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Abstract

Marsaglia recently introduced a class of “xorshift” random number
generators (RNGs) with periods 2n − 1 for n = 32, 64, etc. Here
Marsaglia’s xorshift generators are generalised to obtain fast and high-
quality RNGs with extremely long periods. Whereas RNGs based
on primitive trinomials may be unsatisfactory, because a trinomial
has very small weight, these new generators can be chosen so that
their minimal polynomials have a large number of non-zero terms and,
hence, a large weight. A computer search using Magma has found
good RNGs for n a power of two up to 4096. These RNGs have been
implemented in a free software package xorgens.
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1 Introduction

Marsaglia [11] proposed a class of uniform random number generators called
“xorshift RNGs”. Their implementation requires only a small number of left
shifts, right shifts and “exclusive or” operations per pseudo-random number.

Assume that the computer wordlength is w bits (typically w = 32 or 64).
Marsaglia’s xorshift RNGs have period 2n− 1, where n is a small multiple of
w, say n = rw.

The present author [3] showed that Marsaglia’s xorshift RNGs are a spe-
cial case of the well-known linear feedback shift register (LFSR) class of
RNGs. This was also observed by Panneton and L’Ecuyer [14]. However,
the xorshift RNGs have implementation advantages because n (the number
of state bits) is a multiple of the wordlength w. In contrast, for RNGs based
on primitive trinomials, the corresponding parameter n can not be a multiple
of eight (due to Swan’s theorem [13, 15]) and is usually an odd prime. For
example, n = 19937 in the case of the “Mersenne twister” [12]. The “tem-
pering” step of the Mersenne twister can be omitted in the xorshift RNGs.
Thus, the xorshift RNGs are simpler and potentially faster.

Any RNG based on a finite state must eventually cycle, but it is desirable
for RNGs to have a very long period T (the cycle length). Most generators fail
certain statistical tests if more than about T 1/2 random numbers are used [14],
or perhaps even about T 1/3 numbers for the “birthday spacings” test [9].
For generators satisfying linear recurrences such as the LFSR generators
with period 2n − 1, there is a linear relationship between blocks of n + 1
consecutive bits, so the generator may fail statistical tests that detect this
linear relationship. Also, on a parallel machine we may want to use disjoint
segments of the cycle on different processors, and if this is done by starting
with different seeds on each processor, we want the probability that two
segments overlap to be negligible. For all these reasons it is important for n
to be large. The generators that we describe below have n as large as 4096
which is enough, but not so large that the generators are slowed down by
memory accesses. This is possible if the computer’s memory cache is smaller
than n bits.

Marsaglia’s original proposal [11] discusses mainly the case n ≤ 64, but
an extension to larger n is suggested, The present author has implemented
a generalisation xorgens [4] with n ≤ 4096, in particular we can choose any
power of two n = 2k for 6 ≤ k ≤ 12. The problem in going to larger n is
that we need to know the complete prime factorisation of 2n − 1 in order
to be sure that the generator’s period is maximal. These factorisations are
known for all multiples of 32 up to 1632 and for certain larger n, see [16]. If
we restrict n to powers of two then it is sufficient to know the factorisations
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of certain Fermat numbers Fk = 22k
+ 1, since for example

24096 − 1 = (22048 + 1)(22048 − 1) = F11(2
2048 − 1) = · · · = F11F10F9 · · ·F1F0 .

The factorisations of the Fermat numbers F0, . . . , F11 are known [2].
Panneton and L’Ecuyer [14] tested Marsaglia’s xorshift RNGs and found

certain deficiencies, but they did not find any significant problems with our
xorgens generators for n ≥ 128.

In Section 2 we introduce some notation, summarise the relevant theory,
and describe the class of RNGs implemented in our xorgens package. In
Section 3 we discuss criteria for the selection of “optimal” generators in the
class, and give specific examples of optimal generators for various n ≤ 4096
and w = 32, 64. Finally, in Section 4 we discuss a known weakness of xorshift
RNGs and mention some possible improvements.

2 Notation and theory

Let F2 = GF(2) be the finite field with two elements {0, 1}. We usually write
addition in F2 as +, but we use ⊕ if it is necessary to distinguish it from
normal integer addition. If 0 is interpreted as “false” and 1 as “true”, then
the field operations are “exclusive or” (xor or ⊕) and “and” (∧). A computer
word of w bits can be regarded as a vector x of length w over F2. We shall
identify a bit-vector x with the corresponding integer (and vice-versa) when
necessary.

Our RNGs generate pseudo-random bit-vectors x, but these easily give
pseudo-random unsigned integers x ∈ [0, 2w), pseudo-random signed integers
x − 2w−1 ∈ [−2w−1, 2w−1), or (by a linear transformation) pseudo-random
real numbers in (0, 1).

Unfortunately there are two conventions for bit-vectors x: Marsaglia [11]
uses row vectors x ∈ F 1×w

2 , but Panneton and L’Ecuyer [14] use column
vectors x ∈ Fw×1

2 . We shall follow Marsaglia and take x as a row vector. (To
convert to column vector notation, transpose all equations involving vectors
and matrices.)

Fix parameters r > s > 0 (the choice of these will be discussed below),
and consider the linear recurrence

x(k) = x(k−r)A + x(k−s)B , (1)

where x(k) ∈ F 1×w
2 . Here A and B are fixed matrices in Fw×w

2 . Given x(0),
. . ., x(r−1), the recurrence (1) uniquely defines the sequence (x(k))k≥0.
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Let L ∈ Fw×w
2 be the left shift matrix

L =


0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


such that

(x1, . . . , xw)L = (x2, . . . , xw, 0) .

Similarly, let R = LT be the right shift matrix such that

(x1, . . . , xw)R = (0, x1, . . . , xw−1) .

Marsaglia’s idea is to take A and B as products of a small number of
terms such as (I + La) and (I + Rb). Specifically, let us take

A = (I + La)(I + Rb)

and
B = (I + Lc)(I + Rd)

for small positive integer parameters a, b, c, d. Marsaglia [11, §3.1] omits the
factor I + Lc; we include it for reasons of symmetry, to increase the number
of possible choices (see §3), and to improve properties related to Hamming
weight (see §4).

With our choice of A and B, the recurrence (1) becomes

x(k) = x(k−r)(I + La)(I + Rb) + x(k−s)(I + Lc)(I + Rd) . (2)

Note that, if x is a bit-vector of length w, then xLa is just x shifted left
a places (xLa = 0 if a ≥ w), and x(I + La) is the xor of x and xLa. The
operation

x← x(I + La)

can be written in C as
x = x ˆ (x << a)

or more succinctly as
x ˆ= x << a

(here x is represented in a computer word x which C treats as an unsigned
integer). Similarly x← x(I + Rb) can be written in C as x ˆ= x >> b, and

x← x(I + La)(I + Rb)
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can be written in C as

x ˆ= x << a ; x ˆ= x >> b .

The recurrence (1) is best implemented using a “circular array”, that is
an array where the indices are computed mod r (see [7, §3.2.2]), unless r is
very small.

It is well-known that we can write the recurrence (1) as

(x(k−r+1)|x(k−r+2)| · · · |x(k)) = (x(k−r)|x(k−r+1)| · · · |x(k−1))C , (3)

where the companion matrix C ∈ F n×n
2 can be regarded as an r × r matrix

of w × w blocks (recall that n = rw). For example, if r = 3 and s = 1, then

(x(k−2)|x(k−1)|x(k)) = (x(k−3)|x(k−2)|x(k−1))

 0 0 A
I 0 0
0 I B

 .

The period of the recurrence (3) is 2n− 1 if the characteristic polynomial

P (z) = det (C − zI)

is primitive over F2. P (z) is primitive if it is irreducible and the powers
z, z2, z3, . . . , z2n−1 are distinct mod P (z). To verify this, without checking
2n − 1 cases, it is sufficient to show that P (z) is irreducible and

z(2n−1)/p 6= 1 mod P (z)

for each prime divisor p of 2n − 1: see Lidl [8] or Menezes [13, §4.5].
Suppose that

P (z) =
n∑

j=0

cjz
j .

From the Cayley-Hamilton theorem, P (C) = 0, so
n∑

j=0

cj Cj = 0 .

It follows from (3) that

(x(j)|x(j+1)| · · · |x(j+r−1)) = (x(0)|x(1)| · · · |x(r−1))Cj ,

so
n∑

j=0

cjx
(k+j) = 0 .

This shows that the pseudo-random sequence x(k) satisfies a linear recurrence
over F2. For a good random number generator it is important that the weight
W (P (z)) of the polynomial P (z), i.e. the number of nonzero coefficients cj,
is not too small [3, 5, 14].
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3 Optimal generators

Suppose the wordlength w and a parameter r ≥ 2 are given, so n = rw is
defined. We want to choose positive parameters (s, a, b, c, d) such that s < r
and the RNG obtained from the recurrence (2) has full period 2n − 1. Of
the many possible choices of (s, a, b, c, d), which is best? We give a rationale
for making the “best” choice (or at least a reasonably good one, since often
many choices are about equally good).

1. Each bit in x(I + La)(I + Rb) should depend on at least two bits in x,
that is each column of the matrix (I + La)(I + Rb) should have weight
(number of nonzeros) at least two. A necessary condition for this is
that a + b ≤ w. Similarly, we require that c + d ≤ w.

2. Repeated applications of the transformation x ← x(I + La)(I + Rb)
should mix all the bits of the initial x (that is, after a large number
of iterations each output bit should depend on each of the input bits).
A necessary condition for this is that GCD(a, b) = 1. Similarly, we
require that GCD(c, d) = 1.

3. If (s, a, b, c, d) is one set of parameters, then (s, b, a, d, c) is associated
with the same characteristic polynomial. We can assume that a ≥ b, as
otherwise we could interchange a ↔ b, c ↔ d to obtain an equivalent
RNG.

4. So that the left shift parameters (a and c) are not both greater than
the right shift parameters (b and d) we also assume that c ≤ d.

5. In order that the bits in x(I + La)(I + Rb) depend on bits as far away
as possible (to both left and right) in x, we want to maximise min(a, b).
Similarly, we want to maximise min(c, d). Thus, we try to maximise
δ = min(a, b, c, d).

6. As already discussed, once (a, b, c, d) are fixed, we want to choose s < r
so that the generator has full period 2n − 1.

7. Finally, in case of a tie (two or more sets of parameters satisfying the
above conditions with the same value of δ), we choose the set whose
characteristic polynomial has maximum weight W .

There might still be a tie, that is two sets of parameters satisfying the
above conditions, with the same δ and W values. However, because the
weights W are quite large (see Tables 1–2), this is unlikely and has not been
observed.
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Table 1: 32-bit generators.

n r s a b c d δ W
64 2 1 17 14 12 19 12 31
128 4 3 15 14 12 17 12 55
256 8 3 18 13 14 15 13 109
512 16 1 17 15 13 14 13 185
1024 32 15 19 11 13 16 11 225
2048 64 59 19 12 14 15 12 213
4096 128 95 17 12 13 15 12 251

Criteria 1 and 5 lead to a simple search strategy. From criterion 1 we
see that δ ≤ w/2, but criterion 5 is to maximise δ. Thus, we start from δ =
bw/2c and decrease δ by 1 until we find a quadruple of parameters (a, b, c, d)
satisfying criteria 1–4. This involves checking O((w/2−δ)4) possibilities since
(a, b, c, d) ∈ [δ, w− δ]4. We then search for s satisfying criterion 6 (this is the
most time-consuming step). There are r − 1 possibilities to check for each
quadruple (a, b, c, d). If no s satisfying criterion 6 is found, we decrement δ
and repeat the process. Once one satisfactory quintuple (s, a, b, c, d) has been
found, we need only check other quintuples (s′, a′, b′, c′, d′) with the same δ,
and choose the best according to criteria 6 and 7. We need only consider
s such that GCD(r, s) = 1, since this is a necessary (but not sufficient)
condition for the characteristic polynomial to be irreducible.

There might not be a solution satisfying all the conditions 1–7. The
number of candidates (s, a, b, c, d) is or order rw4, that is nw3 since n = rw.
The probability that a randomly chosen polynomial of degree n over F2 is
primitive is between 1/(n log n) and 1/n, apart from constant factors [8, 13].
Thus, if our characteristic polynomials behave like random polynomials of
the same degree, we expect at least of order w3/ log n solutions. For w ≥ 32
we have always been able to find a solution with w/2− δ ≤ 9. If w is small,
there may be no solution, for example there is no solution for w = 8, r = 6.

The parameters for “optimal” random number generators with n a power
of two (up to n = 4096) are given in Tables 1–2. Parameters when n is not a
power of two are available from the author’s web site [4]. The computations
were performed using Magma [1].

We do not recommend the RNGs with n ≤ 128 since they may fail the
matrix-rank test in the Crush testing package [6, 14]. However, no problems
have been observed while testing the RNGs with n ≥ 256.
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Table 2: 64-bit generators.

n r s a b c d δ W
128 2 1 33 31 28 29 28 65
256 4 3 37 27 29 33 27 127
512 8 1 37 26 29 34 26 231
1024 16 7 34 29 25 31 25 439
2048 32 1 35 27 26 37 26 745
4096 64 53 33 26 27 29 26 961

4 Problems and improvements

The xorgens class of RNGs are easy to implement since only simple op-
erations (left and right shifts and xors) on full words are required. Unlike
RNGs based on primitive trinomials, their characteristic polynomials have
high weight (see column “W” of Tables 1–2). Provided n ≥ 256, they appear
to pass all common empirical tests for randomness [6, 10, 14].

However, the xorgens class, like Marsaglia’s xorshift class, does have an
obvious theoretical weakness. For x ∈ F 1×w

2 , define ||x|| to be the Hamming
weight of x, that is the number of nonzero components of x. Then ||x−y|| is
the usual Hamming distance between vectors x and y. For random vectors
x ∈ F 1×w

2 , ||x|| has a binomial distribution with mean w/2 and variance w/4.
Because the matrices (I + La) and (I + Rb) are sparse, they map vectors

with low Hamming weight into vectors with low Hamming weight, in fact
||x(I + La)|| ≤ 2||x||, ||x(I + Rb)|| ≤ 2||x||, and consequently

||x(I + La)(I + Rb)|| ≤ 4||x|| .

It follows that a sequence (x(k)) generated using the recurrence (2) satisfies

||x(k)|| ≤ 4
(
||x(k−r)||+ ||x(k−s)||

)
.

Thus, the occurrence of a vector x(k) with low Hamming weight is correlated
with the occurrence of low Hamming weights further back in the sequence
(with lags r and s). A statistical test could be devised to detect this behaviour
in a sufficiently large sample. It is a more serious problem for the 32-bit
generators than for the 64-bit generators, since the probability that a w-bit
vector x has Hamming weight ||x|| ≤ w/8 is 1.0× 10−5 for w = 32, but only
2.8× 10−10 for w = 64.

One solution, recommended by Panneton and L’Ecuyer [14], is to include
more left and right shifts in the recurrence (2). This slows the RNG down,
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but not by much, since most of the time is taken by loads, stores, and other
overheads. Another solution, which we prefer, is to combine the output of
the xorshift generator with the output of a generator in a different class, for
example a Weyl generator which has the simple form

w(k) = w(k−1) + ω mod 2w .

Here “+” means integer addition (mod 2w) and ω is some odd constant (a
good choice is an odd integer close to 2w−1(

√
5− 1)). The generators in our

xorgens package return

w(k)(I ⊕Rγ) + x(k) mod 2w

instead of simply x(k). Here γ ≈ w/2 is a constant. This is better than
returning w(k) + x(k) mod 2w (as was done in an earlier version of xorgens)
because the least significant bit of w(k) has period 2, but all bits of w(k)(I⊕Rγ)
have a longer period (about 2w/2), and this period is relatively prime to the
period 2n − 1 of x(k). Thus each bit in the output should have high linear
complexity [13].

Note that addition mod 2w is not a linear operation on vectors over F2, so
we are mixing operations in two algebraic structures. This is generally a good
idea because it avoids regularities associated with linearity. For example,
suppose we use one of Marsaglia’s xorshift generators to initialise our state
vector, and we do it three times with seeds s, s′, s′′ satisfying s = s′ ⊕ s′′;
then by linearity over F2 our three sequences x, x′, x′′ satisfy x = x′ ⊕ x′′,
which is clearly undesirable. This problem vanishes if the xorshift RNG used
for initialisation is modified by addition (mod 2w) of a Weyl generator, as is
done in the xorgens package.

5 Conclusions

We have shown how Marsaglia’s xorshift RNGs can be generalised to give
high-quality RNGs with extremely long periods (greater than 101232). The
RNGs are fast and easy to implement because only word-aligned operations
are used and no “tempering” step [12] is required. We discussed a potential
problem related to correlation of outputs with low Hamming weights, and
showed that this can be overcome by the simple expedient of combining the
output of a generalised xorshift RNG with the output of a Weyl generator. An
implementation of the resulting RNG is available in a free software package
xorgens [4].
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