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Abstract 
 

An interesting and important, but largely ignored 
question associated with the ML method is whether 
there exists only a single maximum likelihood point for 
a given phylogenetic tree. Mike Steel presented a 
simple analytical result to argue that the ML point is 
not unique [11]. However, his view so far attracts only 
little attention. Though many researchers believe that 
multiple maximum likelihood points may exist for 
certain phylogenetic trees, most existing phylogenetic 
construction programs only produce a single best tree 
under the ML criterion and in practice many 
researchers still use only the ML values to make 
judgment on the quality of different trees for a given 
problem. In this paper we present some experimental 
results from a large number of synthetic test data sets 
and show that it is quite common that certain incorrect 
trees can have likelihood values at least as large as 
that of the correct tree. A significant implication of this 
is that even if we are able to find a truly globally 
optimal tree under the maximum likelihood criterion, 
this tree may not necessarily be the correct 
phylogenetic tree. In the paper we also show that our 
newly developed algorithm can perform much better in 
terms of accuracy than well known algorithms such as 
FASTDNAML and PHYML by constructing only a few 
more trees for a given problem. 
 

1. Introduction 
 

The maximum-likelihood (ML) method allows us to 
estimate and compare the likelihood of different 
evolutionary hypotheses (each comprising a model of 
the tree and substitution process), given the observed 
data [2]. It involves the definition of a labelled binary 
tree followed by optimisation of the estimates of length 
of edges on that tree. Experimental results often show 
that the ML method outperforms other methods, such 
as the maximum parsimony and the minimal evolution. 

As a result, the ML method is widely used in a variety 
of applications.  

It is well known that one problem associated with 
the ML method is its high computational complexity. 
This has so far been considered as the biggest problem 
of the ML method. Most ML-based algorithms have 
therefore implemented heuristic local optimisation 
techniques to reduce the computational complexity, 
e.g., in the early days the simple stepwise addition 
proposed in [2] and more recently those described in 
[4,10,13]. 

An interesting and very important, but largely 
ignored question associated with the ML method is 
whether there exists only a single maximum likelihood 
point for a given phylogenetic tree. Though Mike Steel 
presented a simple analytical result to argue that the 
ML point is not unique [11], his view so far attracts 
only little attention. Till now the ML-based algorithm 
design focuses mainly on how to reduce the 
computational complexity and the designed algorithm 
is judged in terms of accuracy by how large the ML 
value an algorithm can produce for a given problem, 
and molecular biologists often use only ML values 
obtained from an ML-based algorithm to test 
phylogenetic hypotheses from genetic sequences. In 
this paper we present some experimental results from a 
large number of synthetic test data sets and show that it 
is quite common that certain incorrect trees can have 
likelihood values at least as large as that of the correct 
tree. A significant implication of this is that even if we 
are able to find a truly globally optimal tree under the 
maximum likelihood criterion, this tree may not 
necessarily be the correct phylogenetic tree! 
Consistency and low variance (when being compared 
with other methods) make the ML method a powerful 
approach of evaluating the uncertainty in phylogenetic 
estimates [5]. However, it is very important in practice 
to use different criteria and construct multiple trees for 
posterior analyses in order to obtain more accurate and 
reliable results. 



To find an incorrect tree which has a likelihood 
value as large as that of the true phylogenetic tree can 
be equally hard as to find the true tree itself. This is 
simply because the search space is equally large. A 
two-phase procedure is adopted to solve the problem in 
our experiments. We first use a new quartet-based 
algorithm we recently developed [14] to construct a 
limited number of trees for a given set of DNA 
sequences. Our experimental results show that the 
probability for the correct tree to be included in this 
small set of trees is very high. Next in the second phase 
we calculate the likelihood values of these generated 
trees and choose just a few best ones which have the 
highest likelihood values. If there exists only a single 
maximum likelihood point for a given phylogenetic 
tree, we should be able to correctly identify the true 
phylogenetic tree if it is included in the set. 
Interestingly, our experimental results show that it is 
not always the case.  
The paper is organized as follows: our quartet-based 
algorithm is briefly described in Section 2. In Section 3 
we present some experimental results. Conclusions are 
given in Section 4. 
 

2. The Quartet-Based Algorithm 
 

In this section we briefly describe our quartet-based 
algorithm. The algorithm consists of two major stages. 
In stage one we calculate quartet weights for every 
possible quartet trees from a given number of 
molecular sequences. In stage two we first generate a 
global quartet weight matrix to gather the quartet 
topological information from the quartet weights 
calculated in stage one and then reconstruct a full size 
tree using this quartet weight matrix. We can use any 
existing method for phylogenetic analysis to calculate 
the weights of quartet trees [6]. In the following we 
only discuss the computations in stage two. We first 
discuss how a quartet weight matrix is generated from a 
set of quartets defined by a given tree topology and 
give an efficient algorithm for reconstruction of the tree 
topology from its generated quartet weight matrix. This 
one-to-one mapping between a given tree topology and 
its associated quartet weight matrix forms the basis of 
our quartet-based algorithm for phylogenetic analysis. 
We next discuss the tree reconstruction algorithm and 
show how to deal with quartet errors. 

A quartet, or a set of four sequences is associated 
with three possible fully resolved trees. One way to 
measure which of the three possible trees is more likely 
to be the true tree is to use Bayes weights [6], or 
quartet weights in this paper. The quartet weights for 
three possible trees of a quartet is obtained by first 

calculating the likelihood value for each tree and then 
transforming these likelihood values into posterior 

probabilities, or quartet weights iw  for i = 1, 2, and 3, 

by applying Bayes’  theorem assuming a uniform prior 
for all three possible trees.  

Let ),|( wklij denote a possible quartet tree with a 

quartet weight w. Our global quartet weight matrix is 
generated by adding each w to entries ij, ji, kl and lk, 
using a complete set of quartets from a given number of 
sequences. This matrix is symmetric and its size is 

,nn ×  where n is the total number of sequences and 

each row or column corresponds to one particular 
sequence. (Note this quartet weight matrix is called 
score matrix in [3] and it was generated using discrete 
weights (or scores) from a distance matrix.) 

Given a tree topology of n leaves, we can uniquely 
determine a set of  quartet trees which are consistent 
with the original tree, i.e., each quartet tree separates 
the four leaves into two pairs in the same way as the 
original tree through bi-partitioning. For each quartet 
there can only be one fully resolved tree in the set of 
these quartet trees and it is described as ).0.1 ,|( cdab  

For a given tree topology a global quartet weight 
matrix is also uniquely determined. This is because our 
matrix is generated using the quartet weights of the 
associated quartet trees. 

We can also reconstruct the tree topology from its 

generated quartet matrix by using an efficient )( 2nΟ  

algorithm. In each step this algorithm tries to merge 
two subtrees using so-called confidence values which 
are obtained by comparing the corresponding matrix 
entry values with the desired ones. A detailed 
description of the algorithm can be found in [14].  

The same algorithm described above may be used to 
reconstruct an evolutionary tree for a given set of n 
genetic sequences if all the associated quartets are fully 
and correctly resolved. Unfortunately, this is only an 
ideal case and in reality it is very hard for us to have all 
the quartets fully and correctly resolved. Therefore, the 
global weight matrix generated from a set of quartet 
weights is inaccurate and the algorithm for tree 
topology reconstruction discussed above cannot be 
used without modification. To deal with inaccurate 
weight matrices we make three major changes to the 
original algorithm. 

The first change to the original algorithm is to use 
average confidence value. Since the entry values of the 
global weight matrix are no longer ideal, different node 
pairs, one from each of the two sub-trees, may produce 
different confidence values. A simple way to alleviate 
this problem is to calculate the confidence values for 



every leaf node pairs, to average them and then to use 
this averaged value as the confidence value for each 
pair of sub-trees.  

The second change is the quartet weight correction. 
After two sub-trees are merged, we take an additional 
step to restore the associated entries in the matrix to 
their “ true”  values, i.e., change the quartet weights 
based on the currently reconstructed sub-trees and 
update the weight matrix accordingly. In particular, 
after each merge we need to correct the weights of all 
those quartets containing four nodes { i, j, p, q}  to 
(ij|pq, 1.0) where i is a leaf node in one merged sub-
tree, j is a leaf node in the other merged sub-tree and p 
and q the leaf nodes from the rest. If the weights are not 
corrected, the distributed errors may significantly affect 
the correct decision making in the following merge 
steps.  

The third major change is to construct multiple tree. 
Since the matrix is not accurate, it may not always be 
the right decision to merge the two sub-trees that have 
the highest confidence value. After the highest 
confidence value is obtained, we then check whether 
there is another sub-tree which has a reasonably high 
confidence value associated with one of the two sub-
trees using a threshold which is a fixed number or a 
variable smaller than, but close to one. If it is the case, 
we keep all three different merge patterns of these three 
sub-trees. Therefore, we will reconstruct multiple trees 
and hope that the correct tree will be included in these 
generated trees. We set a limit on the number of trees 
to be reconstructed.  

 
3. Experimental Results 
 
We used a large number of synthetic data sets 
generated by the Methods and Algorithms in 
Bioinformatics Research group at The Montpellier 
Laboratory of Computer Science, Robotics, and 
Microelectronics in France (www.lirmm.fr). In our first 
experiment we used a total of 48,000 test data sets of 
DNA sequences. Six model trees, each consisting of 12 
leaf nodes, are used to generate these test data sets 
under various situations. Three model trees, named 
AA, AB and BB, are molecular clock-like, while the 
other three, named CC, CD and DD, present varying 
substitution rates among lineages. Four evolutionary 
rates conditions are considered, ranging from low to 
very fast, for which the maximum pair-wise divergence 
(MD) is from 0.1 to about 2.0 substitutions per site. 
With these model trees and varying evolutionary 
conditions, the test data sets of DNA sequences, each 
being of length either 300 or 600, are generated using 
Seq-Gen. The detailed description of these synthetic 

test data sets can be found on their Web site at 
www.lirmm.fr. Some of our experimental results can be 
seen in Table 1. 
In Table 1 QBNJ4+ML-j denotes that our algorithm 
QBNJ (using a fixed threshold )85.0=α  with 4 stages 

(determining the number of maximum number of trees 
to be generated) is used to construct multiple trees and 
then j best trees are chosen under the ML criterion. In 
choosing j best trees we used relevant functions in a 
well-known programming package for phylogenetic 
analysis TREE-PUZZLE [12] to calculate the 
likelihood values of the generated trees and then these 
best trees are compared with the model tree using the 
Robinson and Foulds topological distance (RF) method 
[8]. The corresponding columns in the table show the 
percentages of correct trees among these j best trees for 
six different model trees. The figures are all rounded to 
their nearest integers. (In the table the figure yx /  

denotes the percentage of correctly inferred trees / the 
average number of trees generated per test data set.) 
The results obtained from FASTDNAML for the same 
test data set [7] are included in Table 1 for the purpose 
of comparison. We also ran one of the currently most 
well-known programming packages PhyML [4] on the 
same data sets and the results are presented in the table. 

We can see from Table 1 that when only a single 
tree with the largest ML value is selected 
(QBNJ4+ML-1), the result is similar to (in some 
categories worse than) that obtained using 
FASTDNAML and PhyML. When allowing the 
selection of more than one tree, our QBNJ4+ML-j 
performs much better than both FASTDNAML and 
PhyML in almost all the categories.  

In our second experiment we used the data sets with 
24 sequences of length 600 based on 5,000 random 24 
taxon trees, which are also downloaded from the web 
site www.lirmm.fr. These 5,000 trees are different in 
shapes and evolutionary rates. The internal branch 
lengths are also not all equal. In the experiment we 
used a variable threshold. Some experimental results 
are presented in Tables 2 and 3. 

In Table 2 we compare the results produced by our 
algorithm using different numbers of stages with the 
result of PhyML. Using PhyML on these 24 sequence
synthetic DNA test data sets, we can obtain 1385 
(27.7%) correct trees in terms of topology. With only 3 
stages allowed in our algorithm (QBNJ3), however, we 
are able to find 1760 (35.2%) correct trees by 
constructing on an average 25 trees for each test data 
set. Much better results are obtained when more trees 
are allowed to be generated. 

After multiple trees were constructed for each test 
data set, similar to what we did in our first experiment 



for 12 sequence data sets, we chose a few best trees 
under the ML criterion. Table 3 shows the number of 
correct trees we identified when choosing at most 5 
best trees from those generated by our algorithm with 4 

stages (QBNJ4) and 5 stages (QBNJ5). It is easily seen 
that both QBNJ4+ML-j and QBNJ5+ML-j performs 
better than PhyML when we are allowed to select just a 
few best trees. 

 
 
Table 1. Experimental results of using QBNJ4 followed by ML for 12 sequence data sets, each sequence being of 

length 300. 

 
Table 2. Experimental results for 24 sequence data sets. 

 
 

Table 3. Experimental results of using QBNJ4 followed by ML for 24 sequence data sets.  

 
 



We can see from both Table 1 and Table 3 that 
QBNJ4+ML-j (or QBNJ5+ML-j) is unable to identify 
all the correct trees from a limited number of trees 
generated by QBNJ4 (or QBNJ5). These are clear 
evidences that certain incorrect trees can have 
likelihood values at least as large as that of the correct 
one! 
4. Conclusions 
 

In this paper we presented some experimental 
results from a large number of synthetic test data sets to 
show that multiple maximum likelihood points do exist 
for a phylogenetic tree. This important result suggests 
that the ML criterion alone may not be sufficiently 
enough to determine the true phylogeny for certain 
problems even if we are able to obtain a truly globally 
optimal tree under the ML criterion! Therefore, it is 
very important in practice for us to use different criteria 
and construct multiple trees for posterior analyses in 
order to obtain more accurate and reliable results. 
In the paper we also showed that our QBNJ+ML-j 
algorithm performs much better than FASTDNAML 
and PhyML for synthetic test data sets. It should be 
noted that our algorithm is computationally more 
expensive though it takes a polynomial time to 
complete. However, the accuracy is much more 
important than the computational time in practice, and 
the problem of high computational cost can be 
alleviated by using high-performance, or parallel 
computing systems [15]. 
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