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Abstract 

 
Recently we developed a new quartet-based 

algorithm for phylogenetic analysis [22]. This 
algorithm constructs a limited number of trees for a 
given set of DNA or protein sequences and the initial 
experimental results show that the probability for the 
correct tree to be included in this small set of trees is 
very high. In this paper we further extend the idea. 
We first discuss a revision to the original algorithm 
to reduce the number of trees generated, while 
keeping the high probability for the correct tree to 
be included. We then deal with the issue on how to 
retrieve the correct tree from the generated trees and 
our current approach is to calculate the likelihood 
values of these trees and pick up a few best ones 
which have the highest likelihood values. Though the 
experimental results are comparable to that 
obtained from currently popular ML based 
algorithms, we find that it is common that certain 
incorrect  trees can have likelihood values at least as 
large as that of the correct tree. A significant 
implication of this is that even if we are able to find 
a truly globally optimal tree under the maximum 
likelihood criterion, this tree may not necessarily be 
the correct phylogenetic tree! 
 
 
1. Introduction 
 
The quartet-based method is one of the very 
important approaches for reconstruction of a large 
evolutionary tree from a set of smaller trees. It 
constructs a tree for a given number of molecular 
sequences based on the topological properties of 
each subset of four molecular sequences. The main 
advantage of this method is that there is a one-to-one 
correspondence between a tree topology and a set of 
four-sequence or quartet trees. If we can correctly 
identify the tree topology of each individual subset of 

four sequences, we are able to reconstruct the entire 
evolutionary tree for a given problem in polynomial 
time. In practice, however, there exist situations that 
the correctly resolved quartet trees are very difficult 
to obtain by using currently existing methods [1,14]. 
Therefore, the main concern in designing a good and 
practical quartet-based algorithm is how to tolerate 
errors in the quartet trees when reconstructing the 
entire tree topology. Different methods have been 
introduced in the literature to deal with the problem 
of quartet errors, for example, those in 
[2,3,4,5,6,7,8,9,10, 12,13,15,16,17,18,20]. 
Recently, we developed a new quartet-based 
algorithm for the reconstruction of evolutionary trees 
[22]. This algorithm constructs a limited number of 
trees for a given set of DNA or protein sequences 
based on the topological information of every 
possible quartet trees. Our initial experimental results 
showed that the probability for the correct tree to be 
included in this small set of trees is very high.  
In this paper we further extend the idea. We first 
present a revision to the original algorithm to reduce 
the number of trees generated, while keeping the 
high probability for the correct tree to be included. 
We then deal with the issue on how to retrieve the 
correct tree from those generated trees. Our current 
approach is to calculate the likelihood values of these 
trees and pick up a few best ones which have the 
highest likelihood values. It was assumed that if the 
maximum likelihood criterion is able to correctly 
identify the correct trees, our method can thus 
significantly outperform many existing popular 
methods on the basis of constructing only a single 
tree. Though the experimental results are comparable 
to that obtained from currently popular ML based 
algorithms, our experimental results show that it is 
common that certain incorrect trees can have 
likelihood values at least as large as that of the 
correct tree. 
This confirms the result of a theoretical study on ML 
presented in [19]. A significant implication of this is 



that even if we are able to find a truly globally 
optimal tree under the maximum likelihood criterion, 
this tree may not necessarily be the correct 
phylogenetic tree!  
It is well known that most quartet-based algorithms 

require )( 4nΟ  computational steps to complete 

where n is a given number of molecular sequences in 
the analysis. This is simply because they need to 

generate )( 4nΟ  quartet trees in order to obtain a 

reasonably good result. When the problem size n is 
large, we also need a large-size memory to store 
these trees during the computation. In comparison 
with some fast algorithms for phylogenetic analysis, 
e.g. those recently developed and presented in 
[11,21], this seems to be a big disadvantage. 
However, the experimental results presented in this 
paper suggest that, because of its excellent 
theoretical properties, the quartet-based method 
should never be overlooked. The problem of high 
computational cost can be alleviated using high-
performance, or parallel computing systems [23]. 
The paper is organized as follows: our quartet-based 
algorithm is briefly described in Section 2. Its 
extension is discussed in Section 3. In Section 4 we 
present some experimental results. Conclusions are 
given in Section 5. 
 
2. The Original Algorithm 
 
In this section we briefly describe our quartet-based 
algorithm. A more detailed description can be found 
in [22].  
Our quartet-based algorithm for phylogenetic 
analysis consists of two major stages. In stage one 
we calculate quartet weights for every possible 
quartet trees from a given number of molecular 
sequences. In stage two we first generate a global 
quartet weight matrix to gather the quartet 
topological information from the quartet weights 
calculated in stage one and then reconstruct a full 
size tree using this quartet weight matrix. We can use 
any existing method for phylogenetic analysis to 
calculate the weights of quartet trees [15]. In the 
following we only discuss the computations in stage 
two. We first discuss how a quartet weight matrix is 
generated from a set of quartets defined by a given 
tree topology and give an efficient algorithm for 
reconstruction of the tree topology from its generated 
quartet weight matrix. This one-to-one mapping 
between a given tree topology and its associated 
quartet weight matrix forms the basis of our quartet-
based algorithm for phylogenetic analysis. We next 
discuss the tree reconstruction algorithm and show 
how to deal with quartet errors. 
 
 

2.1. Basic concept  
 
A quartet, or a set of four sequences is associated 
with three possible fully resolved trees, as shown in 
Figure 1. In the figure )|( ztxy  indicates how the 

sequences, represented by leaf nodes, are divided 
into two pairs by cutting the middle edge (so-called 
bi-partitioning), and thus shows the neighbourhood 
relations of the quartet in terms of topology. One 
way to measure which of the three possible trees is 
more likely to be the true tree is to use Bayes weights 
[15], or quartet weights in this paper. The quartet 
weights for three possible trees of a quartet is 
obtained by first calculating the likelihood value for 
each tree and then transforming these likelihood 
values into posterior probabilities, or quartet weights 

i
w  for i = 1, 2, and 3, by applying Bayes’  theorem 

assuming a uniform prior for all three possible trees.  
 

 
 

Figure 1. Three possible fully resolved trees for a 
quartet { a, b, c, d} . 

 
Let ),|( wklij  denote a possible quartet tree with a 

quartet weight w. Our global quartet weight matrix is 
generated by adding each w to entries ij, ji, kl and lk, 
using a complete set of quartets from a given number 
of sequences. This matrix is symmetric and its size is 

,nn ×  where n is the total number of sequences and 

each row or column corresponds to one particular 
sequence. (Note this quartet weight matrix is called 
score matrix in [10] and it was generated using 
discrete weights (or scores) from a distance matrix.) 
Given a tree topology of n leaves, we can uniquely 

determine a set of ��
�

�
��
�

�

4

n
 quartet trees which are 

consistent with the original tree, i.e., each quartet 
tree separates the four leaves into two pairs in the 
same way as the original tree through bi-partitioning. 
For each quartet there can only be one fully resolved 
tree in the set of these quartet trees and it is 
described as ).0.1 ,|( cdab  For a given tree topology 

a global quartet weight matrix is also uniquely 
determined. This is because our matrix is generated 
using the quartet weights of the associated quartet 
trees. 
We can also reconstruct the tree topology from its 

generated quartet matrix by using an efficient )( 2nΟ  

algorithm, as shown in Figure 2. This algorithm is 
derived using the dynamic programming technique 



[22]. In the figure each row in quartet weight matrix 
corresponds to a particular leaf node and is 
associated with a variable .im  One node in each sub-

tree (or a row in the quartet weight matrix) is chosen 
as the representative node for the sub-tree which is 
also associated with a variable .in  Initially every leaf 

node is considered as a sub-tree. Therefore, each row 
in the matrix will be associated with two variables 
which are set to 0=im  and .1=in  

 

  
Figure 2. A recursive algorithm for tree 

reconstruction from its generated quartet matrix. 
 
Each pair of sub-trees is associated with a confidence 
value .ijc  To calculate the confidence value, we first 

assume that two sub-trees are connected together in 
the original tree and calculate the total number of 
quartets with a concerned form )0.1 ,|( cdab  where 

a is a leaf node from one sub-tree and b from the 
other, but c and d are leaf nodes not in either of these 
two sub-trees. The confidence value is then obtained 
by dividing the actual number accumulated directly 
from the quartet sets and stored in the matrix by this 
calculated value. If two sub-trees are truly connected 
together in the original tree, the corresponding 
confidence value for each pair of leaf nodes, one 
from each sub-tree must be equal to one. In the 
algorithm we use one additional variable ig  for 

representative node i to store index j when .1=ijc  In 

each step we first try to find two sub-trees to merge 
by checking the variable ig  and then update the 

variables im  and in  in accordance with the merge; 

Next sijc  are re-calculated and sig  updated for the 

next merge step. The process continues until all 
sequences are merged into a single tree. 
 

2.2. Tree construction from inaccurate 
global weight matrices 
 
In the previous subsection we discussed an algorithm 
for reconstructing the original tree from its generated 
global weight matrix. The same algorithm may be 
used to construct an evolutionary tree for a given set 
of n sequences if all the associated quartets are fully 
and correctly resolved. Unfortunately, this is only an 
ideal case and in reality it is very hard for us to have 
all the quartets fully and correctly resolved. 
Therefore, the global weight matrix generated from a 
set of quartet weights is inaccurate and the algorithm 
for tree topology reconstruction discussed above 
cannot be used without modification. To deal with 
inaccurate weight matrices we make three major 
changes to the original algorithm. 
Average confidence value ijc : Since the entry 

values of the global weight matrix are no longer 
ideal, different node pairs, one from each of the two 
sub-trees, may produce different confidence values. 
A simple way to alleviate this problem is to calculate 
the confidence values for every leaf node pairs, to 
average them and then to use this averaged value as 
the confidence value ijc  for each pair of sub-trees.  

Since the entry values of the weight matrix are 
inaccurate, we may not obtain 1=ijc  for a pair of 

sub-trees during the computation. In addition to the 
three variables, namely, ,ig im  and ,in  associated 

with each sub-tree, we need a new variable ic to 

record the highest average confidence value for sub-
tree i with another sub-tree j for i<j. At each step we 
compare the stored values in ic  and choose to merge 

the two sub-trees which have the highest average 
confidence value.  
Quartet weight correction: After two sub-trees are 
merged, we take an additional step to restore the 
associated entries in the matrix to their “ true”  values, 
i.e., change the quartet weights based on the 
currently reconstructed sub-trees and update the 
weight matrix accordingly. In particular, after each 
merge we need to correct the weights of all those 
quartets containing four nodes { i, j, p, q}  to (ij|pq, 
1.0) where i is a leaf node in one merged sub-tree, j 
is a leaf node in the other merged sub-tree and p and 
q the leaf nodes from the rest. If the weights are not 
corrected, the distributed errors may significantly 
affect the correct decision making in the following 
merge steps.  
With the above two modifications we can have an 
algorithm which is able to deal with inaccurate 
quartet weights, as shown in Figure 3. 
At each merge step the three major contributors to 
the total computational cost are: (1) the updating of 

im  values, (2) the calculation of average confidence 

values for each sub-tree to find the highest one, and 



(3) the quartet weight correction. The total costs for 
updating im  values and for calculating average 

confidence values are )( 2nΟ  and ),( 3nΟ  

respectively. However, each quartet weight is 
corrected once and only once during the entire 
computation. The total number of quartets for a 

given set of n sequences is ��
�

�
��
�

�

4

n
 and obviously the 

total cost for quartet correction is ).( 4nΟ  Therefore, 

the total computational cost for this algorithm will be 

).( 4nΟ  It should also be noted that this cost is much 

less than the cost for computing quartet weights 
using the maximum likelihood which requires 

)( 4snΟ operations where s is the length of the 

sequences, usually a few hundreds to a few 
thousands.  
 

 
 

Figure 3. An algorithm for tree construction from 
inaccurate quartet weight matrices. 

 
Multiple tree reconstruction: Since the matrix is not 
accurate, it may not always be the right decision to 
merge the two sub-trees that have the highest 
confidence value. After the highest confidence value 

ijc  is obtained, we then check whether there is 

another sub-tree k which has a reasonably high 
confidence value associated with one of the two sub-
trees i and j, that is, we check whether 

, )(or  ijkiik ccc α≥  or ijkjjk ccc α≥ )(or    where α  is 

a threshold which is smaller than, but close to one. 
(If there are several sub-trees which satisfy this 
condition, in our current version we simply choose 

the one with the highest confidence value among 
them.) At each of these critical points we can have 
three different super quartet trees with four sub-trees 
i, j, k, and the rest as its four super nodes at different 
places. The problem is which one will be the correct 
one leading us to find the correct tree topology. In 
the current version of our algorithm we keep all three 
different patterns. Therefore, we will reconstruct 
multiple trees and hope that the correct tree will be 
included in these generated trees. However, we need 
a control on the number of trees to be reconstructed. 

Otherwise, we may end up with about n3  different 
trees in the worst case when every merge step is a 
critical point. We use a parameter s to limit the total 
number of trees. Each time a critical point is 
encountered, two extra trees are generated until s 
such stages are encountered for each tree. Therefore, 
the maximum number of trees to be generated will be 

limited to .3s   
We used the benchmarks consisting of 48,000 
synthetic data sets of DNA sequences developed by 
the LIRMM Methods and Algorithms in 
Bioinformatics research group (www.lirmm.fr) to 
test our quartet-based algorithm. The results show 
that our algorithm performs much better than many 
existing methods [22], i.e., the probability for the 
correct tree to be included in a small number of 
generated trees is very high. 

 
3. A Further Extension 
 
In our original algorithm described in the previous 
section multiple possible trees are constructed for a 
given problem and the number of trees can be limited 
by prefixing the total number of stages. One question 
is if we are able to further reduce the number of trees 
generated in the same number of stages while 
keeping the high probability for the correct tree to be 
included in these generated trees. Note that extra 
trees are only generated when we encounter a so-
called critical point which is identified by using a 
fixed threshold α . There is one problem associated 
with the fixed threshold, that is, we may identify 
certain critical points which are actually unnecessary. 
When two sub-trees, say i and j, have a confidence 
value of 0.99, this value should be considered very 
large and the two sub-trees should be merged without 
any ambiguity.  However, we may create a critical 
point here and need to generate extra two trees when 
the threshold α  is set to 0.85, and either of these two 
sub-trees have a confidence value of above 0.84 with 
another sub-tree k. When unnecessary critical points 
are created and the limit for the number of generated 
trees is reached in the first a few merge steps, it may 
be possible for us to miss the true tree generation in 
later merge steps. One way to alleviate this problem 
is to make α  a variable and vary in respect to 



confidence values, that is, α  will be set higher when 
the confidence value is large. We adopt a simple 
linear function to meet this requirement and it is 
depicted graphically in Figure 4. In the figure 
threshold α  is depicted as a function of confidence 
value c. When the confidence value is smaller than 

0c , the threshold will remain as a constant 0α . 

When the confidence value is larger than 0c , the 

threshold will increase linearly with the increase of 
confidence value. 
 

Figure 4. Threshold α  as a function of confidence 
value c .     
 
After a number of possible trees are generated, 
another important issue is how to find the correct tree 
from them in a posterior analysis. To address this 
issue we do the following: After a number of trees 
were constructed using our quartet-based algorithm, 
we calculate the likelihood values of these trees and 
then choose just a few best ones which have the 
highest likelihood values. Since the maximum 
likelihood is currently one of the most advanced 
methods for phylogeny reconstruction, we hope that 
the correct trees shall be identified easily. 
(Interestingly, our experimental results show that it is 
not always the case. A significant implication of this 
is that even if we are able to find a truly globally 
optimal tree under the maximum likelihood criterion, 
this tree may not necessarily be the correct 
phylogenetic tree!) 
 
4. Experimental Results 
 
In our experiment we use the benchmarks developed 
by Ranwez and Gascuel who used these benchmarks 
to test and compare different phylogeny methods 
[17]. Six model trees, each consisting of 12 leaf 
nodes, are used to generate test data sets under 
various situations. Three model trees, named AA, 
AB and BB, are molecular clock-like, while the other 
three, named CC, CD and DD, present varying 

substitution rates among lineages. Four evolutionary 
rates conditions are considered, ranging from low to 
very fast, for which the maximum pair-wise 
divergence (MD) is from 0.1 to about 2.0 
substitutions per site. With these model trees and 
varying evolutionary conditions, a total of 48,000 
test data sets of DNA sequences are generated using 
Seq-Gen. A detailed description of these synthetic 
test data sets can be found on their Web site at 
www.lirmm.fr. 
 
Table 1. Experimental results for DNA sequences of 

length 300. 

 
 
Our first experiment is to compare the algorithm 
using variable thresholds to the one using a fixed 
threshold. In our experiment the number of stages is 
set to 4 (QBNJ4) to allow a maximum of 81 trees to 
be generated for each test data set. We set α  to 0.85 
in the fixed threshold algorithm which is called 

QBNJ4 (α  const) and set 0α  to 0.85 and 0c  to 0.9 

in the variable threshold algorithm which is called 
QBNJ4 (0.85, 0.9). Some experimental results are 
presented in Table 1 for DNA sequences of length 
300. The figure yx /  in the tables denotes the 

percentage of correctly inferred trees / the average 
number of trees generated per data set. The figures 
are all rounded to their nearest integers. From the 
table we can see that using the variable threshold we 
can indeed reduce the number of trees. It can be 
figured out easily from the table that the reduction is 
about 5.9 percent on the average. We can also see 
that using the variable threshold the percentage of 
correct trees included in the generated trees is not 
decreased, but rather increased a bit in certain cases.  
This result is consistent with our expectation. 
In our second experiment we calculate the likelihood 
values of the generated trees using the relevant 
functions in TREE-PUZZLE and then choose just a 
few best ones which have the highest likelihood 
values. Some experimental results are presented in 
Table 2.  
In Table 2 QBNJ4+ML-j denotes that the QBNJ 
method with 4 stages (using a fixed threshold) is 
used to construct multiple trees and then j best trees 
are chosen under the ML criterion, and the 

0α  

0c  

1 

1 

α

c 



corresponding columns show the percentages of 
correct trees among these j best trees for six different 
model trees. The results obtained from 
FASTDNAML for the same test data set [17] are 
also included in the table for the purpose of 
comparison.  
 

Table 2. Experimental results of using QBNJ4 
followed by ML for sequences of length 300. 

 
 
We can see from Table 2 that when only a single tree 
with the largest ML value is selected (QBNJ+ML-1), 
the result on an average is not as good as (but very 
close to and some are better than) that obtained using 
FASTDNAML. When allowing the selection of more 
than one tree, our QBNJ4+ML-j performs much 
better than FASTDNAML in almost all the 
categories. We can also see from the table that the 
ML criterion is unable to identify all the correct trees 
among a very small number of trees generated by 
QBNJ4! Though the methods based on maximum 
likelihood are often found to outperform other 
methods, simple theoretical study showed that there 
can exist multiple optima for a given problem [19] 
and our experimental results confirm that certain 
incorrect trees can indeed have likelihood values at 
least as large as that of the correct tree.  
 
5. Conclusions 
 
In this paper we first discussed a revision to our 
recently developed quartet-based algorithm which 
constructs a limited number of trees for a given set of 
molecular sequences in phylogenetic analysis. In this 
revision we make the threshold a variable to try to 

reduce the construction of certain unnecessary trees 
for a given problem. Using the benchmarks 
consisting of 48,000 synthetic data sets of DNA 
sequences, we see that the reduction of the total 
number of tree reconstruction is about 5.9 percent on 
an average while keeping about the same probability 
for the correct tree to be included in the generated 
trees.  
When trying to identify the correct tree in the 
generated trees using the ML criterion, we find it is 
common that certain incorrect trees can have 
likelihood values at least as large as that of the 
correct tree. This important finding suggests that the 
ML criterion alone may not be sufficiently enough to 
determine the true phylogeny for certain problems 
even if we are able to obtain a truly globally optimal 
tree! Therefore, it is very important in practice for us 
to use different criteria and construct multiple trees 
for posterior analyses in order to obtain more 
accurate and reliable results. 
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