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Extending the idea of our previous algorithm [17, 18] we developed a new sequential quartet-based 
phylogenetic tree construction method. This new algorithm reconstructs the phylogenetic tree 
iteratively by examining at each merge step every possible super-quartet which is formed by four 
subtrees instead of simple quartet in our previous algorithm. Because our new algorithm evaluates 
super-quartet trees, each of which may consist of more than four molecular sequences, it can 
effectively alleviate a traditional, but important problem of quartet errors encountered in the quartet-
based methods. Experiment results show that our newly proposed algorithm is capable of achieving 
very high accuracy and solid consistency in reconstructing the phylogenetic trees on different sets of 
synthetic DNA data under various evolution circumstances.   

1 Introduction 

For systematic biology, evolutionary history is one of the most important topics. 
Therefore reconstruction of phylogenetic trees from molecular sequences has strong 
research significance. The quartet-based approach is one of the primary methods for 
phylogeny reconstruction. The basic idea is to construct a tree based on the topological 
properties of a set of four molecular sequences (or quartets). The advantages of the 
quartet-based method are that theoretically it guarantees a one-to-one correspondence 
between a tree topology and a set of quartet trees and if the tree topology for each 
individual quartet can be correctly identified, the entire evolutionary tree for a given 
problem can be reconstructed in polynomial time. The main disadvantage, however, is 
that it can be very difficult to obtain correctly resolved quartet trees using any existing 
methods [1, 8]. This quartet error problem greatly hinders the quartet-based approach 
from a wide application.  

Previously we developed a quartet-based algorithm for the reconstruction of 
evolutionary trees [17, 18, 19]. Instead of constructing only one tree as output, this 
algorithm constructs a limited number of trees for a given set of DNA or protein 
sequences. Experimental results showed that the probability for the correct phylogenetic 
tree to be included in this small number of trees is very high. When we selected just a few 
best ones (say three) from these trees under maximum likelihood (ML) criterion, 
extensive tests using synthetic test data sets showed that the algorithm outperforms many 
known algorithms for phylogeny reconstruction in terms of tree topology [19]. One 
problem associated with the original form of this algorithm is that under certain 
circumstances it does not perform well when reconstructing only a single tree as output 
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without the selection stage using ML. Though the method can tolerate quartet errors 
better than many other quartet-based algorithms, the quality of the generated tree still 
depends heavily on the quality of quartet trees.  

In this paper we introduce a new algorithm. This algorithm is similar to our previous 
quartet-based algorithm. However, it reconstructs a tree based on an idea of taking more 
than four taxa into quartet topological estimates, which is called “super-quartet” in this 
paper. The main reason of using super-quartets is to alleviate the problem of quartet 
errors. Inherited from previous algorithm, this new algorithm maintains the theoretical 
advantage of one-to-one mapping of the tree and corresponding (super-) quartet weights. 
The main difference is that this new method iteratively merges taxa on super-quartet 
weights calculated by log ML values (with a probabilistic normalization). Since a super-
quartet consists of more than four molecular sequences, it is expected that the quality of 
super-quartet weights are higher than that of basic quartet (four sequences), hence 
improving the accuracy of the generated tree. Our experiments confirm this and the 
results demonstrate that this new algorithm is able to achieve better accuracy, when 
reconstructing only a single tree, than many ML-based algorithms including the very 
popular PHYML [7] in the terms of phylogenetic tree topology.  

The paper first reviews our previous algorithm and its associated problem in 
reconstructing of a single tree in Section 2. The super-quartet idea and our new 
phylogenetic reconstruction algorithm are then introduced in Section 3. We present some 
experiment results in Section 4. Finally the conclusions and the future work are discussed 
in Section 5. 
 

 
Figure 1. The three-stage procedure of previous algorithm 

2 The Previous Algorithm and Problem 

Our previous quartet-based algorithm rebuilds the evolutionary tree using quartet weights 
[17, 18]. As shown in Figure 1, the algorithm is a three-stage procedure: 1. generate all 
the quartets and calculate the quartet weights; 2. accumulate weights to a global quartet 
weight matrix; 3. iteratively merge subtrees using this matrix. The idea of quartet weights 
was first introduced in [5] and then extended and used in a tree-puzzling algorithm [16]. 
Each quartet is associated with three topologies and their normalized weights. In the ideal 
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case when all quartets are correctly and fully resolved, there is a one-to-one 
correspondence between this matrix and the true tree.  

In order to overcome the quartet inconsistency problem, the previous algorithm also 
deploys two additional mechanisms: the first is to generate more than one phylogenetic 
tree (a small number) when merging ambiguity occurs; the other is to update the 
corresponding global quartet weights to theoretical values. Theoretical values are 
obtained by assuming the two subtrees that have been merged in a heuristic merging step 
are real neighbors in the true tree. Previous experimental results [18] demonstrated that 
the probability for the correct tree to be included in the small set of generated trees is 
very high. As shown in Figure 2, the algorithm is able to achieve better results than 
PHYML when a limited number of trees are constructed. (The reason we use PHYML as 
benchmark to compare our method is because it is one of the most popular packages used 
by biologists, and its accuracy in building the tree is among the highest several methods 
up to now.) However, PHYML achieves better accuracy than our previous algorithm 
when the algorithm is limited to generate only a single tree. Though our previous 
algorithm is able to tolerate the quartet errors better than other quartet-based algorithms, 
the schemes used are still not sufficiently good enough to compensate the quartet error 
problem. It is necessary to find more vigorous mechanisms to deal with the quartet error 
problem. 
 

 
 

Figure 2. Experimental comparison of PHYML and previous algorithm (both on constructing single tree and 
multiple 5 trees) under the same condition as in experiment section. 

 

3 The New Super-Quartet Algorithm 

Phylogeny inference for only four taxa is often considered hard and the result unreliable. 
This is because sampling of taxa prior to phylogenetic tree reconstruction strongly 
influences the accuracy. If one seeks to establish the phylogenetic relationship between 
four groups of taxa by using a single representative for each of these groupings, the result 
generally depends on which representatives are selected [1, 13]. Although our previous 
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algorithm builds the tree on a global view of quartet relationship, it is still limited to 
examination of the topological relationship on the basis of four taxa only.  

The basic idea of quartet is to represent the topological relation of four taxa, through 
three possible binary (quartet) trees. In the extension of this idea we place a subtree rather 
than a single taxon on each vertex of a quartet binary tree, as shown in Figure 3. The 
weight of a super-quartet is measured using the same procedure for quartet weight 
calculation [9], by firstly calculating the maximum likelihood values for each possible 
super-quartet tree out of three possible topologies and then transforming these likelihood 
values into super-quartet weights. Bayes theorem with a uniform prior for all three 
possible trees is used for such transformation. Since each vertex may contain more than 
one taxon, we expect the super-quartet weights are more reliable than weights of simple 
quartets.  
        

 
Figure 3. super-quartet trees for taxon sets of {a, b, c, d}. 

 
After the weights for all possible super-quartets are calculated, the super-quartet 

weight matrix can be generated the same way as the simple quartet weight matrix [17, 18, 
19] with each row or column corresponding to a subtree rather than a single taxon. Our 
new super-quartet method shares the same theoretical property of one-to-one tree 
topology and matrix mapping [17, 18]. 

The new algorithm is also an iterative merge algorithm; it makes decision on which 
two subtrees are going to be merged by selecting the pair of subtrees which shows 
highest probability by global super-quartet weight matrix. The entry values in the weight 
matrix are the agglomerated normalization weights for corresponding subtrees at a 
particular merge step. The metric of making the merge decision is to evaluate how close 
the super-quartet weight is to the theoretical value. This is easily implemented by: 

/ij ijC M T=ij ,                                                         (1) 
where 

ijC is called “confidence value”, and ijT is the theoretical value for the current 
subtrees to be merged and can be calculated by: 
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where kn represents the current global super-quartet weight matrix dimension. 
The structure of our super-quartet algorithm is given below: 

1.     set nnk = . (Initially every taxon represents itself as a subtree) 

2.     number the subtrees from 1 to kn . 
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3.     calculate the likelihood values of all possible super-quartet trees and the associated  
weights. 

4.     update the weight matrix. (Each subtree represented by one number corresponding to 
a  particular row or column.) 

5.     for each pair of subtrees calculate the confidence value (using the entry value against 
a desired one) to determine how likely the pair is to be merged directly.  

6.     choose the pair of subtrees that has the highest confidence value and merge them 
into a bigger subtree.  

7.     reduce kn by one.  

8.     if kn >3, go back to step 2; otherwise merge the remaining three subtrees into one 
final tree.  

 

 
Figure 4. The algorithm iterative step procedure illustration 
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A simple example of one merge step using our algorithm is illustrated in Figure 4. In 
this example we assume the taxon 3 and 4 have been merged in previous step, and the 
current global super-quartet weight matrix is of size 6x6 since previous merging step 
reduced the matrix size from the original 7x7. The algorithm calculates the confidence 
value and find that subtree pair 3 and 5 has the highest value. These two subtrees are 
merged into one larger subtree. The algorithm then re-calculates the likelihood values of 
super-quartet trees and the size of the global super-quartet weight matrix is reduced to 
5x5. This heuristic merge process continues until the whole tree is constructed. 

4 Experiments 

The experiments are carried out using the synthetic data sets from Montpellier 
Laboratory of Computer Science, Robotics, and Microelectronics (www.lirmm.fr). The 
data sets, each consists of 12 taxa, are generated using six model trees. Three model trees 
are molecular clock-like, while the other three present varying substitution rates among 
lineages. With these model trees under various evolutionary conditions, the test data sets 
of DNA sequences, each being of length 300, are generated using Seq-Gen. The reason 
we select these synthetic data as benchmark is because for real DNA data it is very hard 
to clarify the correctness of the constructed tree. On the other hand, these synthetic data 
sets are very comprehensive in evolutionary conditions, both with molecular clock and 
without, both balanced and unbalanced.   

We present in Figure 5 our experimental results and compare them with those 
obtained using PHYML in terms of the percentage of correctly constructed phylogenetic 
trees. For our algorithm, HKY model as evolutionary model, transition to transversion 
rate of one, nucleotide frequency all at 25%, uniform model of rate heterogeneity are 
selected as parameters to perform the experiments. We run PHYML (version 2.44) on the 
same data set using the same parameters to compare the results. The trees generated from 
both algorithms are compared with the true trees using the Robinson and Foulds 
topological distance (RF) method [14]. 

The results demonstrate that our new global ML super-quartet algorithm outperforms 
PHYML in most circumstances. First of all, our algorithm made great improvement for 
data sets without molecular clock: our method constructs the correct tree at much higher 
frequency than PHYML. This can be seen clearly from Figure 5 (b) and (c) for the 
experiment data sets without molecular clock (right 3 columns in the figure). These sets 
of data represent the most common evolution circumstances for phylogenetic study and 
the percentage of correctly constructed trees using our algorithm is nearly 15% higher 
than that of PHYML. Secondly on data set with large variation (MD around 2.0) with or 
without molecular clock, our algorithm nearly doubles the percentage of constructing the 
correct tree compared with PHYML. This is another significant improvement. Thirdly for 
the data sets with molecular clock, as shown in Figure 5 (left 3 columns), our super-
quartet method is able to reconstruct the true phylogenetic tree with slightly better 
accuracy on the average than PHYML. 
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(a) MD = 0.1 experiment results                                        (b) MD = 0.3 experiment results 

 

 
                   (c) MD = 1.0 experiment results                                         (d) MD = 2.0 experiment results 
 Figure 5. Results on synthetic data. X axis: different DNA set; Y axis: percent in building correct tree, figures 
are rounded to the nearest integers. 

 
The reasons why we use PHYML as the benchmark to compare our algorithm lie in 

two aspects. Firstly PHYML is one of the most accurate algorithms among existing ML 
methods [10, 11, 12], and it is one of the most popular and used packages. Secondly 
PHYML works by perturbing one initial tree (generated by BIONJ). The perturbation is 
carried out to optimize the ML value by swapping the subtrees connected at each vertex 
of internal branch, i.e., it evaluates the three possible topologies of the tree by 
interchanging the four subtrees at vertices of an internal branch. The most important 
common characteristic of PHYML and our new method is that these two methods all 
construct the tree through examining the taxon subtree neighborhood relationship on 
quartet-like binary trees under maximum likelihood. The main difference of PHYML and 
our super-quartet method is that PHYML starts with a generated tree while our algorithm 
starts from single taxa and builds the tree sequentially. Obviously our method examines 
the subtree relations from a much more aggressive way than PHYML, i.e., PHYML uses 
an initial  N-sequence tree and changes the tree topology on N-3 branches, while our 
method may examine all the subtrees combinations on previous heuristic (N is the 
number of taxa). Our algorithm may have two advantages. Firstly at each merge step we 
calculate all the likelihood values of all possible super-quartets and take a global view by 
accumulating all these super-quartet weights to examine every neighborhood relationship 
of subtrees. The second advantage is our super-quartet approach inherits the theoretical 
mapping advantage of the quartet method. With these two theoretical advantages, our 
super-quartet method is able to converge on the global maximum with higher probability. 
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This can be seen from our experiment results that our super-quartet method is able to 
achieve higher accuracy than PHYML.  

One disadvantage of our algorithm is that it takes 5( )O n  steps to complete and thus 
more expensive than PHYML which only takes 3( )O n  steps. The main computation cost 
for our super-quartet algorithm lies in two parts, i.e., the computation of confidence 
values for every merge step and the calculation of likelihood values of super-quartet trees. 
The likelihood value re-calculation is the most expensive part. To reduce the 
computational cost we may introduce a threshold. The likelihood value re-calculation 
takes place in a merge step only when the confidence value for the merged pair is below 
this threshold. Another feasible way in reduction of the computational cost is to 
incorporate the idea of out-group sequences. When there are ambiguities on which pair of 
subtrees should be merged, we may pick up only a few other subtrees which are “out-
groups” of those which are currently considered to be merged, use one out-group subtree 
at a time which those considered to be merged to form a super-quartet and calculate its 
likelihood of three possible trees. Since we do not re-calculate likelihood values for all 
possible super-quartets from the total number of super-trees, the computational cost can 
thus be significantly reduced.  

5 Conclusion and Future Work 

In this paper, we proposed one super-quartet phylogenetic tree reconstruction algorithm. 
This new algorithm extends our previous quartet-based algorithm and employs an 
iterative super-quartet approach to enhance the algorithm accuracy. We presented our 
experiment results and compared them with those obtained using PHYML, one of the 
most accurate ML algorithms. The experimental results demonstrate that our new 
algorithm can achieve better results than PHYML. With super-quartets and global quartet 
weights mechanism, our new algorithm is able to effectively alleviate the problem of 
quartet errors encountered in traditional quartet-based methods. However our algorithm is 
computationally more expensive than other methods due to super-quartet weight re-
calculation. In the paper we proposed several methods to reduce the total computational 
cost.  

Even though our super-quartets approach is able to achieve very high accuracy, there 
is still no guarantee it can avoid local maxima. Possible extensions are to develop several 
mechanisms to deal with those critical merge steps when the ambiguity occurs. One 
possible extension is to build multiple trees as output in case of possible local maxima 
convergence.  
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