
A Simple Approach to Error Reconciliation in

Quantum Key Distribution∗

Richard P. Brent

7 May 2010

Abstract

We discuss the error reconciliation phase in quantum key distri-
bution (QKD) and analyse a simple scheme in which blocks with bad
parity (that is, blocks containing an odd number of errors) are dis-
carded. We predict the performance of this scheme and show, using a
simulation, that the prediction is accurate.

∗Presented at the 53rd Annual Meeting of the Australian Mathematical Society,
Adelaide, 1 Oct. 2009. Copyright c© 2010 R. P. Brent. rpb239

1 Introduction and Assumptions

Suppose that Alice sends n random bits to Bob over a quantum channel. The
bits that Bob receives have a probability p < 1/2 of being incorrect1. This
could be due to noise and/or to the effect of eavesdropping by Eve. Initially
Alice and Bob have an estimate of p. This estimate can be improved later,
after they have some information to estimate the actual error rate.

Alice and Bob want to agree on a smaller number of random bits for
use as a secret key or other cryptographic purposes. They can communicate
over a classical channel, but it is assumed that Eve can eavesdrop on all
communications over this channel (even though, in practice, it would be
protected by classical cryptography). It is assumed that communications
over the classical channel are authenticated to rule out “man-in-the-middle”
attacks, but we do not discuss authentication here (see for example [14,
15]). Because some random bits need to be shared between Alice and Bob
for authentication purposes, QKD is more accurately called “quantum key
expansion”.

It is important that Eve does not know the random number generator
that Alice uses to generate her n random bits to send over the quantum chan-
nel – this random number generator should involve some random physical
device so that it is unpredictable even if Eve has unlimited computational
power.

Alice and Bob share a pseudo-random number generator that is used
to generate pseudo-random permutations. The seed for this random num-
ber generator could be part of their shared initial information, or could
be sent during an earlier secure communication session. If necessary, Alice
could send Bob the key over the classical channel, after sending her ran-
dom bits over the quantum channel. Although Eve is assumed to know the
pseudo-random permutations, it is important that she can not predict them
in advance, so can not use them to decide which bits to intercept on the
quantum channel.

We assume that Eve is unable to store quantum states for a significant
time. Thus, any eavesdropping has to be done on the fly and can not be
delayed until Alice and Bob communicate over the classical channel. Of
course, Alice and Bob can delay communication over the classical channel
for as long as they wish, in order to make Eve’s task more difficult.

1We do not discuss the post-selection/sifting phase where Alice and Bob may discard
certain bits. This requires communication over the classical channel but relatively little
computation.

2

2 Expected Distribution of Errors in Blocks

Alice and Bob choose a blocksize b depending on their common estimate of
p. We assume 2 ≤ b ≤ n and for simplicity ignore the problem of what to
do with the last block if b is not a divisor of n (since n is assumed to be
large, whatever we do will make a negligible difference to the analysis).

Alice and Bob apply the same random permutation to their n-bit se-
quences, using their shared pseudo-random number generator (see above).
They should use a good random permutation algorithm (see Appendix A).

Because of the first random permutation, we can assume that errors oc-
curring in a block are independent, even if the original errors are correlated.

We use the generating function

G(x) = (q + px)b,

where q = 1 − p. The coefficient of xk in G(x) gives the probability that a
block of length b contains exactly k errors. Clearly this probability is

pkqb−k

(
b

k

)
,

but it is convenient to avoid expressions involving sums of binomial coeffi-
cients by working with G(x).

Alice and Bob compute the parities of their blocks, and compare parities
using the classical channel. Thus, they can detect blocks with an odd number
of errors2. We say that a block is bad if the computed parities disagree, and
good if the parities agree. Note that a good block may contain an even
number of errors.

Let P0 be the probability that a given block contains no errors. Clearly

P0 = G(0) = qb = (1 − p)b .

Let P1 be the probability that a block is bad (contains an odd number of
errors). Thus

P1 =
G(1) − G(−1)

2
=

1 − (1 − 2p)b

2
(1)

2Of course, Alice and Bob could use more sophisticated error detection/correction than
simple parity bits, but it is not clear that this is desirable since it would disclose more
information to Eve.

3

(using q + p = 1, q − p = 1 − 2p ≥ 0). Note that, if bp ≤ 1, we have

P1 = bp + O(b2p2) .

Let P2 be the probability that a block contains errors that are not detected
(so it must contain an even number of errors). Since P0 + P1 + P2 = 1, we
have

P2 =
1 − 2(1 − p)b + (1 − 2p)b

2
=

b(b − 1)

2
p2 + O(b3p3) .

The expected number of errors in a good block is

Eu =
G′(1) − G′(−1)

G(1) + G(−1)
,

where the prime indicates differentiation with respect to x, so

G′(x) = bp(q + px)b−1 .

Thus

Eu = bp

(
1 − (1 − 2p)b−1

1 + (1 − 2p)b

)
= b(b − 1)p2 + O(b3p3) .

Note that Eu is the expected number of errors in a good block before its first
bit is discarded (see §4). The expected number of errors remaining after the
first bit is discarded is

(
b − 1

b

)
Eu = (b − 1)p

(
1 − (1 − 2p)b−1

1 + (1 − 2p)b

)
= (b − 1)2p2 + O(b3p3) .

After bad blocks have been discarded we expect the error probability for the
remaining bits to be

p̃ = Eu/b = p

(
1 − (1 − 2p)b−1

1 + (1 − 2p)b

)
= (b − 1)p2 + O(b2p3) . (2)

The process of doing a permutation, comparing parities and discarding some
bits is called a round. There will be several rounds, until Alice and Bob have
agreed on a string of bits that is unlikely to contain any errors3.

3Actually, once Alice and Bob estimate that the expected number of errors remaining
is ≪ 1, they will (for reasons of efficiency) adopt a different strategy to confirm (or deny)
that there are no remaining errors – see §5.

4

3 Re-estimation of Error Probability

Let Eb be the observed block error rate, that is the number of blocks in
which an error is detected, normalised by the total number n/b of blocks4.
Thus the expectation E(Eb) of Eb is P1, and we can obtain a new estimate
p′ of p from equation (1):

Eb =
1 − (1 − 2p′)b

2

(provided Eb < 1/2), which gives

p′ =

0 if Eb = 0,(
1 − (1 − 2Eb))

1/b
)
/2 if 0 < Eb < 1/2,

1/2 otherwise.

(3)

4 Choice of Blocksize

In this section we consider the case that there is little or no eavesdropping.
The strategy discussed here may have to be modified if a substantial amount
of eavesdropping is detected – see §8.3.

In our approach to error reconciliation, Alice and Bob simply discard
a block if an error is detected in it5. They also discard one bit, say the
first bit, from each block in which no error is detected, to compensate for
the parity information that Eve might have obtained about the block by
eavesdropping on the classical channel. Thus, the expected number of bits
discarded per block is

P1b + (1 − P1) = 1 + P1(b − 1) .

Discarding bad blocks reduces the number of bits from n to an expected
(1 − P1)n. Discarding one bit from each good block reduces this further,
to (1 − P1)(1 − 1/b)n. However, to partially compensate for this reduction,
the “quality” of the bits should have improved. We can quantify this in the
following way. From Shannon’s coding theorem [12] (see also [13, §1.2.1]),

4We ignore the complication that b might not be a divisor of n
5Unlike the Cascade algorithm [3, §7] (also [13, Ch. 3]), where a binary search is

performed to find an error in the block. Cascade discards fewer correct bits, but requires
more communication over the classical channel. This is significant if the bandwidth or
latency of the classical channel is a limiting factor in the overall performance.

5

Table 1: Optimal block sizes.

p p−1/2 b

0.5 1.41 2
0.2 2.24 2
0.1 3.16 3
0.05 4.47 5
0.01 10.0 10
0.001 31.6 32
0.0001 100 101

the useful information (measured in bits) contained in Bob’s initial n noisy
bits is (1 − H(p))n, where

H(p) = − (p log2 p + q log2 q) , (q = 1 − p) (4)

is the usual Shannon entropy6, and p is the error probability. After discards
the estimated error probability improves to p̃, so Bob now has about

(1 − P1)(1 − 1/b)(1 − H(p̃))n

useful bits of information. Dividing by n to normalize, define

J(b) = (1 − P1)(1 − 1/b)(1 − H(p̃)) . (5)

A reasonable criterion7 for choosing b is to maximise J(b), subject to the
constraints that b ≥ 2 and b ≤ n. If p is close to 0.5, the maximum can easily
be obtained numerically by computing J(b) for b = 2, 3, . . ., using equations
(1)–(2): see Table 1. If bp ≤ 1, then

J(b) = 1 + p − (bp + 1/b) + O(|bp2 log(bp2)|) ,

and the maximum occurs when b ≈ p−1/2. It is clear from Table 1 that
p−1/2 is a good approximation for p ≤ 0.1. Table 2 gives the crossover
points for small blocksizes b. The table gives, for each blocksize b ≤ 10, the

6We use classical Shannon entropy throughout, although in some situations Von Neu-
mann entropy is appropriate – see [10, §11.3].

7Strictly speaking, the coding theorem does not apply to our situation, since Alice
and Bob are trying to agree on some common sequence of bits, and they are allowed to
exchange information over the classical channel. However, inclusion of the entropy term
in (5) seems to be a useful heuristic. See also [9].

6

Table 2: Crossover points for optimal block sizes.

b p

2 0.15973
3 0.08682
4 0.05400
5 0.03657
6 0.02629
7 0.01975
8 0.01534
9 0.01225
10 0.00999

smallest p (rounded to 5 decimals) for which that b is optimal. For example,
a blocksize of 2 is optimal for 0.15973 < p < 0.5, and a blocksize of 9 is
optimal for 0.01225 < p < 0.01534. For b outside the range of Table 2, a
good approximation to the crossover point is p ≈ 1/b2.

Recall that the expected error probability after the first round is, from (2),

p̃ = p

(
1 − (1 − 2p)b−1

1 + (1 − 2p)b

)
.

It is interesting to consider two extreme cases. First, suppose that p is small
and b ≈ p−1/2. Then (2) gives

p̃ = p3/2 + O(p2) .

This means that the error probability converges to zero rapidly (in fact
superlinearly, with order 3/2), provided p is initially small.

Now consider the case that p is close to 1/2, say p = 1 − q = 1/2 − ε,
where ε is small but positive. In this case we can assume that b = 2. Write
p̃ = 1/2 − ε̃. From (2), we have

p̃ =
p2

1 − 2p + 2p2
=

p2

p2 + q2
,

which gives

ε̃ =
2ε

1 + 4ε2
.

Thus, when ε is small, ε̃ ≈ 2ε. After about log2(1/ε) rounds the error
probability will no longer be close to 1/2.

7

Table 3: Prediction for p = 0.25, n = 1000000.

p b n errors bad blks new n

0.250000 2 1000000 250000 187500 312500
0.100000 3 312500 31249 25416 157500
0.023810 7 157500 3749 3254 115470
0.003532 17 115470 407 385 102507
0.000201 71 102507 20 20 99642

Table 4: Simulation for p = 0.25, n = 1000000.

p b n errors bad blks new n

0.250000 2 1000000 250202 187552 312448
0.100100 3 312448 31325 25227 157844
0.023340 7 157844 3895 3409 114840
0.003921 16 114840 406 386 101872
0.000189 73 101872 20 20 99036

Combining the analysis of the extreme cases, we see that the probability
that any errors remain is smaller than a tolerance δ after about

log2

(
2

1 − 2p

)
+ log3/2 log2

(nf

δ

)

rounds, where nf is the number of bits remaining after discards.

Table 3 gives the predicted behaviour if Alice and Bob start with n = 106

bits, and the error probability is p = 0.25. The errors are removed with five
rounds, and at that point Alice and Bob share 99642 bits. This is before
verification (described in §5) and privacy amplification (§7).

To confirm the predictions made in Table 3, we performed a simulation.
The results of a typical run are given in Table 4. The simulation results are
in good agreement with the predictions.

Table 5 shows the number of bits that we predict Alice and Bob should
agree on, for an initial block of n = 106 bits and various error probabilities
in the range 0.0001 ≤ p ≤ 0.49.

8

Table 5: Prediction for various p, n = 1000000.

p final n

0.0001 980197
0.001 928288
0.01 761620
0.10 318860
0.20 152151
0.25 99642
0.30 56244
0.35 33232
0.40 14880
0.45 3680
0.48 587
0.49 160

5 Verification

After enough rounds, the estimated error probability is small, and the ex-
pected number of remaining bit errors is less than 1. At this point Alice
and Bob should verify that their bit sequences are identical. More precisely,
they should perform a probabilistic test which fails to find any discrepancy
with extremely low probability, say η, while at the same time disclosing as
little information as possible to Eve.

Alice and Bob could continue as before for about 2 ln(1/η)/ ln(n) further
rounds (where n is the number of bits remaining), but this would be very
inefficient and would unnecessarily disclose many parity bits (that is, linear8

relations between the bits) to Eve, who is assumed to be eavesdropping on
the classical channel. It is much better for Alice and Bob to compute a
suitable hash of their data and then compare this hash. If a good 64-bit
hash agrees, then the probability that any undetected discrepancies remain
should be of order 2−64 ≈ 5 × 10−20.

One possibility for a k-bit hash function is to compute the parities of
k randomly chosen subsets (each of size about n/2, where n is the number
of bits to be verified). Each bit of the hash can be computed efficiently by
generating a pseudo-random sequence of n bits, performing a bitwise “and”

8Parity information is a linear relation over the field GF(2). If Eve gets enough such
relations, she can solve for the unknown bits using linear algebra over GF(2).

9

with the data, and computing the parity of the result9.

Random-subset hashing is inefficient because only one bit of the hash is
generated for each pass through the data. Alternatives exist that are about
as good and much faster in practice [4, 11, 17].

If the verification phase fails to confirm that Alice and Bob have identical
sequences of bits, it is necessary to return to computing parities of blocks (of
size b ≤ n1/2) to eliminate the remaining error(s), then try verification again.

The number of bits communicated over the classical channel during the
verification phase(s) should be taken into account when estimating the in-
formation available to Eve. See the remarks at the end of §8.

6 Summary

In the following summary, all communication between Alice and Bob is over
the classical channel except for step 1, which uses the quantum channel. It
is assumed that Eve can eavesdrop on the classical channel. “Both” means
both Alice and Bob, performing identical steps using the same algorithm,
and obtaining the same results (except for the block parities computed at
step 7). For example, it is crucial that Alice and Bob use the same blocksizes
and the same random permutations.

1. Alice sends Bob n bits (where n is a predetermined number) over the
quantum channel.

2. Optionally, the following steps can be delayed for as long as Alice and
Bob wish (see the remark at the end of §1).

3. Both set the estimated error probability p to a predetermined constant.

4. Both initialise their pseudo-random number generator with the same
seed (either part of their initially shared information, or communicated
on the classical channel after step 1).

5. If n is too small, the process fails (as in step 13). Otherwise, both apply
a pseudo-random permutation to their n bits, as described in §2.

6. Both compute the optimal block size b as described in §2, subject to
2 ≤ b ≤ n1/2. If necessary, the last block is padded with zeros which
will be removed at step 8. (See also §8 for the choice of blocksize.)

9For the sake of efficiency, the logical operations should be performed using full-word
operations.

10

7. Both compute parities of their blocks and exchange these parities.
Both then compare parities and identify bad blocks (that is, blocks
with an odd number of errors).

8. Both delete zero padding from the last block if it is a good block. Both
delete the bad blocks and also delete the first bit of each good block.
Let n̂ be the number of bits remaining.

9. Both compute a new estimate p′ using equation (3) and the observed
block error rate Eb (the number of bad blocks divided by the total
number ⌈n/b⌉ of blocks). Both set p ← p′, and n ← n̂.

10. Both compute an estimated error probability p̃ for the remaining bits,
using equation (2). Both set p ← p̃. Both return to step 5 if p ≥ 1/n,
otherwise they continue with step 11.

11. Both perform verification as described in §5. If verification fails, both
set p ← 2/n and return to step 5.

12. Both compute the number ∆ of bits of information that Eve could
have obtained (taking into account bits exchanged in the verification
step(s)), perform privacy amplification as outlined in §7, and decrease
n accordingly.

13. If n is sufficiently large, both consider the process successful, otherwise
reset n (perhaps to a larger value than before) and return to step 1.

14. Both retain some of their n bits for future use in authentication and
as seeds for their random number generators; the remaining bits are
available for use as a one-time pad or for other purposes.

Notes

The seed for the random number generator at step 4 could be derived from a
previously shared key if this is not the first run (and similarly for the random
bits required for authentication on the classical channel) – see step 14. Note
that Eve’s chance of cracking the system is negligible unless she can predict
the random permutations that are used by Alice and Bob, because without
this knowledge the best she could obtain by eavesdropping on both channels
would be a random permutation of the final shared key.

In our simulations we found that a good strategy was to send a 64-bit
hash with the parity bits at step 7 whenever p < 10/n. If their parities agree

11

and the hashes agree, then Alice and Bob assume that their reconciliation
has been successful and proceed to step 12.

7 Privacy Amplification

An important aspect of QKD is privacy amplification, in which the block of
bits that Alice and Bob have agreed on is reduced in size to compensate for
the information that Eve may have about these bits.

More precisely, after Alice and Bob reach agreement on a block of say
m random bits, they need to estimate how many useful10 bits (say ∆) of
information Eve could have gleaned, and reduce the size of their agreed
block by ∆ bits using a process such as random subset hashing11 (or give up
if m−∆ is too small). An upper bound on ∆ depends on the physics of the
quantum communication and the observed error rate. For details see [13,
Ch. 7].

Conventional cryptography gives security by imposing a time-consuming
computational task on Eve. Except in the case of the one-time-pad method,
Eve can break the system if she can perform enough computations to do
a brute-force search through the key space. In practice, keys are chosen
large enough that this is impractical (at present). However, it is difficult
to be confident that it will be impractical in the future. For example, the
RSA cryptosystem depends on the difficulty of factoring large integers, but
this has not been proved to be difficult. It is quite possible that a practi-
cal polynomial-time algorithm for factoring exists (as it does for the related
problems of primality testing and factoring polynomials over finite fields).
Also, if a quantum computer can be built, then factoring (and other prob-
lems of cryptographic interest such as discrete logarithm problems) will be
possible in polynomial time.

QKD, on the other hand, does not need to impose any limits on Eve’s
computational power. It is only assumed that Eve has to obey the laws of
physics. By taking advantage of these laws and designing their system cor-
rectly, Alice and Bob can detect any significant attempt by Eve to eavesdrop
on the quantum communication channel.

10We distinguish between useful information, which is relevant to the bits that Alice and
Bob retain, and useless information, which is only relevant to bits that Alice and Bob have
discarded. We can assume that Eve’s useful information per bit does not increase when
Alice and Bob discard bad blocks (in fact it is more likely to decrease, since eavesdropping
tends to increase Bob’s error rate).

11Random subset hashing is similar to the first hashing method described in §5, with
k = m − ∆.

12

Alice and Bob still need to guard against a “[wo]man-in-the-middle”
attack in which Eve intercepts their communications, impersonating Bob
to Alice and Alice to Bob. For this reason, the classical channel between
Alice and Bob needs to be authenticated. This can be done using standard
techniques provided that Alice and Bob share an initial secret (of the order of
a few hundred random bits). Using this secret for authentication, Alice and
Bob can “bootstrap” their system to generate a much longer shared secret.
This longer secret can be used as a one-time pad, or, if we are willing to
trade off security against bandwidth, as a key for a good stream cipher (see
for example [2]).

Since we assume that Eve has unbounded computational power, we
should assume that Eve can break any encryption used on the classical
channel and eavesdrop on it successfully12.

8 Bounding Eve’s Information

Before performing privacy amplification, Alice and Bob need to estimate
(an upper bound on) the amount of information (measured in bits) that
Eve could have obtained about their shared secret bit-string. Eve has two
possible sources of information13 – eavesdropping on the quantum channel,
and eavesdropping on the classical channel. As mentioned above, we assume
that Eve can break any encryption used on the classical channel. In par-
ticular, Eve can learn the parities of blocks as they are exchanged by Alice
and Bob (step 7 of the summary above). However, since she does not know
the seed for Alice and Bob’s pseudo-random number generator, she can not
predict in advance the random permutations that Alice and Bob apply14.

The physics of the quantum channel allows Alice and Bob to give an
upper bound on the number of bits ∆ that Eve learns by eavesdropping on
the quantum channel. Let pe = ∆/n, so pe is the fraction of bits that Eve

12This is not an argument for using weak or no encryption on the classical channel. We
should make life as difficult as possible for Eve by using strong encryption on the classical
channel. Even if Eve can crack this encryption, it should take her a significant amount of
time to do so, making it difficult for her to mount a collective attack [10, §12.6.5].

13Apart from human error, physical theft, etc.
14If she could predict these permutations in advance, Eve could use this information to

choose which bits to eavesdrop on the quantum channel. Assume that the initial blocksize
is two, as in the example given in Table 4. Suppose that Eve learns one bit from each
block of two bits (she can predict which bits will be in each block from knowledge of the
first permutation). Then, once she learns the parities of the blocks, she can deduce the
values of all the bits that were transmitted over the quantum channel, even though Alice
and Bob might think that she only knows 50% of them.

13

knows (before parity information is exchanged). For example, in the setup
of Bennett et al [1], ∆ ≤ p

√
8, where p is the error rate observed by Alice

and Bob (this can be estimated as in §3)15.
The protocol used by Alice and Bob ensures that Alice’s relevant infor-

mation ∆ does not increase as a result of Eve eavesdropping on the classical
channel. For example, whenever Eve learns the parity of a good block, one
bit of that block is discarded. If Eve did not already know that bit, her
parity information is useless. If she did know that bit, then she gains parity
information about the remaining bits in the block, but in compensation she
loses a bit of information about Alice and Bob’s (retained) data. In either
case, her information (in the sense of Shannon’s information theory) does
not increase, although the actual information may change.

The fact that Eve’s useful information does not increase is sufficient
for Alice and Bob’s purposes if pe and p are sufficiently small. For example,
consider Table 3 or Table 4, which assume p = 0.25 and n = 106. If pe < 0.09
then ∆ ≈ 90000 but nf > 97000 leaving an adequate margin of at least 7000
bits. Similarly, if p = 0.1 then we expect nf > 310000 so Alice and Bob can
succeed even if pe = p

√
8 ≈ 0.283.

If pe is too large for this argument to be useful (for example, if pe ≥ 0.1
with p = 0.25, see Table 3), Alice and Bob can use a different argument,
which we now describe. We consider two cases. In the first case, which we
assume occurs initially, Eve’s information is about individual bits. That is,
Eve knows about pen of the n bits transmitted from Alice to Bob. Eventually
(after Alice and Bob have used a blocksize greater than two), Eve may have
gained information in the form of nontrivial linear relations (over GF(2))
between bits by eavesdropping on parity information that is exchanged on
the classical channel. (Because Alice and Bob discard a bit from each good
block, Eve does not gain such information while the blocksize is two.) If
Eve gains enough such relations she can solve for the unknown bits (or at
least restrict a brute-force search to a low-dimensional space) by performing
linear algebra over GF(2). Thus we have to count each linear relation as a
bit of information. If Eve is expected to have ne bits of information about
the n bits that have not yet been discarded, then the current value of pe is
ne/n. It is convenient to define qe = 1 − pe.

15Here as elsewhere we have ignored the fact that our estimate of Eve’s knowledge is
statistical rather than deterministic. For safety we should include “five standard devia-
tion” terms. These have been omitted because they are O(n−1/2) and we assume that n

is large. However, such terms would need to be included in the final analysis.

14

8.1 Case 1: Eve knows only individual bits

Consider the effect of a round with blocksize b in the first case (when Eve
knows some individual bits but no nontrivial relations). With probability qe,
Eve does not know the first bit in a given block, so the parity information in
that block is useless to her (since the first bit will be discarded). Thus, Eve’s
probability of knowing any of the remaining bits in the block is unchanged.
Also, with probability pb

e, Eve already knows all the bits in a given block, so
the parity information tells her nothing new. In the remaining cases, which
occur with probability 1 − qe − pb

e = pe − pb
e, Eve already knows the first

bit but not all bits in the block, and she gains parity information about the
remaining bits, that is a linear relation satisfied by these bits. Thus, overall,
the effect of one round is to replace pe by

p′e = pe +
pe − pb

e

b − 1
. (6)

Since
pe − pb

e

b − 1
= peqe

(
1 + pe + · · · + pb−2

e

b − 1

)
≤ peqe ,

we have 1 − p′e = q′e ≥ q2
e . Equality holds iff b = 2 or pe = 0 or qe = 0.

8.2 Case 2: Eve may know nontrivial relations

Because a nontrivial relation involves two or more bits, the argument given
for Case 1 does not apply if Eve knows some nontrivial relations16. In Case 2,
Eve’s knowledge might increase by one bit for each parity block. Thus, (6)
has to be replaced by

p′e = min(1, pe + 1/b) . (7)

Note that (7) applies whether or not Alice and Bob discard a bit from
each good block. However, it seems plausible that Eve’s task is made more
difficult by such discards.

8.3 Improved strategy for choosing the blocksize

The blocksize selection strategy considered in §4 may not work if pe is large
(or equivalently, if qe is small). Note that no strategy can work if qe ≤ pe,
because this inequality can be interpreted as saying that Eve’s information
is better than Bob’s (and it will continue to be at least as good if Eve

16It is plausible that a nontrivial relation is no more use to Eve than knowledge of a
single bit, so (6) applies in all cases, but we can not prove this.

15

can eavesdrop on the classical channel). Thus, we have to assume that
qe > pe. The strategy suggested below should work (in the sense of giving
Alice and Bob a significant advantage over Eve) provided there is some slack
in this inequality. Our simulations suggest that it works if qe/pe ≥ 4, and in
some circumstances (depending on pe and what we regard as a “significant”
advantage) if 1 < qe/pe < 4.

There are two (conflicting) requirements on the blocksize b. In order to
reduce the error rate substantially each round (see equation (2)), Alice and
Bob want to choose b significantly smaller than 1/p. On the other hand,
in order not to give Eve too much information in the form of parity bits,
they want b significantly larger than 1/qe. Since we assume p < qe, we have
1/qe < 1/p, and we should choose b ∈ (1/qe, 1/p). A reasonable compromise
is to take the geometric mean, that is b = 1/

√
pqe. Of course, we also have

to restrict b to be an integer (and at least two).

Simulations indicate that, if qe/pe is close to 1, it is best to choose b = 2
so that we stay in case 1 above and can use (6) instead of (7) to update
the estimate pe of Eve’s useful information per bit. While b = 2, both p
and qe are approximately squared each round, so the ratio qe/p increases,
although both p and qe decrease. Once qe/p increases above some threshold,
it is possible to use a larger blocksize, even though this means that case 2
applies in later rounds. A good strategy is to take

b =

{
2 if case 1 (no relations) and 4p > qe,

⌊max(2, 1/
√

pqe)⌋ otherwise.
(8)

Consider an example with n = 106, p = 0.15, pe = 0.25. The predicted
outcome is shown in Table 6. The last column (n′ − ∆′) gives Alice and
Bob’s advantage over Eve. It can be seen that Alice and Bob end up with
more than 88, 000 bits (out of 211, 767 bits) that are unknown to Eve. Since
Eve started with knowledge of 250, 000 bits, using monotonicity of ∆ would
not be sufficient.

Table 7 shows the predicted advantage n′ − ∆′ for various p and pe, all
for n = 106.

Table 8 shows the predicted advantage for various p and the ratio qe/p ∈
{2, 3, 4, 5}, also for n = 106. In the table, a dash means that the advantage
is smaller than 64. It can be seen that the advantage is always significant if
qe/p ≥ 4, and can be significant even for qe = 2p.

The number of bits communicated over the classical channel during the
verification phase(s) should be taken into account when estimating the in-

16

Table 6: Prediction for p = 0.15, pe = 0.25, n = 1000000.

p b n errors bad blks n′ n′ − ∆′

0.150000 2 1000000 150000 127500 372505 198281
0.030201 7 372500 11250 9405 262858 127321
0.005721 18 262858 1504 1366 225031 97658
0.000561 64 225031 126 122 213839 89576
0.000020 347 213839 4 4 211767 88101

Table 7: Predicted advantage for various p, pe, n = 1000000.

pe\p 0.1 0.2 0.3 0.4

0.0 247373 130017 56571 13361
0.1 203493 93049 31208 3449
0.2 158045 59548 8207 217
0.3 117032 34798 4492 —

Table 8: Predicted advantage for various p and qe/p, n = 1000000.

qe \ p 0.001 0.01 0.1 0.2

2p — — 94 559
3p — 109 6253 15539
4p 90 784 12139 59548
5p 329 3237 40606 130017

17

formation available to Eve. This would decrease the advantage predicted in
Tables 6–8 by about 64 bits (but the change does not scale with n).

Appendix A: Permutation Generators

Alice and Bob should use a good pseudo-random permutation generator
such as the Durstenfeld shuffle. This is often called the Knuth shuffle [8,
Alg. P], but was first published by Durstenfeld [5]. It is sometimes called the
Fisher-Yates shuffle, but this is incorrect because the algorithm proposed
by Fisher and Yates, while suitable for hand computation, is inefficient on
a computer [6, 16].

It turns out that, at least for large blocksizes, the most expensive part of
Alice and Bob’s computation is performing random permutations. This is
partly due to the fact that the permutation accesses bits at random addresses
in a “cache-unfriendly” manner. For the sake of efficiency we use a “cache-
friendly” permutation which restricts the distance that bits may move to
less than a suitable fraction of the L2 cache size. Since the L2 cache is
typically at least 64KB, this is good enough, although the output is no
longer uniformly distributed over all n! possible permutations.

References

[1] Charles H. Bennett, François Bessette, Giles Brassard, Louis Salvail
and John Smolin, Experimental quantum cryptography, J. Cryptology

5 (1992), 3–28.

[2] Daniel J. Bernstein, The Salsa20 family of stream ciphers, available
from http://cr.yp.to/snuffle.html.

[3] Giles Brassard and Louis Salvail, Secret-key reconciliation by public
discussion, Advances in Cryptology – Eurocrypt 93, Lecture Notes in

Computer Science 765, 1994, 411–423.

[4] Richard P. Brent, Uses of Randomness in Computation, Technical Re-
port TR-CS-94-06, CSL, ANU, June 1994. http://wwwmaths.anu.

edu.au/~brent/pub/pub147.html.

[5] Richard Durstenfeld, Algorithm 235: Random permutation, Comm.

ACM 7, 7 (1964), 420.

18

http://cr.yp.to/snuffle.html
http://wwwmaths.anu.edu.au/~brent/pub/pub147.html
http://wwwmaths.anu.edu.au/~brent/pub/pub147.html

[6] Ronald A. Fisher and Frank Yates, Statistical Tables for Biological,

Agricultural and Medical Research, third edition, Oliver and Boyd, Lon-
don, 1938, pp. 26–27. (Note: the sixth edition is available on the web,
but gives a different shuffling algorithm.)

[7] Jozef Gruska, Quantum Computing, McGraw-Hill, 1999. http://www.
fi.muni.cz/usr/gruska/quantum/

[8] Donald E. Knuth, The Art of Computer Programming, Vol. 2, third
edition, 1998 (Algorithm P, §3.4.2).

[9] Ueli M. Maurer, The strong secret key rate of discrete random triples,
in Communications and Cryptography – Two Sides of One Tapestry

(edited by R. Blahut et al), Kluwer, 1994, 271–285.

[10] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and

Quantum Information, Cambridge University Press, 2000. http://

michaelnielsen.org/qcqi/

[11] Michael O. Rabin, Probabilistic algorithms, in Algorithms and Com-

plexity (edited by J. F. Traub), Academic Press, New York, 1976, 21–
39.

[12] Claude E. Shannon, A Mathematical Theory of Communication, Uni-
versity of Illinois Press, Urbaba, Illinois, 1949 (reprinted 1998). See also
http://en.wikipedia.org/wiki/Shannon_limit.

[13] Vikram Sharma, Informatic Techniques for Continuous Variable Quan-

tum Key Distribution, PhD thesis, Australian National University, Oc-
tober 2007.

[14] Richard Taylor, Near optimal unconditionally secure authentication,
Proc. Eurocrypt 1994, LNCS 950, Springer-Verlag, 1995, 244–253.

[15] M. N. Wegman and J. L. Carter, New hash functions and their use in
authentication and set equality, J. Computer and System Sciences 22

(1981), 265–279.

[16] Wikipedia, Fisher-Yates shuffle, http://en.wikipedia.org/wiki/

Knuth_shuffle.

[17] Wikipedia, Hash function, http://en.wikipedia.org/wiki/Hash_

function.

19

http://www.fi.muni.cz/usr/gruska/quantum/
http://www.fi.muni.cz/usr/gruska/quantum/
http://michaelnielsen.org/qcqi/
http://michaelnielsen.org/qcqi/
http://en.wikipedia.org/wiki/Shannon_limit
http://en.wikipedia.org/wiki/Knuth_shuffle
http://en.wikipedia.org/wiki/Knuth_shuffle
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_function

	Introduction and Assumptions
	Expected Distribution of Errors in Blocks
	Re-estimation of Error Probability
	Choice of Blocksize
	Verification
	Summary
	Privacy Amplification
	Bounding Eve's Information
	Case 1: Eve knows only individual bits
	Case 2: Eve may know nontrivial relations
	Improved strategy for choosing the blocksize

