from leaf node
i to leaf node j. The calculation for the total number of
quartet trees which have the concerned form can then be
divided into three parts according to the three sub-trees,
that is, the quartet trees of the concerned form generated
in sub-tree a from leaf node i along the path to the
leading node ,al the quartet trees generated in sub-tree

b from node j to node ,bl and those generated through a

bi-partitioning on the third edge of node .ol

After removing the third edge of node ,ol we
partition the tree into two sub-trees, one being the
combination of sub-trees a and b and the other being the
entire sub-tree x. Assume that we know the number of
leaf nodes in sub-trees a and b which are ,an and ,bn

respectively. The number of leaf nodes in sub-tree x will
be)(ba nnn  for n the total number of leaf nodes in
the tree. The number of quartet trees which can be
generated to have the form (ij|pq, 1.0) through this bi-

partitioning is simply equal to .
2

)(










 
ba

nnn
 Assume

further that we know the total number of the quartet
trees with the concerned form in sub-tree a from leaf
node i along the path to the leading node ,al is ,im and

the number in sub-tree b from node j to node bl is .jm

The total number of the quarte trees which have the
form (ij|pq, 1.0) can then be obtained as

.
2

)(
ji

ba
ij mm

nnn
m 









 
 (1)

This is also the entry value on row i and column j of the
global weight matrix.

After every entry value ijm associated with the leaf

nodes in sub-trees a and b are calculated, we merge the
two sub-trees into one. Node ol will be the leading

node and the number of leaf nodes becomes ba nn  for

the new sub-tree, i.e.,
.bao nnn  (2)

For each leaf node in sub-tree a, we add 










2
b

n
to ,im

i.e.,

.
2 









 b

ii

n
mm (3)

This is because when we further merge this new and
larger sub-tree with another sub-tree, we need to know
the number of concerned quartet trees from each leaf
node i of the original sub-tree a to the new leading node

.ol However, we already know the number from node i

to node .al We need only to make an additional bi-

partitioning by cutting the third edge of node .ol This
will make the original sub-tree b be completely

separated from the rest. Therefore, 










2
b

n
 more quartet

trees of the concerned form can be generated on the
path from leaf node i, which is originally in sub-tree a,

to the new leading node .ol For the same reason 










2
a

n

will be added to jm which is associated with each leaf

node in sub-tree b, i.e.,

 .
2 









 a

jj

n
mm (4)

With the above four equations we can obtain an
efficient algorithm for obtaining the entry values of the
global matrix from a given tree topology. In this
algorithm each leaf node is associated with a variable

im to store the number of quartet trees of the concerned
form obtained from the current sub-tree. It seems that
for each node i we might need 1n variables to store
the numbers for different ij pairs. However, a single
variable will be enough since the path from node i to the
leading node is the common sub-path for node i to reach
any other nodes outside the sub-tree. Each sub-tree is
associated with a variable in to record the number of
leaf nodes in the sub-tree. Initially, every leaf node is
considered as a separate sub-tree containing a single
node. Thus the values im and in are set to zero and
one, respectively. Sub-trees are recursively merged
together according to the tree topology using the above
four equations until there left only a single tree. A
pseudocode of the algorithm is shown in Fig. 4.

Fig. 4. An algorithm for generating the quartet matrix.

The size of each sub-tree will be no greater than n.
Each For loop in the above takes only)(n operations.

Thus it takes)(n operations to merge two sub-trees.
There are 1n such steps to merge all leaf nodes into a
single tree according to the tree topology. Therefore, the
total computational cost of this algorithm will be

).(2n

3. Tree Reconstruction from the Generated
Global Weight Matrix

In the previous section we developed an)(2n
algorithm which can generate the global quartet weight
matrix from a given tree topology. With a simple
modification of that algorithm we can obtain a new one
which can reconstruct the original tree from its
generated matrix.

In the algorithm for generating the weight matrix,
each row in the matrix corresponds to a particular leaf
node and is associated with a variable im which records
the number of the concerned quartet trees generated on
the path from the leaf node to the leading node of the
sub-tree. Each sub-tree is also associated with a variable

in to record the number of leaf node in the sub-tree.
When there is more than one leaf node in a sub-tree, we
choose one node as representative for that sub-tree.
Initially every leaf node is considered as a sub-tree.
Therefore, each row in the matrix will be associated
with the two variables and they are set to 0im and

.1in Since we only have a generated matrix, but have
no a tree topology to follow when merging sub-trees, to
find the correct edges in the original tree we need to use
a special procedure.

With two representative nodes i and j of the sub-

trees, we can calculate a value ijd using equation

.
2

)(
ji

ji
ij mm

nnn
d 









 


This equation is exactly the same as that in (1) we
used to calculate entry values of the matrix. The two
sub-trees are directly connected in the original tree only

if ijd is equal to the corresponding value ijm in the

matrix. We can then define a confidence value
./ ijijij dmc  (5)

For any two sub-trees to be merged together the
corresponding confidence value must be equal to one.

When there are more than one leaf nodes in each

sub-tree, there is no need to calculate all the ijc values

associated with every leaf node pair, one node from
each sub-tree. When two sub-trees are directly

connected in the original tree, the confidence value ijc

for every associated node pair must be equal to one.
Therefore, we need only to use their representative
nodes. We us one additional variable ig for

representative node i to store index j when .1ijc This

can greatly save the computational cost.
It is easy to verify that the total cost of this modified

algorithm is also).(2n

4. Tree Construction from Inaccurate
Global Weight Matrices

In the previous section we discussed an algorithm for
rebuilding the original tree from its generated global
weight matrix. The same algorithm may be used to
construct an evolutionary tree for a given set of n
sequences if all the associated quartets are fully and
correctly resolved. Unfortunately, this is only an ideal
case and in reality it is very hard for us to have all the
quartets fully and correctly resolved, Therefore, the
global weight matrix generated from a set of quartets
will be inaccurate and the algorithm in the previous
section for tree topology reconstruction from its
generated weight matrix cannot be used without
modification. To deal with inaccurate weight matrices
we make three major changes to the original algorithm.

Average confidence value ijc : Since the entry

values of the global weight matrix are no longer ideal,
different node pairs, one from each of the two sub-trees,
may produce different confidence values. A simple way
to alleviate this problem is to calculate the confidence
values for all leaf node pairs, average them and use this

averaged value as the confidence value ijc for each pair

of sub-trees.

Since the entry values of the weight matrix are

inaccurate, we may not obtain 1ijc for a pair of sub-

trees during the computation. In addition to the three
variables, namely, ,ig im and ,in associated with each

sub-tree, we need a new variable ic to record the highest
average confidence value for sub-tree i with another
sub-tree j for i<j. At each step we compare the stored
values in ic and choose to merge the two sub-trees
which have the highest average confidence value.

Quartet weight correction: After two sub-trees are
merged, we restore the associated entries in the matrix
to their “true” values, i.e., change the quartet weights
based on the currently reconstructed sub-trees and
update the weight matrix accordingly. In particular,
after each merge we need to correct the weights of all
those quartets containing four nodes {i, j, p, q} to (ij|pq,
1.0) where i is a leaf node in one merged sub-tree, j is a
leaf node in the other merged sub-tree and p and q the
leaf nodes from the rest. If the weights are not
corrected, the distributed errors may significantly affect
the correct decision making in the following merge
steps. With quartet weight correction procedure we are
able to force the way a tree is constructed by setting

certain particular average confidence value ijc to one

and modify the corresponding quartet weights. This is a
very important procedure for us to change the direction
of tree reconstruction.

With the above two modifications we can have an
algorithm which is able to deal with inaccurate quartet
weights. This algorithm is depicted in Fig. 5.

At each merge step the three major contributors to
the total computational cost are: (1) the updating of im

values for each leaf node, (2) the quartet weight
correction, and (3) calculation of average confidence
values for each sub-tree to find the highest one. We can
easily prove that the costs for first and third contributors

mentioned above are)(2n and),(3n respectively,

after n merge steps. Each quartet weight is corrected
once only during the computation. The total number
of quartets for a given set of n sequences is

)(
4

4n
n











 and thus the total cost for quartet weight

correction. Therefore, the total computational cost for

the algorithm will be).(4n It should also be noted

that this cost is much less than the cost for computing
quartet weights using the maximum likelihood which

requires)(4sn operations where s is the length of the

sequences, usually a few hundreds to a few thousands.

Fig. 5. An algorithm for tree construction from
inaccurate quartet weight matrices.

Multiple tree reconstruction: Since the matrix is not
accurate, it may not always be the right decision to
merge the two sub-trees that have the highest
confidence value. After the highest confidence value

ijc is obtained, we then check whether there is another

sub-tree k which has a reasonably high confidence value
associated with one of the two sub-trees i and j, that is,

we check whether ,)(or ijkiik ccc  or

ijkjjk ccc )(or where  is a threshold which is

smaller than, but close to one. (If there are several sub-
trees which satisfy this condition, in our current version
we simply choose the one with the highest confidence
value among them.) At each of these critical points we
can have three different super quartet trees with four
sub-trees i, j, k, and the rest as its four super nodes at
different places. The problem is which one will be the
correct one leading us to find the correct tree topology.
In the current version of our algorithm we keep all three
different patterns. Therefore, we will reconstruct
multiple trees and hope that the correct tree will be
included in these generated trees. However, we need a
control on the number of trees to be reconstructed.

Otherwise, we may end up with about n3 different trees

if every merge step is a critical point. We use a
parameter s to limit the total number of trees. Each time
a critical point is encountered, two extra trees are

generated until s such stages are encountered for each
tree. Therefore, the maximum number of trees to be

generated will be limited to .3s

4. Experimental Results

In our experiment we use the benchmarks developed
by Ranwez and Gascuel who used these benchmarks to
test and compare different phylogeny methods [16]. Six
model trees, each consisting of 12 leaf nodes, are used
to generate test data sets under various situations. Three
model trees, named AA, AB and BB, are molecular
clock-like, while the other three, named CC, CD and
DD, present varying substitution rates among lineages.
Four evolutionary rates conditions are considered,
ranging from low to very fast, for which the maximum
pair-wise divergence (MD) is from 0.1 to about 2.0
substitutions per site. With these model trees and
varying evolutionary conditions, a total of 48,000 test
data sets of DNA sequences are generated using Seq-
Gen[15]. A detailed description of these synthetic test
data sets can be found on their Web site at
www.lirmm.fr.

In our experiments we set  to 0.85. The number of
stages was set to 0 (QBNJ0, to allow only a single tree),
4 (QBNJ4, maximum 81 trees), 5 (QBNJ5, maximum
243 trees) and infinity (QBNJINF, to allow unlimited
number of trees). We measured the average number of
trees generated per data set and the percentage of
correctly inferred trees. (Note that the correctly inferred
tree here means the correct tree topology is found
among a number of trees generated for a data set.) Some
experimental results are depicted in Table 1 for DNA
sequences of length 300 and Table 2 for DNA
sequences of length 600. The figure yx / in the tables
denotes the percentage of correctly inferred trees / the
average number of trees generated per data set. The
figures are all rounded to their nearest integers.

Table 1. Experimental results for DNA sequences of
length 300.

Table 2. Experimental results for DNA sequences of
length 600.

In the tables we also present the results, i.e.,
percentages of correctly inferred trees, obtained from
DNAPARS (the parsimony program (version 3.5c) of
the PHYLIP package), BIONJ (an improved neighbour
joining method [9]) and FASTDNAML (the maximum-
likelihood program (version 1.2) [13]) for the same data
sets. These data are simply copied from [16] for the
purpose of comparison.

We can see from the tables that the basic version of
our algorithm, i.e., QBNJ0 for which the number of
stages is set to 0, does not perform as well as all other
three methods except model tree AA for which some
results obtained by QBNJ0 are comparable to the others.
The accuracy of quartet-based algorithms is dependent
on the quality of quartet weights (or quartet trees
generated). Even though the globally integrated
information from all the quartets is used at each step to
determine the merge operation (and we saw that QBNJ0
constantly performs better than TREE-PUZZLE using
the same sets of quartet trees in our experiments), the
basic version of our algorithm is still sensitive to the
errors of quartet trees. When the number of trees is
allowed to increase, however, the percentage of
correctly inferred trees is higher than all other three
methods under all the categories and in certain cases can
be much higher. For DNA sequences of length 300 and

,1.0MD  for example, the average number of trees
constructed using QBNJ4 is only around 50. This
number, or even the maximum number of trees allowing
to be constructed, is tiny when it is compared with the
total number of possible trees for a set of 12 sequences.
However, the percentage of the correct trees which are
found among the constructed trees, on an average from
all six model trees, is about 3.5 times the percentage
obtained using DNAPARS, or BIONJ, and about 3
times the percentage obtained using FASTDNAML. For
QBNJ5 and QBNJINF the figures are even higher. This
comparison seems unfair since our method builds a
number of trees for each data set, but the others
construct only one. To our knowledge so far, however,
no existing phylogenetic methods can guarantee to
produce better results than ours for obtaining the correct
tree by constructing only a very limited number of trees.
These significant results obtained from our experiments
verify the effectiveness of our quartet-based neighbour-
joining method.

5. Conclusions

In this paper we introduced a new quartet-based
method for phylogenetic inference. The experimental
results show that our method can significantly
outperform most existing popular methods if a limited
number of trees is allowed to be generated. We are
conducting more experiments using other data sets both
synthetic and practical to test our method and then
make further improvement.

In practice it is very important and desirable to
construct a number of trees for a posterior analysis since
no existing methods can guarantee to construct a correct
tree for many hard problems in practice. However, the
issues are the probability that the correct tree is among
the generated trees, and the probability that a correct
tree can be derived from a number of generated trees.

The probability is very high for the correct tree to be
among a very limited number of trees constructed using
our method. We can also provide important information
on where the trees differ (i.e., critical points). We are
doing experiments using the maximum likelihood as the
criterion at each critical point to try to find the right
direction for constructing correct trees and so to reduce
the number of trees to be generated.

We also use the maximum likelihood to calculate the
likelihood values of the reconstructed trees obtained
using our quartet-based method and then select one tree
with the highest likelihood value. If the maximum
likelihood is able to correctly identify the correct trees,
it is clear that just adding this one more procedure at the
end, our method will significantly outperform most
existing popular methods on the basis of constructing
only a single tree! We shall present some interesting
results in the near future.

It is well known that the accuracy of a quartet-based
method strongly depends on the quality of quartet trees.
Our method is quartet based and has no exception. It is
thus important to find more efficient methods to
improve the quality of quartet trees, or reduce quartet
errors. This will be our future research topic.

10. References

[1] J. Adachi and M. Hasegawa, Instability of quartet
analyses of molecular sequence data by the maximum
likelihood method: the cetacean/artiodactyla relashionships,
Cladistics, Vol. 5, 1999, pp.164-166.
[2] H. J. Bandelt and A Dress, Reconstructing the shape of a
tree from observed dissimilarity data, Adv. Appl. Math., Vol.
7, 1986, pp.309-343.
[3] V. Berry and D. Bryant, Faster reliable phylogenetic
analysis, Proceedings of 3rd Annual International
Conference on Comp. Mol. Biol, 1999, pp.59-68.
[4] V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham,
Quartet cleaning: improved algorithms and simulation,
Lecture Notes Computer Science, Vol. 1643, 1999, pp.313-
324.
[5] V. Berry, D. Bryant, P. Kearney, M. Li, T. Jiang, T.
Wareham and H. Zhang, A practical algorithm for recovering
the best supported edges in an evolutionary tree. Proceedings
of Symposium on Discrete Algorithms, San-Francisco, 2000,
pp.287-296.
[6] V. Berry and O. Gascuel, Inferring evolutionary trees
with strong combinatorial evidence, Theoret. Comput. Sci.,
240(2), 2000, pp. 271-298.
[7] M. Eigen, B. F. Lindemann, M. Tietze, R. Winkler-
Oswatitsch, A. Dress, and A. von Haeseler, How old is the
genetic code? Statistical geometry of tRNA provides an

answer, Science, New Series, Vol. 244, No. 4905, 1989,
pp.673-679.
[8] P. Erdos, M. Steel, L. Szekely and T. Warnow,
Constructing big trees from short sequences, Lecture Notes
Computer Science, Vol. 1256, 1997, pp.827-837.
[9] O. Gascuel, BIONJ: An improved version of the NJ
algorithm based on a simple model of sequence data, Mol.
Biol. Evol., 14, 1997, pp.685-695.
[10] D. H. Huson, S. Nettles and T. Warnow, Obtaining
highly accurate topology estimates of evolutionary trees from
very short sequences, Proceedings of The 3rd Annual Int.
Conf. Comp. Mol. Biol., 1999, pp. 198-209.
[11] T. Jiang, P. E. Kearney and M. Li, Orchestrating
quartets: Approximation and data correction, Proceedings of
the 39th IEEE Symposium on Foundations of Computer
Science, 1998, pp.416-425.
[12] K. Nieselt-Struwe and A. von Haeseler, Quartet-
mapping, a generalization of the likelihood-mapping
procedure, Mol. Biol. Evol., 18(7), 2001, pp.1204-1219.
[13] G. Olsen, H. Matsuda, R. Hagstrom and R. Overbeek,
A tool for construction of phylogenetic trees of DNA
sequences using maximum likelihood, Comput. Appl.
Biosci., Vol. 10, 1994, pp.41-48.
[14] H. Philippe and E. Douzery, The pitfalls of molecular
phylogeny based on four species, as illustrated by the
cetacean/artiodactyla relationship, J. Mamm. Evol., Vol. 2,
1994, pp.133-152.
[15] A. Rambaut and N. Grassly, Seq-Gen: an application
for the Monte Carlo simulation of DNA sequence evolution
along phylogenetic trees, Comput Appl Biosci 13, 1997, pp.
235-238.
[16] V. Ranwez and O. Gascuel, Quartet-based phylogenetic
inference: Improvements and limits, Mol. Biol. Evol., 18(6),
2001, pp.1103-1116.
[17] H. A. Schmidt, K. Strimmer, M. Vingron and A. von
Haeseler: TREE-PUZZLE: maximum likelihood
phylogenetic analysis using quartets and parallel computing.
Bioinformatics, 18(3), Mar 2002, pp.502-504.
[18] M. Steel, The complexity of reconstructing trees from
qualitative characters and subtrees, J. Classification, Vol. 9,
1992, pp.91-116.
[19] K. Strimmer and A. von Haeseler, Quartet puzzling: A
quartet maximum-likelihood method for reconstructing tree
topologies, Mol. Biol. Evol., 13(7), 1996, pp.964-969.
[20] K. Strimmer, and A. von Haeseler, (1997) Likelihood–
mapping: A simple method to visualize phylogenetic content
of a sequence alignment, Proc. Natl. Acad. Sci. USA, 94,
1997, pp.6815–6819.
[21] D. L. Swofford, G. J. Olsen, P. J. Waddell and D. M.
Hillis, Phylogeny reconstruction in D. M. Hillis, C. Moritz
and B. K. Mable, eds., Molecular Systematics, 2nd edition,
Sinauer Associates, Sunderland, Mass., 1996.
[22] S. Willson, Measuring Inconsistency in phylogenetic
trees, J. Theoret. Biol., Vol. 190, 1998, pp.15-36.
[23] The LIRMM Methods and Algorithms in
Bioinformatics research group, www.lirmm.fr.

