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On the sign of the real part of the Riemann
zeta-function

Juan Arias de Reyna, Richard P. Brent and Jan van de Lune

In fond memory of Alfred Jacobus (Alf) van der Poorten 1942–2010

Abstract We consider the distribution of argζ (σ + it ) on fixed linesσ > 1
2, and in

particular the density

d(σ) = lim
T→+∞

1
2T
|{t ∈ [−T,+T] : |argζ (σ + it )|> π/2}| ,

and the closely related density

d−(σ) = lim
T→+∞

1
2T
|{t ∈ [−T,+T] : ℜζ (σ + it )< 0}| .

Using classical results of Bohr and Jessen, we obtain an explicit expression for
the characteristic functionψσ (x) associated with argζ (σ + it ). We give explicit
expressions ford(σ) and d−(σ) in terms ofψσ (x). Finally, we give a practical
algorithm for evaluating these expressions to obtain accurate numerical values of
d(σ) andd−(σ).

1 Introduction

Several authors, including Edwards [9, pg. 121], Gram [11, pg. 304], Hutchin-
son [13, pg. 58], and Milioto [24,§2], have observed that the real partℜζ (s) of
the Riemann zeta-functionζ (s) is “usually positive”. This is plausible because the
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Dirichlet seriesζ (s) = 1+2−s+3−s+ · · · starts with a positive term, and the other
termsn−s may have positive or negative real part. In this paper our aimis to make
precise the statement thatℜζ (s) is “usually positive” forσ := ℜ(s)> 1

2.
Kalpokas and Steuding [17], assuming the Riemann hypothesis, have given a

sense in which the statement is also true on the critical lineσ = 1
2. They showed

that the mean value of the set of real values ofζ (1
2 + it ) exists and is equal to 1.

We do not assume the Riemann hypothesis, and our results do not appear to imply
anything about the existence or non-existence of zeros ofζ (s) for σ > 1

2.
Our results depend on the classical results of Bohr and Jessen [4, 5] concerning

the value-distribution ofζ (s) in the half-planeσ > 1
2. Since Bohr and Jessen there

have been many further results on the value distribution of various classes of L-
functions. See, for example, Joyner [16], Lamzouri [19, 20,21], Laurinčikas [22],
Steuding [27], and Voronin [31]. However, for our purposes the results of Bohr and
Jessen are sufficient.

After defining our notation, we summarise the relevant results of Bohr and Jessen
in §2. The densitiesd(σ) andd−(σ), defined in§3, can be expressed in terms of
the characteristic functionψσ (x) of a certain random variableℑS associated with
argζ (σ + it ). We considerψσ and a related functionI(b,x) in §4–§7. In Theorem 1
we use the results of Bohr and Jessen to obtain an explicit expression forψσ (x).
Theorem 2 relates logI(b,x) to certain polynomialsQn(x) which have non-negative
integer coefficients with interesting congruence properties, and Theorem 3 gives an
asymptotic expansion ofI(b,x) which shows a connection betweenI(b,x) and the
Bessel functionJ0. Theorem 4 shows thatψσ (x) decays rapidly asx→ ∞.

The explicit expression forψσ is an infinite product over the primes, and con-
verges rather slowly. In§8 we show how the convergence can be accelerated to give
a practical algorithm for computingψσ (x) to high accuracy.

In §9 we show howd(σ) andd−(σ) can be computed usingψσ (x), and give the
results of numerical computations in§10. Finally, in§11 we comment on how our
results might be generalised.

Elliott [10] determined the characteristic functionΨσ (x) of a limiting distribution
associated with a certain sequence ofL-functions. We note that Elliott’sΨσ (x) is the
same function as ourψσ (x). For a possible explanation of this coincidence, using
the concept ofanalytic conductor, we refer to [15, Ch. 5]. Here we merely note that
Elliott’s method of proof is quite different from our proof of Theorem 1, and applies
only to sequences ofL-functionsL(s,χ) for which χ is a non-principal Dirichlet
character.

Notation

Z, Q, R, andC denote respectively the integers, rationals, reals and complex num-
bers. The real part ofz∈ C is denoted byℜz, and the imaginary part byℑz.

When consideringζ (s) we always haveσ := ℜs. Unless otherwise specified,
σ > 1

2 is fixed.
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Consider the open setG equal toC with cuts along(−∞+ iγ,β + iγ] for each
zero or poleβ + iγ of ζ (s) with β ≥ 1

2. Sinceζ (s) is holomorphic and does not
vanish onG, we may define logζ (s) on G. We take the branch such that logζ (s) is
real and positive on(1,+∞). OnG we define argζ (s) by

logζ (s) = log|ζ (s)|+ i ·argζ (s).

P is the set of primes, andp ∈ P is a prime. When considering a fixed primep
we often use the abbreviationsb := pσ andβ := arcsin(1/b).
|B| or λ (B) denotes the Lebesgue measure of a setB⊂C (or B⊂R). A setB⊂C

is said to beJordan-measurableif λ (∂B) = 0, where∂B is the boundary ofB.1

2F1(a,b;c;z) denotes the hypergeometric function of Gauss, see [1, 8].

2 Classical results of Bohr and Jessen

In [4, 5] Bohr and Jessen study several problems regarding the value distribution of
the zeta function. In particular, forσ > 1

2 and a given subsetB⊂ C, they consider
the limit

lim
T→∞

1
2T
|{t ∈ R : |t|< T, logζ (σ + it ) ∈ B}|.

They prove that the limit exists whenB is a rectangle with sides parallel to the real
and imaginary axes.

Bohr and Jessen also characterize the limit. In modern terminology, they prove
[5, Erster Hauptsatz, pg. 3] the existence of a probability measurePσ , absolutely
continuous with respect to Lebesgue measure, such that for any rectangleB as above
the limit is equal toPσ (B).

Finally, they give a description of the measurePσ . To express it in modern lan-
guage, consider the unit circleT= {z∈C : |z|= 1} with the usual probability mea-
sureµ (that is 1

2π dθ if we identifyT with the interval[0,2π) in the usual way). Let
P be the set of prime numbers. We may considerΩ := TP as a probability space
with the product measureP= µP. Each point ofΩ is a sequenceω = (zp)p∈P, with
eachzp ∈T. Thuszp may be considered as a random variable. The random variables
zp are independent and uniformly distributed on the unit circle.

Proposition 1. Letσ > 1
2 and for each prime number q let zq be the random variable

defined onΩ such that zq(ω) = zq whenω = (zp)p∈P. The sum of random variables

S:=−∑
p∈P

log(1− p−σzp) = ∑
p∈P

∞

∑
k=1

1
k

p−kσ zk
p

converges almost everywhere, so S is a well defined random variable.

1 A bounded setB is Jordan-measurable if and only if for eachε > 0 we can find two finite unions
of rectangles with sides parallel to the real and imaginary axes, saySandT, such thatS⊆ B⊂ T
andλ (T rS)< ε (see for example Halmos [12]).
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Proof. The random variablesYp := − log(1− p−σ zp) are independent. The mean
value of eachYp is zero since

E(Yp) =
1

2π

∫ 2π

0

∞

∑
k=1

1
k

p−kσ eikθ dθ = 0.

It can be shown in a similar way thatE(|Yp|2)∼ p−2σ . Thus∑pE(|Yp|2) converges.
A classical result of probability theory [12, Thm. B, Ch. IX]proves the convergence
almost everywhere of the series forS. ⊓⊔

The measurePσ of Bohr and Jessen is the distribution of the random variableS.
For each Borel setB⊂ C, we have

Pσ (B) = P{ω ∈Ω : S(ω) ∈ B}.

The main result of Bohr and Jessen is that, for each rectangleRwith sides parallel
to the axes,

Pσ (R) = lim
T→∞

1
2T
|{t ∈ R : |t|< T, logζ (σ + it ) ∈ R}| (1)

and the limit exists. It is easy to deduce that (1) is also truefor each Jordan-
measurable subsetR⊂ C, and for setsR of the formR×B, whereB is a Jordan-
measurable subset ofR.

3 Some quantities related to the argument of the zeta function

Define a measureµσ on the Borel sets ofR by µσ (B) := Pσ (R×B). If we take a
Jordan subsetB⊂ R, the main result of Bohr and Jessen implies that

µσ (B) = lim
T→∞

1
2T
|{t ∈ R : |t|< T, argζ (σ + it ) ∈ B}|.

The measureµσ is the distribution function of the random variableℑS. In fact

µσ (B) = Pσ (R×B) = P{ω ∈ Ω : S(ω) ∈ R×B}= P{ω ∈ Ω : ℑS(ω) ∈ B}.

We are interested in the functionsd(σ), d+(σ), andd−(σ) defined by

d(σ) := lim
T→∞

1
2T
|{t ∈ R : |t|< T, |argζ (σ + it )|> π/2}|,

d+(σ) := lim
T→∞

1
2T
|{t ∈ R : |t|< T, ℜζ (σ + it )> 0}|,

d−(σ) := lim
T→∞

1
2T
|{t ∈ R : |t|< T, ℜζ (σ + it )< 0}|.
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Informally, d+(σ) is the probability thatℜζ (σ + it ) is positive; d−(σ) is the
probability thatℜζ (σ + it ) is negative. We show in§10 thatd(σ) is usually a
good approximation tod−(σ). Observe thatd(σ) = 1 − µσ ([−π/2,π/2]),
d+(σ)+d−(σ) = 1, andd+(σ) = ∑k∈Z µσ (2kπ−π/2,2kπ+π/2).

4 The characteristic function ψσ

Recall that thecharacteristic functionψ(x) of a random variableY is defined by
the Fourier transformψ(x) := E[exp(ixY)]. We omit a factor 2π in the exponent to
agree with the statistical literature.

Proposition 2. The characteristic function of the random variableℑS is given by

ψσ (x) = ∏
p

I(pσ ,x), (2)

where, writing b:= pσ , I(b,x) is defined by

I(b,x) :=
1

2π

∫ 2π

0
exp
(
−ixarg(1−b−1eiθ )

)
dθ . (3)

Proof. By definition

ψσ (x) =
∫

Ω
exp(ixℑS(ω)) dω =

∫

Ω
∏

p
exp
(
−ixarg(1− p−σzp)

)
dω .

By independence the integral of the product is the product ofthe integrals, so

ψσ (x) =∏
p

∫

Ω
exp
(
−ixarg(1− p−σzp)

)
dω .

Each random variablezp is distributed aseiθ on the unit circle, so

ψσ (x) = ∏
p

1
2π

∫ 2π

0
exp
(
−ixarg(1− p−σeiθ )

)
dθ = ∏

p
I(pσ ,x). ⊓⊔

5 The function I(b,x)

In this section we study the functionI(b,x) defined by (3). It is easy to see from (3)
thatI(b,x) is an even function ofx. Hence, from (2), the same is true forψσ (x).
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Proposition 3. Let b> 1 andβ = arcsin(b−1). Then

I(b,x) =
1
π

∫ π

0
cos
(

xarctan
sint

b− cost

)
dt

=
2b
π

∫ β

0

cos(xt)cost√
1−b2sin2 t

dt =
2
π

∫ 1

0
cos
(

xarcsin
t
b

) dt√
1− t2

.

Proof. By elementary trigonometry we find

arg(1−b−1eit ) =−arctan
sint

b− cost
. (4)

Substituting in (3) gives

I(b,x) =
1

2π

∫ 2π

0
exp
(

ixarctan
sint

b− cost

)
dt =

1
π

∫ π

0
cos
(

xarctan
sint

b− cost

)
dt.

To obtain the second representation, note that arctan(sint/(b− cost)) is increas-
ing on the interval[0,γ] and decreasing on[γ,π ], whereγ = arccosb−1. We split the
integral on[0,π ] into integrals on[0,γ] and[γ,π ]. In each of the resulting integrals
we change variables, puttingu := arctan(sint/(b− cost)). Then

t = arccos
(

bsin2u± cosu
√

1−b2sin2u )
)
,

where the sign is “+” on the first interval and “−” on the second interval. After some
simplification, the second representation follows. The third representation follows
by the change of variablest 7→ arcsin(t/b). ⊓⊔

Lemma 1. For |t|< 1 and all x∈ C,

cos(2xarcsint) = 2F1(−x,x; 1
2; t2) = 1+

∞

∑
n=1

(2t)2n

(2n)!

n−1

∏
j=0

( j2− x2). (5)

Proof. In [1, eqn. 15.1.17] (also [8, eqn. 15.4.12]) we find the identity

cos(2az) = 2F1(−a,a; 1
2;sin2z).

Replacinga byx andzby arcsint, we get the first half of (5). The second half follows
from the definition of the hypergeometric function. ⊓⊔

Remark 1.An independent proof uses the fact thatf (t) := cos(2xarcsint) satisfies
the differential equation(1− t2) f ′′(t)− t f ′(t)+4x2 f (t) = 0, where primes denote
differentiation with respect tot.

Remark 2.Whenx∈ Z, the series (5) reduces to a polynomial.
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Proposition 4. For b> 1 we have

I(b,2x) = 2F1(−x,x;1;b−2) = 1+
∞

∑
n=1

1
b2nn!2

n−1

∏
j=0

( j2− x2).

Proof. From Proposition 3, we have

I(b,2x) =
2
π

∫ 1

0
cos
(

2xarcsin
t
b

) dt√
1− t2

.

The expression ofI(b,2x) as a sum follows from Lemma 1, using a well-known
integral for the Beta functionB(n+ 1

2,
1
2):

2
π

∫ 1

0

t2ndt√
1− t2

=
1
π

B
(
n+ 1

2,
1
2

)
=

(2n)!
n!222n

.

The identification ofI(b,2x) as 2F1(−x,x;1;b−2) then follows from the definition
of the hypergeometric function2F1. ⊓⊔

Corollary 1. If x ∈ Z, b2 ∈Q and b> 1, then I(b,2x) ∈Q.

Proof. Since I(b,2x) is even, we can assume thatx ≥ 0. Applying Euler’s
transformation [1, (15.3.4)] to the hypergeometric representation of Proposition 4,
we obtain I(b,2x) = (1− b−2)x

2F1(−x,1− x;1;1/(1− b2)), but the series for
2F1(−x,1− x;1;z) terminates, so is rational forz∈Q. ⊓⊔

We can now prove our first main result, which gives an explicitexpression for
the characteristic functionψσ defined in§2–§4.

Theorem 1. For σ > 1
2, the characteristic functionψσ of Proposition 2 is the entire

function given by the convergent infinite product

ψσ (2x) = ∏
p

(
1+

∞

∑
n=1

1
n!2

n−1

∏
j=0

( j2− x2) · 1
p2nσ

)
. (6)

Proof. The identity (6) follows from Proposition 2 and Proposition4. Since∑ p−2σ

converges, the infinite product (6) converges for allx∈ C. ⊓⊔

6 The function logI(b,x)

The explicit formula forψσ given by Theorem 1 is not suitable for numerical com-
putation because the infinite product over primes convergestoo slowly. In §8 we
show how this difficulty can be overcome. First we need to consider the function
logI(b,x).



8 Juan Arias de Reyna, Richard P. Brent and Jan van de Lune

Theorem 2. Suppose that b> max(1, |x|). There exist even polynomials Qn(x) of
degree2n with Qn(0) = 0 and nonnegative integer coefficients qn,k such that

logI(b,2x) =−
∞

∑
n=1

Qn(x)
n!2

1
b2n =−

∞

∑
n=1

n

∑
k=1

qn,k

n!2

x2k

b2n
. (7)

The polynomials Qn(x) are determined by the recurrence

Q1(x) = x2, Qn+1(x) = (n!)2x2+
n−1

∑
j=0

(
n
j

)(
n

j +1

)
Q j+1(x)Qn− j(x) . (8)

Also, the polynomials Qn(x) satisfy

|Qn(x)| ≤ n!(n−1)! max(1, |x|)2n. (9)

Proof. By Proposition 4 there exist even polynomialsPn with Pn(0) = 0, such that

I(b,2x) = 1+
∞

∑
n=1

Pn(x)
n!2

1
b2n

.

It follows that

logI(b,2x) =
∞

∑
k=1

(−1)k+1

k

( ∞

∑
n=1

Pn(x)
n!2

1
b2n

)k
.

It is clear that expanding the powers gives a series of the desired form (7).
To prove the recurrence for theQn, we temporarily considerx as fixed and define

f (y) := I(y−1/2,2x). Then, by (7),

log f (y) =−
∞

∑
n=1

Qn

n!2yn . (10)

By Proposition 4 we havef (y) = 2F1(x,−x;1;y), so f (y) satisfies the hypergeomet-
ric differential equation

y(1− y) f ′′+(1− y) f ′+ x2 f = 0,

where primes denote differentiation with respect toy. Defineg(y) := f ′(y)/ f (y).
Then it may be verified2 thatg(y) satisfies the Riccati equation

y(g′+g2)+g+
x2

1− y
= 0. (11)

Let g(y) = ∑∞
n=0gnyn, where thegn are polynomials inx, e.g.g0 = −x2. Equating

coefficients in (11), we get the recurrence

2 Usually a Riccati equation is reduced to a second-order linear differential equation, see for
example Ince [14,§2.15]. We apply the standard argument in the reverse direction.
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gn =−
( 1

n+1

)(
x2+

n−1

∑
j=0

g jgn−1− j

)
, for n≥ 0. (12)

Now, from (10) and the definitions off andg, we have

g(y) =
f ′(y)
f (y)

=
d
dy

log f (y) =− d
dy

∞

∑
n=1

Qn(x)
n!2 yn,

so we see that

gn =−
Qn+1

n!(n+1)!
. (13)

Substituting (13) in (12) and simplifying, we obtain the recurrence (8).

From the recurrence (8) it is clear thatQn(x) is an even polynomial of degree 2n,
such thatQn(0) = 0. Writing Qn(x) = ∑n

k=1qn,kx2k, we see from the recurrence (8)
that the coefficientsqn,k are nonnegative integers.

In view of (13), the inequality (9) is equivalent to|gn(x)| ≤ max(1, |x|)2n+2,
which may be proved by induction onn, using the recurrence (12).

Finally, in view of (9), the series in (7) converge forb> max(1, |x|). ⊓⊔

Corollary 2. If b > 1, then I(b,2x) is nonzero in the disk|x|< b.

Proof. This follows from the convergence of the series for logI(b,2x). ⊓⊔

Proposition 5. The numbers qn,k are determined by qn,1 = (n−1)!2 for n≥ 1, and

qn+1,k =
n−1

∑
j=0

(
n
j

)(
n

j +1

) ν

∑
r=µ

q j+1,rqn− j ,k−r (14)

for 2≤ k≤ n+1, whereµ = max(1,k−n+ j) andν = min( j +1,k−1). Also, qn,k
is a positive integer for each n≥ 1 and1≤ k≤ n.

Proof. The recurrence is obtained by equating coefficients ofx2k in (8). Positivity
of theqn,k for 1≤ k≤ n follows. ⊓⊔

Remark 3.We may consider the sum overr in (14) to be over allr ∈ Z if we define
qn,k = 0 for k < 1 andk > n. The given valuesµ andν correspond to the nonzero
terms of the resulting sum.

Corollary 3. We have∑n
k=1qn,k = n! (n−1)!.

Proof. This is easily obtained if we substitutex= 1 in the recurrence (8). ⊓⊔

Corollary 4. We have

qn,n = 22nn!(n−1)!
∞

∑
k=1

1

j2n
0,k

(15)

where( j0,k) is the sequence of positive zeros of the Bessel function J0(z).
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Table 1 The coefficientsqn,k.

nrk 1 2 3 4 5 6 7

1 1
2 1 1
3 4 4 4
4 36 33 42 33
5 576 480 648 720 456
6 14400 10960 14900 18780 17900 9460
7 518400362880487200648240730800606480274800

Proof. Defineqn := qn,n. With k= n+1, the recurrence (14) gives, forn≥ 1,

qn+1 =
n−1

∑
j=0

(
n
j

)(
n

j +1

)
q j+1qn− j =

n

∑
j=1

(
n
j

)(
n

j−1

)
q jqn− j+1.

This recurrence appears in Carlitz [7, eqn. (4)], where it isshown that the solution
satisfies (15). ⊓⊔

Remark 4.The sequence(qn) is A002190 in Sloane’s on-line encyclopedia of
integer sequences (OEIS), where the generating function− log(J0(2

√
x)) is given.

The numbersqn enjoy remarkable congruence properties. In fact, (15) is analogous
to Euler’s identity|B2n|= 2(2n)! ∑∞

k=1(2πk)−2n, and the numbersqn are analogous
to Bernoulli numbers. We refer to Carlitz [7] for further discussion.

Remark 5.There are other recurrences giving the polynomialsQn and the numbers
qn,k. We omit discussion of them here due to space limitations.

7 Bounds and asymptotic expansions

Since I(b,x) is an even function ofx, there is no loss of generality in assuming
thatx≥ 0 when giving bounds or asymptotic results forI(b,x). This simplifies the
statement of the results. Similarly remarks apply toψσ (x), which is also an even
function.

Consider the first representation ofI(b,x) in Proposition 3. Ifb is large, then

arctan

(
sinθ

b− cosθ

)
=

sinθ
b

+O
(
b−2) .

However, it is well-known [32,§2.2] that the Bessel functionJ0(x) has an integral
representation

J0(x) =
1
π

∫ π

0
cos(xsinθ )dθ . (16)
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Thus, we expectI(b,x) to be approximated in some sense byJ0(x/b). A more de-
tailed analysis confirms this (see Proposition 7 and Corollary 9). The connection
with Bessel functions makes Corollary 4 less surprising than it first appears.

Proposition 6. For all b > 1 and x∈ R, we have|I(b,x)| ≤ 1.

Proof. This follows from the final integral in Proposition 3. ⊓⊔

Lemma 2. For t ∈ [0,1] and c1 = π/2−1< 0.5708, we have

0≤ arcsin(t)− t ≤ c1t
3.

Proof. Let f (t) = (arcsin(t)− t)/t3. We see from the Taylor series thatf (t) is non-
negative and increasing in[0,1]. Thus supt∈[0,1] f (t) = f (1) = π/2−1. ⊓⊔

Lemma 3. Suppose b> 1, t ∈ [0,1], and c1 as in Lemma 2. Then

0≤ barcsin(t/b)− t ≤ c1t
3/b2.

Proof. Replacet by t/b in Lemma 2, and multiply both sides of the resulting
inequality byb. ⊓⊔

Proposition 7. Suppose b> 1, x> 0, and c2 = (2−4/π)/3< 0.2423. Then

|I(b,x)− J0(x/b)| ≤ c2x/b3.

Proof. From the last integral of Proposition 3, we have

I(b,bx) =
2
π

∫ 1

0
cos
(

bxarcsin
t
b

) dt√
1− t2

.

Also, from the integral representation (16) forJ0, we see that

J0(x) =
2
π

∫ 1

0
cos(xt)

dt√
1− t2

.

Thus, by subtraction,

I(b,bx)− J0(x) =
2
π

∫ 1

0
f (b,x, t)

dt√
1− t2

, (17)

where f (b,x, t) = cos(bxarcsin(t/b))−cos(xt). Using|cosx−cosy)| ≤ |x−y|, we
have

| f (b,x, t)| ≤ |bxarcsin(t/b)− xt|.
Thus, from Lemma 3,

| f (b,x, t)| ≤ c1t
3x/b2.

Taking norms in (17) gives
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|I(b,bx)− J0(x)| ≤
2c1x
πb2

∫ 1

0

t3dt√
1− t2

. (18)

The integral in (18) is easily seen to have the value 2/3. Thus, replacingx by x/b
in (18) completes the proof. ⊓⊔

Corollary 5. If b > 1, x> 0, c2 as in Proposition 7, and c3 =
√

2/π < 0.7979, then

|I(b,x)| ≤ c2x/b3+ c3(b/x)1/2. (19)

Proof. It is known [1, 9.2.28–9.2.31] that|J0(x)| ≤
√

2/(πx) for real, positivex.
Thus, the result follows from Proposition 7. ⊓⊔

Remark 6.The crossover point in Corollary 5 is forb≈ x3/7: the first term in (19)
dominates ifb≪ x3/7; the second term dominates ifb≫ x3/7.

Corollary 6. If x > 1 and b≥ x1/2, then

|I(b,x)| ≤ c3(b/x)1/2(1+ c5b
−1/2),

where c2, c3 are as above, and c5 = c2/c3 < 0.3037.

Proof. From Corollary 5 we have

|I(b,x)| ≤ c3(b/x)1/2(1+ c5x
3/2/b7/2).

The conditionb≥ x1/2 implies thatx3/2/b7/2≤ b−1/2. ⊓⊔

For the remainder of this section we writeβ := arcsin(1/b).

Proposition 8. For b> 1 and real positive x, we have

I(b,x) =−ℜ


2ieixβ

π

∫ ∞

0
e−xu

√
b2−1coshu− i sinhu√

1− (coshu+ i
√

b2−1sinhu)2
du


 . (20)

Proof. From the second integral in Proposition 3 we getI(b,x) = ℜJ(b,x), where

J(b,x) =
2b
π

∫ β

0
eixt cost√

1−b2sin2 t
dt .

The function 1− b2sin2 t has zeros att = ±β + kπ with k ∈ Z and only at these
points. Also,β = arcsin(1/b) ∈ (0,π/2). Hence, ifΩ denotes the complex plane
C with two cuts along the half-lines(−∞,−β ] and [β ,+∞), then the function

(cost)/
√

1−b2sin2 t is analytic onΩ . We consider the branch that is real and pos-
itive in the interval(0,β ). We apply Cauchy’s Theorem to the half stripℑt > 0,
0< ℜt < β , obtaining
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J(b,x) =
i
π

∫ ∞

0
e−xu 2bcoshu√

1+b2sinh2u
du − ieixβ

π

∫ ∞

0
e−xu 2bcos(β + iu)√

1−b2sin2(β + iu)
du.

The first integral does not contribute to the real part. Taking the real part of the
second integral and simplifying gives (20). ⊓⊔

In the following theorem we give an asymptotic expansion ofI(b,x).

Theorem 3. For b> 1 fixed and real x→+∞, there is an asymptotic expansion of
I(b,x). If β = arcsin(1/b), the first three terms are given by

I(b,x) =
2√
2π

(b2−1)1/4

x1/2
cos(xβ −π/4)

+
(b2+2)

4
√

2π
(b2−1)−1/4

x3/2
sin(xβ −π/4)

− (9b4−28b2+4)

64
√

2π
(b2−1)−3/4

x5/2
cos(xβ −π/4)+O

(
1

x7/2

)
.

Proof. We apply the Laplace method and Watson’s Lemma [25, Ch. 3, pg.71] to
the representation (20). ⊓⊔

Corollary 7. For fixed b> 1, the function I(b,x) has infinitely many real zeros.

Proof. This is immediate from the first term of the asymptotic expansion above. The
zeros are near the points±

(3π
4 + kπ

)
/β for k∈ Z≥0. ⊓⊔

Corollary 8. For fixedσ > 1
2, the functionψσ (x) has infinitely many real zeros.

Proof. This is immediate from Proposition 2 and Corollary 7. ⊓⊔

Corollary 9. If b > 1 andβ = arcsin(1/b), then for real x→+∞ we have

I(b,x) = β 1/2(b2−1)1/4J0(βx)+O(x−3/2).

Proof. The Bessel functionJ0(x) has an asymptotic expansion which gives

J0(x) =

(
2

πx

)1/2(
cos(x−π/4)+

1
8x

sin(x−π/4)+O

(
1
x2

))
.

Therefore, from Theorem 3, the differenceI(b,x)−β 1/2(b2−1)1/4J0(βx) is of the
order indicated. ⊓⊔

Now we give a bound on the functionI(b,x) which is sharper than Corollary 5 in
the regionx≫ b7/3.

Proposition 9. For b≥
√

2 and real x≥ 5, we have

|I(b,x)| ≤ 1.1512
√

b/x. (21)



14 Juan Arias de Reyna, Richard P. Brent and Jan van de Lune

Proof. We consider the representation (20). TakeA :=
√

b2−1 so the condition
b ≥
√

2 implies thatA ≥ 1. It can be shown that, forA ≥ 1 and realu > 0, the
inequality

∣∣∣
Acoshu− i sinhu√

1− (coshu+ iAsinhu)2

∣∣∣≤ c4
√

A

min(u1/2,1)

holds. Here, the optimal constant isc4 =
√

coth(2)< 1.0185, attained atA= u= 1.
(We omit details of the proof, which is elementary but tedious.) Hence, from (20),

|I(b,x)| ≤ 2c4

π
(b2−1)1/4

{∫ 1

0
u−1/2e−xudu+

∫ ∞

1
e−xudu

}

<
2c4
√

b
π

(√
π/x+e−x/x

)
.

Forx≥ 5 we have(2c4/π)(
√

π/x+e−x/x)≤ 1.1512/
√

x. ⊓⊔

Remark 7.The constant 1.1512 in (21) can be reduced if we do not ask for unifor-
mity in b. From Theorem 3, we have

|I(b,x)| ≤ c3(1−b−2)1/4(b/x)1/2+ O

(
x−3/2

)
as x→+∞,

so the constant can be reduced toc3 = (2/π)1/2 < 0.7979 for allx≥ x0(b).
The following conjecture is consistent with our analytic results, for example

Corollary 5 and Theorem 3, and with extensive numerical evidence.

Conjecture 1.For allb> 1 andx> 0, we have|I(b,x)|<
√

2b
πx

.

To conclude this section, we give a bound onψσ (x).

Theorem 4. Let σ > 1
2 be fixed. Then|ψσ (x)| ≤ 1 for all x ∈ R. Also, there exists a

positive constant c≥ 0.47and x0(σ) such that

|ψσ (x)| ≤ exp

(
− cx1/σ

log(x1/σ )

)
for all real x≥ x0(σ).

Proof. The first inequality is immediate from the definition ofψσ (x) as the charac-
teristic function of a random variable.

To prove the last inequality, it is convenient to writey := x1/σ . Let P(y) be the
set of primesp in the interval(y1/2,y]. We can assume thatψσ (x) 6= 0, because
otherwise the inequality is trivial. From Proposition 6 andCorollary 6, we have

|ψσ (x)| ≤ ∏
p∈P(y)

|I(pσ ,x)| ≤ ∏
p∈P(y)

(
c3(p/y)σ/2(1+ c5p−σ/2)

)
,

which implies
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− log|ψσ (x)| ≥ ∑
p∈P(y)

(
− log(c3)+

σ
2 (logy− logp)

)
+O(y1−σ/2) .

Using log(c3)<−0.22 andσ > 1/2 gives

− log|ψσ (x)| ≥ (π(y)−π(y1/2))(σ
2 logy+0.22)− σ

2 ∑
p∈P(y)

logp+O(y3/4), (22)

where, as usual,π(y) denotes the number of primes in the interval[1,y].
From standard results on the distribution of primes [28], wehave

π(y) =
y

logy
+

y

log2 y
+O

(
y

log3y

)
and ∑

p∈P(y)

logp= y+O

(
y

log2y

)
.

Substituting in (22), we see that the leading terms of ordery cancel, leaving

− log|ψσ (x)| ≥ (σ
2 +0.22)

y
logy

+O

(
y

log2y

)
.

Sinceσ
2 +0.22> 0.47, the Theorem follows, providedy is sufficiently large. ⊓⊔

Remark 8.We find numerically that, forσ ∈ (0.5,1.1), we can takec= 1 andx0 = 5
in Theorem 4.

8 An algorithm for computing ψσ (x)

There is a well-known technique, going back at least to Wrench [33], for accurately
computing certain sums/products over primes. The idea is toexpress what we want
to compute in terms of theprime zeta function

P(s) := ∑
p

p−s (ℜ(s)> 1).

The prime zeta function can be computed from logζ (s) using Möbius inversion:

P(s) =
∞

∑
r=1

µ(r)
r

logζ (rs) . (23)

In fact, (23) gives the analytic continuation ofP(s) in the half-planeℜs> 0 (see
Titchmarsh [29,§9.5]), but we only need to computeP(s) for reals> 1.

To illustrate the technique, temporarily ignore questionsof convergence. From
Theorem 2, we have
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logI(pσ ,x) =−
∞

∑
n=1

Qn(x/2)
n!2 p−2nσ .

Thus, taking logarithms in (2),

logψσ (x) =−∑
p

∞

∑
n=1

Qn(x/2)
n!2 p−2nσ =−

∞

∑
n=1

Qn(x/2)
n!2 P(2nσ). (24)

Unfortunately, this approach fails, becauseψσ (x) has (infinitely many) real zeros –
see Corollary 8. In fact, the series (24) converges for|x| < |x1(σ)|, wherex1(σ) is
the zero ofψσ (x) closest to the origin, and diverges for|x|> |x1(σ)|.

Fortunately, a simple modification of the approach avoids this difficulty. Instead
of considering a product over all primes, we consider the product over sufficiently
large primes, sayp> p0(x,σ). Corollary 2 guarantees thatI(pσ ,x) has no zeros in
the disk|x| < 2pσ . Thus, to evaluateψσ (x) for given σ andx, we should choose
2pσ

0 > |x|, that isp0 > |x/2|1/σ . In practice, to ensure rapid convergence, we might
choosep0 somewhat larger, sayp0≈ |4x|1/σ .

For the primesp≤ p0, we avoid logarithms and computeI(pσ ,x) directly from
the hypergeometric series of Proposition 4.

To summarize, the algorithm for computingψσ (x) with absolute errorO(ε), for
x∈R, is as follows.

Algorithm for the characteristic function ψσ (x)

1. p0←⌈|4x|1/σ⌉.

2. A← ∏
p≤p0

(
1+

N

∑
n=1

1
p2nσ n!2

n−1

∏
j=0

( j2− (x/2)2)

)
,whereN is sufficiently large that

the error in truncating the sum isO(ε). [HereA is the product over primes≤ p0.]

3. B← exp

(
−

N′

∑
n=1

Qn(x/2)
n!2

{
P(2nσ)− ∑

p≤p0

p−2nσ

})
, whereN′ is sufficiently

large that the error in truncating the sum isO(ε), andQn(x/2) is evaluated using
the recurrence (8). [HereB is the product over primes> p0.]

4. returnA×B.
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Remarks on the algorithm for ψσ (x)

1. At step 3,P(2nσ) can be evaluated using equation (23); time can be saved by
precomputing the required valuesζ (rs).

2. It is assumed that the computation is performed in floating-point arithmetic with
sufficiently high precision and exponent range [6, Ch. 3]. For efficiency the pre-
cision should be varied dynamically as required, for example, to compensate for
cancellation when summing the hypergeometric series at step 2, or when com-
puting the term{P(2nσ)−∑p≤p0

p−2nσ} at step 3.
3. At step 3 an alternative is to evaluateQn(x/2) using a table of coefficientsqn,k;

these can be computed in advance using the recurrence of Proposition 5. This
saves time (especially if many evaluations ofψσ (x) at different pointsx are re-
quired, as is the case when evaluatingd(σ)), at the expense of space and the
requirement to estimateN′ in advance.

4. The algorithm runs in polynomial time, in the sense that the number of bit-
operations required to computeψσ (x) with absolute errorO(ε) is bounded by
a polynomial (depending onσ andx) in log(1/ε).

9 Evaluation of d(σ) and d−(σ)

In this section we show how the densitiesd(σ) andd−(σ) of §3 can be expressed
in terms of the characteristic functionψσ .

Proposition 10. For σ > 1, the support of the measureµσ of §3 is contained in the
compact interval[−L(σ), L(σ)], where

L(σ) := ∑
p

arcsin(p−σ ).

Proof. Recall thatµσ is the distribution of the random variableℑSconsidered in§2.
From (4), ℑS is equal to the sum of terms−arctan((sint)/(pσ − cost)) whose
values are contained in the interval[−arcsinp−σ ,arcsinp−σ ]. Therefore the range
of ℑS is contained in the interval[−L(σ), L(σ)]. ⊓⊔

Remark 9.It may be shown that the support ofµσ is exactly the interval[L(σ),L(σ)].

Remark 10.As in van de Lune [23], we defineσ0 to be the (unique) real root in
(1,+∞) of the equationL(σ) = π/2, andσ1 to be the real root in(1,+∞) of
L(σ) = 3π/2. These constants are relevant in§10.
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Proposition 11. For σ > 1
2,

d(σ) = 1− 2
π

∫ ∞

0
ψσ (x)sin

(πx
2

) dx
x
. (25)

Proof. Recall from§3 that 1− d(σ) = µσ ([−π/2,π/2]). Sinceψσ is the charac-
teristic function associated to the distributionµσ , a standard result3 in probability
theory gives

1−d(σ) =
1

2π
lim

X→∞

∫ X

−X

exp(ixπ/2)−exp(−ixπ/2)
ix

ψσ (x)dx.

Sinceψσ (x) is an even function, we obtain (25). ⊓⊔

To evaluated(σ) numerically from (25), we have to perform a numerical integra-
tion. The following theorem shows that the integral may be replaced by a rapidly-
converging sum ifσ > 1.

Theorem 5. Let σ > 1 andℓ > max(π/2,L(σ)). Then we have

d(σ) = 1− π
2ℓ
− 2

π

∞

∑
n=1

1
n

ψσ

(πn
ℓ

)
sin
(nπ2

2ℓ

)
. (26)

Proof. Consider the functioñρ(x) equal toρσ (x) in the interval[−ℓ,ℓ]. Now extend
ρ̃(x) to the real lineR, making it periodic with period 2ℓ. Thus

ρ̃(x) = ∑
n∈Z

fn exp

(
π inx
ℓ

)
, where fn =

1
2ℓ

∫ ℓ

−ℓ
ρ̃(x)exp

(
−π inx

ℓ

)
dx.

Now ρ̃(x) = ρσ (x) for |x| ≤ ℓ andρσ (x) = 0 for |x|> ℓ. Therefore

fn =
1
2ℓ

∫ ℓ

−ℓ
ρσ (x)exp

(
−π inx

ℓ

)
dx=

1
2ℓ

∫

R
ρσ (x)exp

(
−π inx

ℓ

)
dx=

1
2ℓ

ψσ

(πn
ℓ

)
.

Sinceψσ (x) is an even function,

ρ̃(x) =
1
2ℓ ∑

n∈Z
ψσ

(πn
ℓ

)
exp

(
π inx
ℓ

)
=

1
2ℓ

+
1
ℓ

∞

∑
n=1

ψσ

(πn
ℓ

)
cos

πnx
ℓ

. (27)

Now d(σ) = 1− µσ ([−π/2,π/2]) = 1− ∫ π/2
−π/2ρσ (t)dt. Sinceπ/2≤ ℓ, we may

replaceρσ (t) by ρ̃(t) in the integral. Hence, multiplying the equality (27) by the
characteristic function of[−π/2,π/2] and integrating, we get (26). ⊓⊔

3 Attributed to Paul Lévy.
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Remark 11.The sum in (26) can be seen as a numerical quadrature to approximate
the integral in (25), taking a Riemann sum with stepsizeh = π/ℓ. However, we
emphasise that (26) isexactunder the conditions stated in Theorem 5. This is a
consequence of the measureµσ having finite support whenσ > 1. If σ ∈ (1

2,1] then
µσ no longer has finite support and (26) only gives an approximation; however,
this approximation converges rapidly to the exact result asℓ→ ∞, becauseµσ is
well-approximated by measures with finite support.

Remark 12.If we takem:= 4ℓ/π in the Theorem 5, we get the slightly simpler form

d(σ) = 1− 2
m
− 2

π

∞

∑
n=1

1
n

ψσ

(
4n
m

)
sin

(
2πn
m

)
(28)

for m> max(2,M(σ)), whereM(σ) = 4L(σ)/π . A good choice ifL(σ) < π is
m= 4; then only the odd terms in the sum (28) contribute.

Computation of d−(σ)

Recall thatd−(σ) is the probability thatℜζ (σ + it ) < 0. Let ak = ak(σ) be the
probability that|argζ (σ + it )|> (2k+1)π/2, that is

ak := 1− µσ([−(k+ 1
2)π , (k+

1
2)π ]).

Then

d−(σ) =
∞

∑
k=0

(a2k−a2k+1) =
∞

∑
k=0

(−1)kak . (29)

We have seen that, forσ > 1 andm> max(2,4L(σ)/π), eqn. (28) givesa0 = d(σ).
Similarly, under the same conditions we have

ak = 1− 4k+2
m
− 2

π

∞

∑
n=1

1
n

ψσ

(
4n
m

)
sin

(
(4k+2)πn

m

)
. (30)

Using (29) and (30) in conjuction with an algorithm for the computation ofψσ , we
can computed−(σ) and also, of course,d+(σ) = 1−d−(σ). If σ ∈ (1

2,1] then we
can take the limit of (30) asm→∞, or use an analogue of Proposition 11, to evaluate
the constantsak.
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Table 2 d(σ ) for variousσ ∈ (0.5,1.165]

σ d(σ )

0.5+10−11 0.6533592249148917497
0.5+10−5 0.4962734204446697434
0.6 7.9202919267432753125×10−2

0.7 2.5228782796068962969×10−2

0.8 5.1401888600187247641×10−3

0.9 3.1401743610642112427×10−4

1.0 3.7886623606688718671×10−7

1.1 6.3088749952505014038×10−22

1.15 1.3815328080907034247×10−103

1.16 1.1172074815779368125×10−194

1.165 1.2798207752318534603×10−283

10 Numerical results

In [3] we described a computation of the first fifty intervals (t > 0) on which
ℜζ (1+ it ) takes negative values. The first such interval occurs fort ≈ 682112.9,
and has length≈ 0.05. From the lengths of the first fifty intervals we estimated that
d−(1) ≈ 3.85×10−7. We also mentioned a Monte Carlo computation which gave
d−(1) ≈ 3.80×10−7. The correct value is 3.7886. . .×10−7. The difficulty of im-
proving the accuracy of these computations or of extending them to other values of
σ was one motivation for the analytic approach of the present paper.

The algorithm of§8 was implemented independently by two of us, using in one
case Mathematica and in the other Magma. The Mathematica implementation pre-
computes a table of coefficientsqn,k; the Magma implementation uses the recurrence
for the polynomialsQn directly. The results obtained by both implementations arein
agreement, and also agree (up to the expected statistical error) with results obtained
by the Monte Carlo method in the region 0.6≤ σ ≤ 1.1 where the latter method is
feasible.

Table 2 gives some computed values ofd(σ) for σ ∈ (0.5,1.165]. From van de
Lune [23] we know thatd(σ) = d−(σ) = 0 for σ ≥ σ0 ≈ 1.19234. Table 2 shows
thatd(σ) is very small forσ close toσ0. For example,d(σ)< 10−100 for σ ≥ 1.15.
The small size ofd(σ) makes the computation difficult forσ ≥ 1.15. We need to
computeψσ (4n/m) to more than 100 decimal places to compensate for cancellation
in the sum (28), in order to get any significant figures ind(σ).

Selberg [26] (see also [16, 18, 30]) showed that, fort ∼ unif(T,2T),

logζ (1/2+ it )√
1
2 loglogT

d→ X+ iY (31)

asT→∞, with X,Y∼N(0,1). This implies thatd(1/2)= 1, but gives no indication
of the speed of convergence ofd(σ) asσ ↓ 1

2. Table 2 shows that convergence is
very slow – forσ − 1

2 ≥ 10−11 we haved(σ)< 2
3.
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Table 3 The differenced(σ )−d−(σ )

σ d(σ )−d−(σ )

0.5+10−11 0.1547533823
0.6 8.073328981×10−11

0.7 2.676004882×10−32

0.8 7.655052120×10−210

It appears from numerical computations thatℜζ (1/2+ it ) is “usually positive”
for those values oft for which computation is feasible. This is illustrated by several
of the Figures in [2]. Because the function

√
log logT grows so slowly, the region

that is feasible for computation may not show the typical behaviour ofζ (σ + it ) for
larget on or close to the critical lineσ = 1

2.
Table 3 gives the differenced(σ)− d−(σ). For σ > 0.8, there is no appre-

ciable difference betweend(σ) and d−(σ). This is because the probability that
|argζ (σ + it )| > 3π/2 is very small in this region. Indeed,d(σ) = d−(σ) for all
σ ≥ σ1 ≈ 1.0068, whereσ1 is the positive real root ofL(σ) = 3π/2.

There is an appreciable difference betweend(σ) andd−(σ) very close to the
critical line. For example,d−(0.5+10−11) ≈ 0.4986058426, butd(0.5+10−11)≈
0.6533592249. Our numerical results suggest that limσ↓1/2d−(σ) = 1/2.

It is plausible thatd−(1
2) = d+(1

2) =
1
2, but Selberg’s result (31) does not seem

to be strong enough to imply this.

11 Conclusion

We have shown a precise sense in whichℜζ (s) is “usually positive” in the half-
planeσ = ℜ(s)> 1

2, given an explicit expression for the characteristic function ψσ ,
and given a feasible algorithm for the accurate computationof ψσ , and consequently
for the computation of the densitiesd(σ) andd−(σ).

Our results could be generalised to cover Dirichlet L-functions because the char-
acterχ(p) in the Euler product

L(s,χ) = ∏
p
(1− χ(p)p−s)−1

can be absorbed into the random variablezp whenever|χ(p)| = 1. Thus, it would
only be necessary to omit, from sums/products over primes, all primes p for which
χ(p) is zero, i.e. the finite number of primes that divide the modulus of the L-
function. This would, of course, change the numerical results. Nevertheless, we
expectℜL(s,χ) to be “usually positive” forℜ(s)> 1

2.
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11. J.-P. GRAM, Note sur les zéros de la fonctionζ (s) de Riemann, Acta Mathematica27 (1903),

289–304.
12. P. R. HALMOS, Measure Theory, Springer Verlag, New York, 1974.
13. J. I. HUTCHINSON, On the roots of the Riemann zeta function, Trans. Amer. Math. Soc.27

(1925), 49–60.
14. E. L. INCE, Ordinary Differential Equations, Longman, Green and Co, London, 1926.
15. H. IWANIEC AND E.KOWALSKI, Analytic Number Theory, Amer. Math. Soc. Colloquium

Publications53, 2004.
16. D. JOYNER, Distribution Theorems of L-functions, Pitman Research Notes in Mathematics

142, John Wiley and Sons, New York, 1986.
17. J. KALPOKAS AND J. STEUDING, On the value-distribution of the Riemann zeta-function

on the critical line,Moscow J. of Combinatorics and Number Theory2 (2011), 26–42. Also
arXiv:0907.1910v1.
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