
On a New Quartet-Based Phylogeny Reconstruction
Algorithm

B. B. Zhou1, M. Tarawneh1, D. Chu1, P. Wang1, C. Wang1, A. Y. Zomaya1, and R. P. Brent2

1School of Information Technologies 2Mathematical Science Institute
University of Sydney Australian National University
NSW 2006, Australia Canberra, ACT 0200, Australia

 bbz@it.usyd.edu.au rpb@rpbrent.co.uk

Abstract

Recently we developed a new quartet-based

algorithm for phylogenetic analysis [22]. This
algorithm constructs a limited number of trees for a
given set of DNA or protein sequences and the initial
experimental results show that the probability for the
correct tree to be included in this small set of trees is
very high. In this paper we further extend the idea.
We first discuss a revision to the original algorithm
to reduce the number of trees generated, while
keeping the high probability for the correct tree to
be included. We then deal with the issue on how to
retrieve the correct tree from the generated trees and
our current approach is to calculate the likelihood
values of these trees and pick up a few best ones
which have the highest likelihood values. Though the
experimental results are comparable to that
obtained from currently popular ML based
algorithms, we find that it is common that certain
incorrect trees can have likelihood values at least as
large as that of the correct tree. A significant
implication of this is that even if we are able to find
a truly globally optimal tree under the maximum
likelihood criterion, this tree may not necessarily be
the correct phylogenetic tree!

1. Introduction

The quartet-based method is one of the very
important approaches for reconstruction of a large
evolutionary tree from a set of smaller trees. It
constructs a tree for a given number of molecular
sequences based on the topological properties of
each subset of four molecular sequences. The main
advantage of this method is that there is a one-to-one
correspondence between a tree topology and a set of
four-sequence or quartet trees. If we can correctly
identify the tree topology of each individual subset of

four sequences, we are able to reconstruct the entire
evolutionary tree for a given problem in polynomial
time. In practice, however, there exist situations that
the correctly resolved quartet trees are very difficult
to obtain by using currently existing methods [1,14].
Therefore, the main concern in designing a good and
practical quartet-based algorithm is how to tolerate
errors in the quartet trees when reconstructing the
entire tree topology. Different methods have been
introduced in the literature to deal with the problem
of quartet errors, for example, those in
[2,3,4,5,6,7,8,9,10, 12,13,15,16,17,18,20].
Recently, we developed a new quartet-based
algorithm for the reconstruction of evolutionary trees
[22]. This algorithm constructs a limited number of
trees for a given set of DNA or protein sequences
based on the topological information of every
possible quartet trees. Our initial experimental results
showed that the probability for the correct tree to be
included in this small set of trees is very high.
In this paper we further extend the idea. We first
present a revision to the original algorithm to reduce
the number of trees generated, while keeping the
high probability for the correct tree to be included.
We then deal with the issue on how to retrieve the
correct tree from those generated trees. Our current
approach is to calculate the likelihood values of these
trees and pick up a few best ones which have the
highest likelihood values. It was assumed that if the
maximum likelihood criterion is able to correctly
identify the correct trees, our method can thus
significantly outperform many existing popular
methods on the basis of constructing only a single
tree. Though the experimental results are comparable
to that obtained from currently popular ML based
algorithms, our experimental results show that it is
common that certain incorrect trees can have
likelihood values at least as large as that of the
correct tree.
This confirms the result of a theoretical study on ML
presented in [19]. A significant implication of this is

that even if we are able to find a truly globally
optimal tree under the maximum likelihood criterion,
this tree may not necessarily be the correct
phylogenetic tree!
It is well known that most quartet-based algorithms

require)(4nΟ computational steps to complete

where n is a given number of molecular sequences in
the analysis. This is simply because they need to

generate)(4nΟ quartet trees in order to obtain a

reasonably good result. When the problem size n is
large, we also need a large-size memory to store
these trees during the computation. In comparison
with some fast algorithms for phylogenetic analysis,
e.g. those recently developed and presented in
[11,21], this seems to be a big disadvantage.
However, the experimental results presented in this
paper suggest that, because of its excellent
theoretical properties, the quartet-based method
should never be overlooked. The problem of high
computational cost can be alleviated using high-
performance, or parallel computing systems [23].
The paper is organized as follows: our quartet-based
algorithm is briefly described in Section 2. Its
extension is discussed in Section 3. In Section 4 we
present some experimental results. Conclusions are
given in Section 5.

2. The Original Algorithm

In this section we briefly describe our quartet-based
algorithm. A more detailed description can be found
in [22].
Our quartet-based algorithm for phylogenetic
analysis consists of two major stages. In stage one
we calculate quartet weights for every possible
quartet trees from a given number of molecular
sequences. In stage two we first generate a global
quartet weight matrix to gather the quartet
topological information from the quartet weights
calculated in stage one and then reconstruct a full
size tree using this quartet weight matrix. We can use
any existing method for phylogenetic analysis to
calculate the weights of quartet trees [15]. In the
following we only discuss the computations in stage
two. We first discuss how a quartet weight matrix is
generated from a set of quartets defined by a given
tree topology and give an efficient algorithm for
reconstruction of the tree topology from its generated
quartet weight matrix. This one-to-one mapping
between a given tree topology and its associated
quartet weight matrix forms the basis of our quartet-
based algorithm for phylogenetic analysis. We next
discuss the tree reconstruction algorithm and show
how to deal with quartet errors.

2.1. Basic concept

A quartet, or a set of four sequences is associated
with three possible fully resolved trees, as shown in
Figure 1. In the figure)|(ztxy indicates how the

sequences, represented by leaf nodes, are divided
into two pairs by cutting the middle edge (so-called
bi-partitioning), and thus shows the neighbourhood
relations of the quartet in terms of topology. One
way to measure which of the three possible trees is
more likely to be the true tree is to use Bayes weights
[15], or quartet weights in this paper. The quartet
weights for three possible trees of a quartet is
obtained by first calculating the likelihood value for
each tree and then transforming these likelihood
values into posterior probabilities, or quartet weights

i
w for i = 1, 2, and 3, by applying Bayes’ theorem

assuming a uniform prior for all three possible trees.

Figure 1. Three possible fully resolved trees for a
quartet { a, b, c, d} .

Let),|(wklij denote a possible quartet tree with a

quartet weight w. Our global quartet weight matrix is
generated by adding each w to entries ij, ji, kl and lk,
using a complete set of quartets from a given number
of sequences. This matrix is symmetric and its size is

,nn × where n is the total number of sequences and

each row or column corresponds to one particular
sequence. (Note this quartet weight matrix is called
score matrix in [10] and it was generated using
discrete weights (or scores) from a distance matrix.)
Given a tree topology of n leaves, we can uniquely

determine a set of ��
�

�
��
�

�

4

n
 quartet trees which are

consistent with the original tree, i.e., each quartet
tree separates the four leaves into two pairs in the
same way as the original tree through bi-partitioning.
For each quartet there can only be one fully resolved
tree in the set of these quartet trees and it is
described as).0.1 ,|(cdab For a given tree topology

a global quartet weight matrix is also uniquely
determined. This is because our matrix is generated
using the quartet weights of the associated quartet
trees.
We can also reconstruct the tree topology from its

generated quartet matrix by using an efficient)(2nΟ

algorithm, as shown in Figure 2. This algorithm is
derived using the dynamic programming technique

[22]. In the figure each row in quartet weight matrix
corresponds to a particular leaf node and is
associated with a variable .im One node in each sub-

tree (or a row in the quartet weight matrix) is chosen
as the representative node for the sub-tree which is
also associated with a variable .in Initially every leaf

node is considered as a sub-tree. Therefore, each row
in the matrix will be associated with two variables
which are set to 0=im and .1=in

Figure 2. A recursive algorithm for tree

reconstruction from its generated quartet matrix.

Each pair of sub-trees is associated with a confidence
value .ijc To calculate the confidence value, we first

assume that two sub-trees are connected together in
the original tree and calculate the total number of
quartets with a concerned form)0.1 ,|(cdab where

a is a leaf node from one sub-tree and b from the
other, but c and d are leaf nodes not in either of these
two sub-trees. The confidence value is then obtained
by dividing the actual number accumulated directly
from the quartet sets and stored in the matrix by this
calculated value. If two sub-trees are truly connected
together in the original tree, the corresponding
confidence value for each pair of leaf nodes, one
from each sub-tree must be equal to one. In the
algorithm we use one additional variable ig for

representative node i to store index j when .1=ijc In

each step we first try to find two sub-trees to merge
by checking the variable ig and then update the

variables im and in in accordance with the merge;

Next sijc are re-calculated and sig updated for the

next merge step. The process continues until all
sequences are merged into a single tree.

2.2. Tree construction from inaccurate
global weight matrices

In the previous subsection we discussed an algorithm
for reconstructing the original tree from its generated
global weight matrix. The same algorithm may be
used to construct an evolutionary tree for a given set
of n sequences if all the associated quartets are fully
and correctly resolved. Unfortunately, this is only an
ideal case and in reality it is very hard for us to have
all the quartets fully and correctly resolved.
Therefore, the global weight matrix generated from a
set of quartet weights is inaccurate and the algorithm
for tree topology reconstruction discussed above
cannot be used without modification. To deal with
inaccurate weight matrices we make three major
changes to the original algorithm.
Average confidence value ijc : Since the entry

values of the global weight matrix are no longer
ideal, different node pairs, one from each of the two
sub-trees, may produce different confidence values.
A simple way to alleviate this problem is to calculate
the confidence values for every leaf node pairs, to
average them and then to use this averaged value as
the confidence value ijc for each pair of sub-trees.

Since the entry values of the weight matrix are
inaccurate, we may not obtain 1=ijc for a pair of

sub-trees during the computation. In addition to the
three variables, namely, ,ig im and ,in associated

with each sub-tree, we need a new variable ic to

record the highest average confidence value for sub-
tree i with another sub-tree j for i<j. At each step we
compare the stored values in ic and choose to merge

the two sub-trees which have the highest average
confidence value.
Quartet weight correction: After two sub-trees are
merged, we take an additional step to restore the
associated entries in the matrix to their “ true” values,
i.e., change the quartet weights based on the
currently reconstructed sub-trees and update the
weight matrix accordingly. In particular, after each
merge we need to correct the weights of all those
quartets containing four nodes { i, j, p, q} to (ij|pq,
1.0) where i is a leaf node in one merged sub-tree, j
is a leaf node in the other merged sub-tree and p and
q the leaf nodes from the rest. If the weights are not
corrected, the distributed errors may significantly
affect the correct decision making in the following
merge steps.
With the above two modifications we can have an
algorithm which is able to deal with inaccurate
quartet weights, as shown in Figure 3.
At each merge step the three major contributors to
the total computational cost are: (1) the updating of

im values, (2) the calculation of average confidence

values for each sub-tree to find the highest one, and

(3) the quartet weight correction. The total costs for
updating im values and for calculating average

confidence values are)(2nΟ and),(3nΟ

respectively. However, each quartet weight is
corrected once and only once during the entire
computation. The total number of quartets for a

given set of n sequences is ��
�

�
��
�

�

4

n
 and obviously the

total cost for quartet correction is).(4nΟ Therefore,

the total computational cost for this algorithm will be

).(4nΟ It should also be noted that this cost is much

less than the cost for computing quartet weights
using the maximum likelihood which requires

)(4snΟ operations where s is the length of the

sequences, usually a few hundreds to a few
thousands.

Figure 3. An algorithm for tree construction from
inaccurate quartet weight matrices.

Multiple tree reconstruction: Since the matrix is not
accurate, it may not always be the right decision to
merge the two sub-trees that have the highest
confidence value. After the highest confidence value

ijc is obtained, we then check whether there is

another sub-tree k which has a reasonably high
confidence value associated with one of the two sub-
trees i and j, that is, we check whether

,)(or ijkiik ccc α≥ or ijkjjk ccc α≥)(or where α is

a threshold which is smaller than, but close to one.
(If there are several sub-trees which satisfy this
condition, in our current version we simply choose

the one with the highest confidence value among
them.) At each of these critical points we can have
three different super quartet trees with four sub-trees
i, j, k, and the rest as its four super nodes at different
places. The problem is which one will be the correct
one leading us to find the correct tree topology. In
the current version of our algorithm we keep all three
different patterns. Therefore, we will reconstruct
multiple trees and hope that the correct tree will be
included in these generated trees. However, we need
a control on the number of trees to be reconstructed.

Otherwise, we may end up with about n3 different
trees in the worst case when every merge step is a
critical point. We use a parameter s to limit the total
number of trees. Each time a critical point is
encountered, two extra trees are generated until s
such stages are encountered for each tree. Therefore,
the maximum number of trees to be generated will be

limited to .3s
We used the benchmarks consisting of 48,000
synthetic data sets of DNA sequences developed by
the LIRMM Methods and Algorithms in
Bioinformatics research group (www.lirmm.fr) to
test our quartet-based algorithm. The results show
that our algorithm performs much better than many
existing methods [22], i.e., the probability for the
correct tree to be included in a small number of
generated trees is very high.

3. A Further Extension

In our original algorithm described in the previous
section multiple possible trees are constructed for a
given problem and the number of trees can be limited
by prefixing the total number of stages. One question
is if we are able to further reduce the number of trees
generated in the same number of stages while
keeping the high probability for the correct tree to be
included in these generated trees. Note that extra
trees are only generated when we encounter a so-
called critical point which is identified by using a
fixed threshold α . There is one problem associated
with the fixed threshold, that is, we may identify
certain critical points which are actually unnecessary.
When two sub-trees, say i and j, have a confidence
value of 0.99, this value should be considered very
large and the two sub-trees should be merged without
any ambiguity. However, we may create a critical
point here and need to generate extra two trees when
the threshold α is set to 0.85, and either of these two
sub-trees have a confidence value of above 0.84 with
another sub-tree k. When unnecessary critical points
are created and the limit for the number of generated
trees is reached in the first a few merge steps, it may
be possible for us to miss the true tree generation in
later merge steps. One way to alleviate this problem
is to make α a variable and vary in respect to

confidence values, that is, α will be set higher when
the confidence value is large. We adopt a simple
linear function to meet this requirement and it is
depicted graphically in Figure 4. In the figure
threshold α is depicted as a function of confidence
value c. When the confidence value is smaller than

0c , the threshold will remain as a constant 0α .

When the confidence value is larger than 0c , the

threshold will increase linearly with the increase of
confidence value.

Figure 4. Threshold α as a function of confidence
value c .

After a number of possible trees are generated,
another important issue is how to find the correct tree
from them in a posterior analysis. To address this
issue we do the following: After a number of trees
were constructed using our quartet-based algorithm,
we calculate the likelihood values of these trees and
then choose just a few best ones which have the
highest likelihood values. Since the maximum
likelihood is currently one of the most advanced
methods for phylogeny reconstruction, we hope that
the correct trees shall be identified easily.
(Interestingly, our experimental results show that it is
not always the case. A significant implication of this
is that even if we are able to find a truly globally
optimal tree under the maximum likelihood criterion,
this tree may not necessarily be the correct
phylogenetic tree!)

4. Experimental Results

In our experiment we use the benchmarks developed
by Ranwez and Gascuel who used these benchmarks
to test and compare different phylogeny methods
[17]. Six model trees, each consisting of 12 leaf
nodes, are used to generate test data sets under
various situations. Three model trees, named AA,
AB and BB, are molecular clock-like, while the other
three, named CC, CD and DD, present varying

substitution rates among lineages. Four evolutionary
rates conditions are considered, ranging from low to
very fast, for which the maximum pair-wise
divergence (MD) is from 0.1 to about 2.0
substitutions per site. With these model trees and
varying evolutionary conditions, a total of 48,000
test data sets of DNA sequences are generated using
Seq-Gen. A detailed description of these synthetic
test data sets can be found on their Web site at
www.lirmm.fr.

Table 1. Experimental results for DNA sequences of

length 300.

Our first experiment is to compare the algorithm
using variable thresholds to the one using a fixed
threshold. In our experiment the number of stages is
set to 4 (QBNJ4) to allow a maximum of 81 trees to
be generated for each test data set. We set α to 0.85
in the fixed threshold algorithm which is called

QBNJ4 (α const) and set 0α to 0.85 and 0c to 0.9

in the variable threshold algorithm which is called
QBNJ4 (0.85, 0.9). Some experimental results are
presented in Table 1 for DNA sequences of length
300. The figure yx / in the tables denotes the

percentage of correctly inferred trees / the average
number of trees generated per data set. The figures
are all rounded to their nearest integers. From the
table we can see that using the variable threshold we
can indeed reduce the number of trees. It can be
figured out easily from the table that the reduction is
about 5.9 percent on the average. We can also see
that using the variable threshold the percentage of
correct trees included in the generated trees is not
decreased, but rather increased a bit in certain cases.
This result is consistent with our expectation.
In our second experiment we calculate the likelihood
values of the generated trees using the relevant
functions in TREE-PUZZLE and then choose just a
few best ones which have the highest likelihood
values. Some experimental results are presented in
Table 2.
In Table 2 QBNJ4+ML-j denotes that the QBNJ
method with 4 stages (using a fixed threshold) is
used to construct multiple trees and then j best trees
are chosen under the ML criterion, and the

0α

0c

1

1

α

c

corresponding columns show the percentages of
correct trees among these j best trees for six different
model trees. The results obtained from
FASTDNAML for the same test data set [17] are
also included in the table for the purpose of
comparison.

Table 2. Experimental results of using QBNJ4
followed by ML for sequences of length 300.

We can see from Table 2 that when only a single tree
with the largest ML value is selected (QBNJ+ML-1),
the result on an average is not as good as (but very
close to and some are better than) that obtained using
FASTDNAML. When allowing the selection of more
than one tree, our QBNJ4+ML-j performs much
better than FASTDNAML in almost all the
categories. We can also see from the table that the
ML criterion is unable to identify all the correct trees
among a very small number of trees generated by
QBNJ4! Though the methods based on maximum
likelihood are often found to outperform other
methods, simple theoretical study showed that there
can exist multiple optima for a given problem [19]
and our experimental results confirm that certain
incorrect trees can indeed have likelihood values at
least as large as that of the correct tree.

5. Conclusions

In this paper we first discussed a revision to our
recently developed quartet-based algorithm which
constructs a limited number of trees for a given set of
molecular sequences in phylogenetic analysis. In this
revision we make the threshold a variable to try to

reduce the construction of certain unnecessary trees
for a given problem. Using the benchmarks
consisting of 48,000 synthetic data sets of DNA
sequences, we see that the reduction of the total
number of tree reconstruction is about 5.9 percent on
an average while keeping about the same probability
for the correct tree to be included in the generated
trees.
When trying to identify the correct tree in the
generated trees using the ML criterion, we find it is
common that certain incorrect trees can have
likelihood values at least as large as that of the
correct tree. This important finding suggests that the
ML criterion alone may not be sufficiently enough to
determine the true phylogeny for certain problems
even if we are able to obtain a truly globally optimal
tree! Therefore, it is very important in practice for us
to use different criteria and construct multiple trees
for posterior analyses in order to obtain more
accurate and reliable results.

6. Acknowledgement

This research was partially funded by Discovery
Grants (DP0557909) from the Australian Research
Council.

References

[1] J. Adachi and M. Hasegawa, Instability of quartet
analyses of molecular sequence data by the maximum
likelihood method: the cetacean/artiodactyla relationships,
Cladistics, Vol. 5, 1999, pp.164-166.
[2] H. J. Bandelt and A Dress, Reconstructing the shape of
a tree from observed dissimilarity data, Adv. Appl. Math.,
Vol. 7, 1986, pp.309-343.
[3] V. Berry and D. Bryant, Faster reliable phylogenetic
analysis, Proceedings of 3rd Annual International
Conference on Comp. Mol. Biol, 1999, pp.59-68.
[4] V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham,
Quartet cleaning: improved algorithms and simulation,
Lecture Notes Computer Science, Vol. 1643, 1999, pp.313-
324.
[5] V. Berry, D. Bryant, P. Kearney, M. Li, T. Jiang, T.
Wareham and H. Zhang, A practical algorithm for
recovering the best supported edges in an evolutionary tree.
Proceedings of Symposium on Discrete Algorithms, San-
Francisco, 2000, pp.287-296.
[6] V. Berry and O. Gascuel, Inferring evolutionary trees
with strong combinatorial evidence, Theoret. Comput. Sci.,
240(2), 2000, pp. 271-298.
[7] P. Buneman, The recovery of trees from measures of
dissimilarity, in: Mathematics in Archaeological and
Historical Sciences (F. R. Hobson, D. G. Kendal and P.
Tautum, eds.) University Press, Edinburgh, 1971, pp. 387-
395.
[8] A. W. M. Dress and D. H. Huson, Constructing splits
graphs, IEEE Trans on Computational Biology and
Bioinformatics, Vol. 1, no. 3, 2004, pp.109-115.

[9] P. Erdos, M. Steel, L. Szekely and T. Warnow,
Constructing big trees from short sequences, Lecture Notes
Computer Science, Vol. 1256, 1997, pp. 827-837.
[10] W. M. Fitch, A non-sequential method for constructing
trees and hierarchical classifications, J. Mol. Evol. 18,
1981, pp. 30-37.
[11] S. Guindon and O. Gascuel, A simple, fast and
accurate algorithm to estimate large phylogenies by
maximum likelihood, Syst. Biol., 52, 2003, pp. 696-704.
[12] D. H. Huson, S. Nettles and T. Warnow, Obtaining
highly accurate topology estimates of evolutionary trees
from very short sequences, Proceedings of The 3rd Annual
Int. Conf. Comp. Mol. Biol., 1999, pp. 198-209.
[13] D. H. Huson, Splitstree: A program for analyzing and
visualizing evolutionary data, Bioinformatics, vol. 14, no.
10, 1998, pp. 68-73.
[14] T. Jiang, P. E. Kearney and M. Li, Orchestrating
quartets: Approximation and data correction, Proceedings
of the 39th IEEE Symposium on Foundations of Computer
Science, 1998, pp.416-425.
[15] K. Nieselt-Struwe and A. von Haeseler, Quartet-
mapping, a generalization of the likelihood-mapping
procedure, Mol. Biol. Evol., 18(7), 2001, pp.1204-1219.
[16] G. Olsen, H. Matsuda, R. Hagstrom and R. Overbeek,
A tool for construction of phylogenetic trees of DNA
sequences using maximum likelihood, Comput. Appl.
Biosci., Vol. 10, 1994, pp.41-48.
[17] V. Ranwez and O. Gascuel, Quartet-based
phylogenetic inference: Improvements and limits, Mol. Biol.
Evol., 18(6), 2001, pp.1103-1116.
[18] H. A. Schmidt, K. Strimmer, M. Vingron and A. von
Haeseler: TREE-PUZZLE: maximum likelihood
phylogenetic analysis using quartets and parallel computing.
Bioinformatics, 18(3), Mar 2002, pp.502-504.
[19] M. Steel, The maximum likelihood point for
phylogenetic tree is not unique, Syst. Biol., Vol. 43, 1994,
pp.560-564.
[20] K. Strimmer and A. von Haeseler, Quartet puzzling: A
quartet maximum-likelihood method for reconstructing tree
topologies, Mol. Biol. Evol., 13(7), 1996, pp.964-969.
[21] L. S. Vinh and A. von Haeseler, IQPNNI: moving fast
through tree space and stopping in time, Mol. Biol. Evol.,
Vol. 21, no. 8, 2004, pp. 1565-1571.
[22] B. B. Zhou, M. Tarawneh, C. Wang, D. Chu, A. Y.
Zomaya and R. P. Brent, A novel quartet-based method for
phylogenetic inference, Proceedings of IEEE International
Symposium on BIBE, Minneapolis, Oct. 2005.
[23] B. B. Zhou, D. Chu, M. Tarawneh, P. Wang, C. Wang,
A. Y. Zomaya and R. P. Brent, Parallel implementation of
a quartet-based algorithm for phylogenetic analysis,
Proceedings of the Fifth IEEE International Workshop on
High Performance Computational Biology, Rhodes Island,
Greece, April 2006.

