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On the sign of thereal part of the Riemann
zeta-function

Juan Arias de Reyna, Richard P. Brent and Jan van de Lune

In fond memory of Alfred Jacobus (Alf) van der Poorten 194Q+Q

Abstract We consider the distribution of a{do +it) on fixed lineso > % and in
particular the density

. 1 ) .
d(o) _TIerlmEHt € [-T,+T]: |arg{ (o +it)| > 1/2}],
and the closely related density

d_(0) = _lim —

Am o {te[-T,+T]:0(o+it) <0}.

Using classical results of Bohr and Jessen, we obtain aricéxgkpression for

the characteristic functioys(x) associated with a§(o +it). We give explicit

expressions fod(o) andd_(o) in terms of Yy (x). Finally, we give a practical
algorithm for evaluating these expressions to obtain ateunumerical values of
d(o) andd_(0).

1 Introduction

Several authors, including Edwardd [9, pg. 121], Gran [1d., 304], Hutchin-
son [13, pg. 58], and Milioto [24§2], have observed that the real par{(s) of
the Riemann zeta-functiofi(s) is “usually positive”. This is plausible because the
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Dirichlet series{(s) = 1+ 25+ 3754 ... starts with a positive term, and the other
termsn—° may have positive or negative real part. In this paper ourigitn make
precise the statement that (s) is “usually positive” foro := (s) > %

Kalpokas and Steudind [17], assuming the Riemann hypahkaive given a
sense in which the statement is also true on the criticaldine % They showed
that the mean value of the set of real valueétﬁ +it) exists and is equal to 1.

We do not assume the Riemann hypothesis, and our results dppear to imply
anything about the existence or non-existence of zerdgs)ffor o > %

Our results depend on the classical results of Bohr and d¢4$E] concerning
the value-distribution o (s) in the half-planeo > % Since Bohr and Jessen there
have been many further results on the value distributionasifous classes of L-
functions. See, for example, Joynerl[16], Lamzouri [19,21], Laurin¢ikas[[22],
Steuding[[27], and Voronin [31]. However, for our purpodes tesults of Bohr and
Jessen are sufficient.

After defining our notation, we summarise the relevant te@flBohr and Jessen
in §2. The densitiesl(o) andd_ (o), defined ing3, can be expressed in terms of
the characteristic functiogys(x) of a certain random variabléS associated with
arg{ (o +it). We considery, and a related functioh(b,x) in §4-47. In Theoreni 1L
we use the results of Bohr and Jessen to obtain an expliciesgipn forfq(X).
Theoreni relates Idgb, x) to certain polynomial€,(x) which have non-negative
integer coefficients with interesting congruence propsrtand Theorefd 3 gives an
asymptotic expansion dfb, x) which shows a connection betwegib, x) and the
Bessel functiordy. Theoreni ¥ shows thafi; (x) decays rapidly ag — co.

The explicit expression foy, is an infinite product over the primes, and con-
verges rather slowly. 168 we show how the convergence can be accelerated to give
a practical algorithm for computing; (x) to high accuracy.

In §9 we show howd(o) andd_ (o) can be computed usings (x), and give the
results of numerical computations 0. Finally, in§I1 we comment on how our
results might be generalised.

Elliott [L0] determined the characteristic functigf(x) of a limiting distribution
associated with a certain sequencé-dfinctions. We note that Elliott'%;(x) is the
same function as oup;(x). For a possible explanation of this coincidence, using
the concept ofinalytic conductorwe refer to[[15, Ch. 5]. Here we merely note that
Elliott’s method of proofis quite different from our proof ®heoreni 1, and applies
only to sequences df-functionsL(s, x) for which x is a non-principal Dirichlet
character.

Notation

7, Q, R, andC denote respectively the integers, rationals, reals angamum-
bers. The real part afe C is denoted bylz, and the imaginary part byz.

When considering (s) we always haves := O0s. Unless otherwise specified,
o > 1is fixed.
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Consider the open s& equal toC with cuts along(—o +iy, 3 +iy] for each
zero or poleB +iy of {(s) with 3 > % Since{(s) is holomorphic and does not
vanish onG, we may define log(s) on G. We take the branch such that I6¢s) is
real and positive ofi1, +). On G we define ard (s) by

log¢ (s) = og| (s)| +i-argl (s):

P is the set of primes, and € P is a prime. When considering a fixed prirpe
we often use the abbreviatiohs= p? andf := arcsin(1/b).

|B| or A (B) denotes the Lebesgue measure of 8setC (orBC R). AsetBC C
is said to beJordan-measurablé A (dB) = 0, wheredB is the boundary o[

2F1(a,b; ¢;z) denotes the hypergeometric function of Gauss, [se€ [1, 8].

2 Classical results of Bohr and Jessen

In [4,5] Bohr and Jessen study several problems regardagatue distribution of
the zeta function. In particular, far > % and a given subs& C C, they consider
the limit

1 _ .
T“ELE'{t eR:t|<T,logl(o+it) € B}|.

They prove that the limit exists whehis a rectangle with sides parallel to the real
and imaginary axes.

Bohr and Jessen also characterize the limit. In modern terogy, they prove
[5l Erster Hauptsatz, pg. 3] the existence of a probabiligasureP,, absolutely
continuous with respect to Lebesgue measure, such thatyoeatangléB as above
the limit is equal tdP4(B).

Finally, they give a description of the measilitg. To express it in modern lan-
guage, consider the unit circle= {z e C : |zl = 1} with the usual probability mea-
sureu (that is%rde if we identify T with the intervall0, 2m) in the usual way). Let
P be the set of prime numbers. We may consi@er= T" as a probability space
with the product measuf@= 1. Each point of? is a sequence = (z,) pep, With
eachzy € T. Thusz, may be considered as a random variable. The random variables
zp are independent and uniformly distributed on the unit eircl

Proposition 1. Leto > % and for each prime number q lef e the random variable
defined o2 such that g(w) = Zg whenw = (z,) pep. The sum of random variables

1
S:=— Y log(l—p 92z) = “p koK
pgp 9(1-p “z) pgpk;kp 5

converges almost everywhere, so S is a well defined randdabler

1 A bounded seB is Jordan-measurable if and only if for each 0 we can find two finite unions
of rectangles with sides parallel to the real and imaginaessasaySandT, such thaSCBC T
andA (T \S) < € (see for example Halmos[1L2]).
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Proof. The random variable¥, := —log(1 — p~?z,) are independent. The mean
value of eacly, is zero since

E(Yp) = = 7S Ly kogkode — o
P 2o kzlkp -

It can be shown in a similar way thB{(|Yp|?) ~ p~2°. Thusy , E(|Yp|?) converges.
A classical result of probability theory [12, Thm. B, Ch. Igioves the convergence
almost everywhere of the series far a

The measur®, of Bohr and Jessen is the distribution of the random vari8ble
For each Borel seéB C C, we have

Py(B) =P{we Q: Sw) € B}.

The main result of Bohr and Jessen is that, for each recté&gith sides parallel
to the axes,

PU(R):TIian%|{teR:|t|<T, logZ (o +it) € R}| )

and the limit exists. It is easy to deduce that (1) is also fareeach Jordan-
measurable subs&c C, and for setRR of the formR x B, whereB is a Jordan-
measurable subset B&f

3 Some quantitiesrelated to the argument of the zeta function

Define a measurgy on the Borel sets oR by s (B) := Pg(R x B). If we take a
Jordan subsd& C R, the main result of Bohr and Jessen implies that

1 .
Ho(B) = lim —|{teR:|t| < T,arg{(o+it) € B}|.
T— 2T
The measurgls is the distribution function of the random varialal&. In fact
Ho(B) =Ps(RxB)=P{we Q:S(w) e RxB} =P{we Q:0Yw) € B}.
We are interested in the functiodéo), d. (o), andd_ (o) defined by

o1 .
d(o):= Tllinmet eER:t| < T,|argl (o +it)| > m/2},

d,(0) = TIian%Ht ER: [t <T,07(c+it) >0},

d_(0):= TIian%Ht ER: [t <T,07(c+it) <0}
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Informally, dy (o) is the probability thatJ{(o +it) is positive;d_(o) is the
probability that(1{ (o +it) is negative. We show iffI0 thatd(o) is usually a
good approximation tod_(c). Observe thatd(o) = 1 — pg([—m/2,1/2]),
di(o)+d_(0)=1, andd; (0) = Skez Ho (2kmt— 11/2,2kTT+ 11/2).

4 The characteristic function g

Recall that thecharacteristic functiony(x) of a random variabl¢’ is defined by
the Fourier transforngs(x) := E[exp(ixY)]. We omit a factor 2rin the exponent to
agree with the statistical literature.

Proposition 2. The characteristic function of the random varialil§ is given by

LIJO'(X): I_ll(paax)a (2)
P
where, writing bi= p?, I (b, x) is defined by

I(b,x) 1= %T/;nexp(—ixarg(l— b 1)) de. 3)

Proof. By definition
Yo (X) :/ exp(ixOS(w)) dw:/ [ exp(—ixarg(l—p 9z)) dw.
Q o'y
By independence the integral of the product is the produtii®fntegrals, so

Wo(x) =1 /Q exp(—ixarg1—p %zp)) dw.
p

Each random variablg, is distributed a€'® on the unit circle, so

1
v =,

2

exp(—ixarg(l— p"’eie)) dé = [1(p%.%). 0
p

5 Thefunction | (b, x)

In this section we study the functidfb,x) defined byl[(B). It is easy to see frof (3)
thatl (b,x) is an even function of. Hence, from[{(R), the same is true fips (X).
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Proposition 3. Let b> 1 and = arcsir(b~1). Then

/ cos(xarctani) dt

/5 cogxt) cost / Cos<xarcsm—) &
Naerrrot vi-e

Proof. By elementary trigonometry we find

argl—b ') = arctanbjit (4)

Substituting in[(B) gives

1 pem sint 1 m
I(b,x) = ZT/O exp(marctanm) dt= E/o cos(xarctanb_i) dt.

To obtain the second representation, note that afsitetr (b — cogt)) is increas-
ing on the interval0, y] and decreasing djy, 11, wherey = arcco® 1. We split the
integral on[0, 7] into integrals orf0, y] and[y, r7]. In each of the resulting integrals
we change variables, putting= arctargsint/(b— cog)). Then

t= arccos(bsinzui cosuy/1— b2sirfu )) ,

where the sign is+” on the first interval and =" on the second interval. After some
simplification, the second representation follows. Thedthepresentation follows
by the change of variablés— arcsir{t /b). O

Lemma 1. For |t| < 1and all xe C,

cog2xarcsirt) = oF(—x,x; 3;t%) = 1+ >

Proof. In [, eqn. 15.1.17] (alsd [8, eqn. 15.4.12]) we find the idgnt
cog2az) = Fi(—a,a; 3;sir2).

Replacinga by x andz by arcsirt, we get the first half of{5). The second half follows
from the definition of the hypergeometric function. a

Remark 1An independent proof uses the fact tHét) := cog2xarcsirt) satisfies
the differential equatiofl —t2)f”(t) —tf’(t) + 4x?f(t) = 0, where primes denote
differentiation with respect tb

Remark 2Whenx € Z, the seried(5) reduces to a polynomial.
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Proposition 4. For b > 1 we have

o n-1
1(b,2x) = oF1(—x,%1;072) =1+ § ——— [1(j2—x2).
nZl b2nni2 JI:L

Proof. From Propositionl3, we have

2 1 ot dt
[(b,2x) = E./o cos(2xarcsm5) \/ﬁ

The expression of(b,2x) as a sum follows from Lemnid 1, using a well-known
integral for the Beta functioB(n+ 3, 3):

2 1 t?dt 1 11y (2n)

7_1./0 v il ~B(nN+3.3) =
The identification of (b, 2x) as 2F1(—x,x;1;b~2) then follows from the definition
of the hypergeometric functiogr; . a

Corollary 1. If x € Z, b? € Q and b> 1, then I(b, 2x) € Q.

Proof. Since I(b,2x) is even, we can assume that> 0. Applying Euler’s
transformation([l, (15.3.4)] to the hypergeometric repréation of Proposition]4,
we obtainl(b,2x) = (1 — b™2)*,F(—x,1 — x;1;1/(1 — b?)), but the series for
2F1(—x,1—x;1;2) terminates, so is rational farc Q. O

We can now prove our first main result, which gives an expégjpression for
the characteristic functiog, defined ing2-J4.

Theorem 1. For o > % the characteristic functiogy,; of Propositior 2 is the entire
function given by the convergent infinite product

2-(1+5 L) L 6
wo@) = [](1+ 3 5 [0 ) ©®)
Proof. The identity &) follows from Propositidd 2 and Propositf@rSincey p—2°
converges, the infinite produ€f (6) converges foxadl C. a

6 Thefunction logl (b,X)

The explicit formula forys given by Theorerfill is not suitable for numerical com-
putation because the infinite product over primes conveimeslowly. In 8 we
show how this difficulty can be overcome. First we need to warghe function
logl (b, x).
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Theorem 2. Suppose that b- max(1,|x|). There exist even polynomials,@) of
degree2n with y(0) = 0 and nonnegative integer coefficientg.guch that

0g1(6.29 —— 3 I o 22 q—27 (7)
n=1 n=1k=1
The polynomials Qx) are determined by the recurrence
Qi(¥) =x%, Qni1(X) X + Z)( ) ( 1)Qj+1(X)an(X). (8)

Also, the polynomials £Jx) satisfy

[Qn(x)] < ni(n—1)t max(1, x)*". (9)

Proof. By Propositioi # there exist even polynomiBlswith P,(0) = 0, such that

I(b,2x) =1+ %

It follows that

S (DM Pa(x) 1k
oatv 2= 5 (5 05
It is clear that expanding the powers gives a series of thieadeform [7).

To prove the recurrence for tlig,, we temporarily considetas fixed and define

f(y) :=1(y ¥2,2x). Then, by[[¥),
logf(y) = — 5 —5¥" (10)

By Propositiofi#t we havé(y) = »F1(x, —x; 1;y), sof (y) satisfies the hypergeomet-
ric differential equation

y(1-y) "+ (1—-y)f +x2f =0,

where primes denote differentiation with respecyt®defineg(y) := f'(y)/f(y).
Then it may be verifiel thatg(y) satisfies the Riccati equation

X2

/ _—
y(g +g)+g+1 y 0. (11)

Letg(y) = S ogny", where theg, are polynomials irx, e.g.go = —x2. Equating
coefficients in[(IlL), we get the recurrence

2 Usually a Riccati equation is reduced to a second-ordeatidiferential equation, see for
example Ince[[14§2.15]. We apply the standard argument in the reverse directi
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_ 1\/(2 nZl . _
gn— —(n—_|_1) (X +J: gjgn—l—J), fOI’ I’IZ O (12)
Now, from [I0) and the definitions dfandg, we have
f'ly) _d d & Qn(x)
— = — |o f = —— s
W =Ty =y =gy 2,

so we see that

B Qni1
On = —m : (13)

Substituting[(IB) in[(12) and simplifying, we obtain theuaencel[(B).

From the recurrencgl(8) it is clear tH@¢(x) is an even polynomial of degre®,2
such thaQy(0) = 0. Writing Qn(x) = TR_; dn kX%, we see from the recurrendg (8)
that the coefficientgy x are nonnegative integers.

In view of (I3), the inequality[{9) is equivalent tgn(x)| < max(,|x|)2"+2,
which may be proved by induction an using the recurrencE_(112).

Finally, in view of (), the series ii{7) converge tor- max(1, |x|). O

Corallary 2. If b > 1, then (b, 2x) is nonzero in the disk| < b.
Proof. This follows from the convergence of the series forllfg 2x). O

Proposition 5. The numbers g are determined by,g = (n—1)!2 for n > 1, and

n—-1 n)( n ) v
= . . ' ik 14
On+1.k JZO(J i+1 r;qul,rQn jk—r (14)

for2<k<n+1, wherey = max1,k—n+j)andv =min(j+1,k—1). Also, Gk
is a positive integer for eachh 1and1 < k<n.

Proof. The recurrence is obtained by equating coefficients?6in (8). Positivity
of thegn for 1 < k < nfollows. O

Remark 3\We may consider the sum ovein (I4) to be over alt € Z if we define
Onk = 0 fork < 1 andk > n. The given valuegt andv correspond to the nonzero
terms of the resulting sum.

Corollary 3. We haveyp_; 0ok =n! (n—1)!.

Proof. This is easily obtained if we substitute= 1 in the recurrencél8). a
Corollary 4. We have
21
Onn=2""I(n-1)!' Yy — (15)
k=1 1ok

where(jo) is the sequence of positive zeros of the Bessel funciian J
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Table 1 The coefficientsy, k.

I~k 1 2] 3 4 S ¢ 7
1 1

2 1 1

3 al 4 a4

4 36 33 42 33

5 576 480 648 720 456

6 | 1440q 1096q 1490q 1878q 17900 9460

7 ||51840036288048720064824473080060648(27480(

Proof. Defineqn := gnn. With k= n+ 1, the recurrencé€(14) gives, for> 1,

506 (7))
Qn+1—;)(j j+1 QJ+1Qn—J—le J j—1 qj0n—j+1-

This recurrence appears in Carlitz [7, egn. (4)], where shiswn that the solution
satisfies[(Ib). O

Remark 4The sequencéqy) is A002190 in Sloane’s on-line encyclopedia of
integer sequences (OEIS), where the generating funetiog(Jo(2/x)) is given.
The numbers|, enjoy remarkable congruence properties. In facl, (15) éamous
to Euler’s identity|Ban| = 2(2n)! S5, (27k) 2", and the numbers, are analogous
to Bernoulli numbers. We refer to Carlitz|[7] for further disssion.

Remark 5There are other recurrences giving the polynomi@snd the numbers
On k- We omit discussion of them here due to space limitations.

7 Bounds and asymptotic expansions

Sincel (b,x) is an even function ok, there is no loss of generality in assuming
thatx > 0 when giving bounds or asymptotic results fdp, x). This simplifies the
statement of the results. Similarly remarks applyt9(x), which is also an even
function.

Consider the first representationl@b, x) in PropositioB. Ifo is large, then

+0(b?).

( sin@ ) sin@
arctan =

b— cosf b

However, it is well-known[[3R§2.2] that the Bessel functiody(x) has an integral
representation

Jo(X) = 7—1T/Oncos(xsin6)d6. (16)
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Thus, we expedt(b, x) to be approximated in some senseJgx/b). A more de-
tailed analysis confirms this (see Proposifion 7 and Cano®. The connection
with Bessel functions makes Corollddy 4 less surprising ihfirst appears.

Proposition 6. For all b > 1 and x€ R, we havdl (b,x)| < 1.
Proof. This follows from the final integral in Propositigh 3. a0
Lemma2. Fort € [0,1] and g = 11/2— 1 < 0.5708 we have

0 < arcsir(t) —t < cit>.

Proof. Let f(t) = (arcsir(t) —t)/t3. We see from the Taylor series thit) is non-
negative and increasing [0, 1]. Thus sup.oy f(t) = f(1) = m/2—1. O

Lemma 3. Suppose b- 1,t € [0,1], and g as in Lemmal2. Then
0 < barcsir(t/b) —t < ¢3t3/b?.

Proof. Replacet by t/b in Lemmal2, and multiply both sides of the resulting
inequality byb. a

Proposition 7. Suppose b-1, x> 0, and @ = (2—4/m) /3 < 0.2423 Then
[1(b,%) — Jo(x/b)| < c2x/b®
Proof. From the last integral of Propositih 3, we have

dt.
Viv

Also, from the integral representatidn{16) flar we see that

1
I (b,bx) = 7—2_[/ cos(bxarcsintB)
0

Jo(x) = E/lcos(xt) t
"o V1-t2
Thus, by subtraction,
2 1 dt
| (b, bx) — J x:—/ F(b,x,t) 17
(0,09 ~Jo(x) = 7 | (b.x1) g a7

wheref (b,x,t) = cogbxarcsint/b)) — cogxt). Using|cosx — cosy)| < [x—y]|, we
have
|f(b,x,t)] < |bxarcsir(t/b) —xt|.

Thus, from Lemm&]3,
[f(b,x1)| < cit®x/b?.

Taking norms in[(17) gives
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2 ‘1 t3dt
ClX/ (18)
0

[1(b,bx) —J(X)| < — 0

The integral in[(IB) is easily seen to have the valyig. Z'hus, replacing by x/b
in (I8) completes the proof. a
Corollary 5. If b > 1, x> 0, ¢, as in Propositiofill7, and£= /2/m < 0.7979 then
|1 (b,X)| < cax/b%+ ca(b/x)Y/2. (19)

Proof. It is known [1, 9.2.28-9.2.31] thafly(x)| < /2/(7x) for real, positivex.
Thus, the result follows from Propositigh 7. a

Remark 6 The crossover point in Corollafy 5 is fora x3/7: the first term in[(29)
dominates ib < x%7; the second term dominateshifs x%/7.

Corollary 6. If x > 1 and b> x1/2, then
1 (b,x)| < c3(b/x)Y/?(14 csh™Y/?),
where ¢, c3 are as above, andsc= c/c3 < 0.3037.
Proof. From Corollary we have
[1(b,%)] < ca(b/x)M2(1+cex¥?/b7/2).
The conditiorb > x'/2 implies thatx®/?/b"/2 < b~1/2, 0
For the remainder of this section we wrjie= arcsin(1/b).

Proposition 8. For b > 1 and real positive x, we have

| (bx) — 2P / «w  Vb2—1coshu—isinhu du (20)
\/1 (coshu+ivb? — 1sinhu)?

Proof. From the second integral in Proposit[dn 3 we gét x) = 0J(b,x), where

Zb/
Vi-— b25|n2

The function 1— b?sir’t has zeros at = +f3 + kit with k € Z and only at these
points. Also,3 = arcsir(1/b) € (0,1/2). Hence, ifQ denotes the complex plane
C with two cuts along the half-line¢—o,—B] and [3,+), then the function

(cost)//1—b2sirft is analytic onQ. We consider the branch that is real and pos-
itive in the interval(0, 3). We apply Cauchy’s Theorem to the half stfijp > O,
0 < [0t < B, obtaining
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bx)—i—/we*“ 2bcoshu |e'XB/ xu_ 2beogB+iv)
v1+b25|n|’FU \/1 b2sir?(B +iu) .

The first integral does not contribute to the real part. Tgkime real part of the
second integral and simplifying givés {20). O

In the following theorem we give an asymptotic expansioh(bfx).

Theorem 3. For b > 1 fixed and real x— -+, there is an asymptotic expansion of
I(b,x). If B = arcsir(1/b), the first three terms are given by

2 (PP—1)l/4
E( xl/Z) cogxB — m/4)
(b2 42) (b? — 1)~ 1/4
4y/2m x3/2
(90 —280%44) (bP—1)"3*
64v/21 x8/2

Proof. We apply the Laplace method and Watson’s Lemma [25, Ch. 37 pjgto
the representatiof (R0). O

I(b,x) =

sin(xg — mt/4)

cogxB — 7T/4)+(’)< 7]}2)

Corallary 7. For fixed b> 1, the function (b, x) has infinitely many real zeros.

Proof. This isimmediate from the first term of the asymptotic expamabove. The
zeros are near the poinis(%” + k) /B for k € Z=o. O

Corollary 8. For fixedo > % the functiony; (x) has infinitely many real zeros.
Proof. This is immediate from Propositidh 2 and Corollaty 7. O

Coroallary 9. If b > 1 andf3 = arcsir(1/b), then for real x— -+ we have
1(b,x) = B*/2(b? — 1)*/*Jo(Bx) + O(x ).

Proof. The Bessel functiody(x) has an asymptotic expansion which gives

Jo(x) = (3)1/2 (cos(x— mi/4) +%(sin(x— n/4)+ O (X—lz)) .

X
Therefore, from Theorefd 3, the differenid®, x) — BY/2(b? — 1)Y/43y(Bx) is of the
order indicated. O

Now we give a bound on the functidtb, x) which is sharper than Corollaly 5 in
the regiorx > b7/3.

Proposition 9. For b > /2 and real x> 5, we have

|1 (b,x)| < 1.1512,/b/x. (21)
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Proof. We consider the representatidn](20). Take= vb? —1 so the condition
b> 2 implies thatA > 1. It can be shown that, foh > 1 and realu > 0, the
inequality

‘ Acoshu—isinhu ‘ cavVA
v/1— (coshu+iAsinhu)2| ~ min(ut/2,1)

holds. Here, the optimal constantis= \/coth(2) < 1.0185, attained ga=u = 1.
(We omit details of the proof, which is elementary but tedigidence, from{20),
m
< ZC‘;T\/B (\/n/x+ e*X/x) :

Forx > 5 we have(2cs/11)(/Tt/x+e7%/x) < 1.1512/\/X. 0

Remark 7The constant 1.1512 i (R1) can be reduced if we do not askrfidord
mity in b. From Theorerfl3, we have

1 00
(b, x)| < 2°4(b2_1)1/4{ / uY2e gyt / e’xudu}
0 1

1(b,X)| < c3(1—b2)Y4(b/x)Y2+ O (x’3/2) as X — +,

so the constant can be reducedso= (2/7)%? < 0.7979 for allx > xo(b).
The following conjecture is consistent with our analyticuks, for example
Corollary(§ and Theorefd 3, and with extensive numericalavie.

Conjecture 1For allb > 1 andx > 0, we havél (b,x)| < 1/ 721—2

To conclude this section, we give a bound#(x).

Theorem 4. Leto > % be fixed. Thefs(X)| < 1 for all x € R. Also, there exists a
positive constant & 0.47 and % (o) such that

1/0

|Ws(X)| < exp(— I();E(TUJ for all real x > xo(0).

Proof. The first inequality is immediate from the definition@§ (x) as the charac-
teristic function of a random variable.

To prove the last inequality, it is convenient to wiite= x/9. Let 2(y) be the
set of primesp in the interval(y'/2,y]. We can assume thafi;(x) # 0, because
otherwise the inequality is trivial. From Propositidn 6 aalrollary(8, we have

wotol< T) IME%01< ] (es(p/y)/*(1-+osp /%)

pe2(y) pe2(y)

which implies
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—log|yo(| > 5 (~log(ca)+$(logy—logp)) +O(y* /%),
pe2(y)

Using logc3) < —0.22 ando > 1/2 gives

—log|yo(x)| > (m(y) — 7i(y"/?))(§logy+022) = § 5 logp+O(y**), (22)
peZ(y)

where, as usuali(y) denotes the number of primes in the interidal].
From standard results on the distribution of prinies [28] haree

y y y y
n(y):—+—+(’)( ) and Iogp=y+(’)( )
logy  log?y log®y pG;(y) log?y

Substituting in[[2R), we see that the leading terms of oydemcel, leaving

y y
B > (g . T a2y | -
log|ys(X)| = (5 +0.22) |ogy+o <|OQZY)

Since$ +0.22> 0.47, the Theorem follows, provideds sufficiently large. O

Remark 8 We find numerically that, foo € (0.5,1.1), we can take =1 andxp =5
in Theorent#.

8 An algorithm for computing Ys(X)

There is a well-known technique, going back at least to Wing88], for accurately
computing certain sums/products over primes. The ideaggpoess what we want
to compute in terms of therime zeta function

P(s):=3% p° (O(s>1).
P

The prime zeta function can be computed fromddsg) using Mobius inversion:

[

_ ¢ K
P(s) = r;T log{(rs). (23)

In fact, (23) gives the analytic continuation Bfs) in the half-planeds > 0 (see
Titchmarsh([29§9.5]), but we only need to compuls) for reals > 1.

To illustrate the technique, temporarily ignore questiohsonvergence. From
Theoreni P, we have
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o n 2 —2no
o1 (p7.x) = - § P2 r(j(z/ Ly
n=1 '

Thus, taking logarithms i 12),

log o (x Z Z ani(z/ 2y i Qnr(;;/ 2 P(2no).  (24)
n=1 '

Unfortunately, this approach fails, becaugg(x) has (infinitely many) real zeros —
see CorollaryB. In fact, the seriés124) convergesgxpx [x1(o)|, wherex; (o) is
the zero ofys (X) closest to the origin, and diverges faf > |x1(0)|.

Fortunately, a simple modification of the approach avoidsdifficulty. Instead
of considering a product over all primes, we consider thelpecbover sufficiently
large primes, sap > po(x, o). Corollary[2 guarantees thkip?,x) has no zeros in
the disk|x| < 2p°. Thus, to evaluatg(x) for given o andx, we should choose
2pg > |x|, thatispg > |x/2|%/9. In practice, to ensure rapid convergence, we might
choosepg somewhat larger, sayo ~ |4x|/°.

For the primes < po, we avoid logarithms and compuitep?, x) directly from
the hypergeometric series of Proposifion 4.

To summarize, the algorithm for computigg (x) with absolute erro©(¢), for
x € R, is as follows.

Algorithm for the characteristic function @g(X)

1. po + [14x/Y7].
N n-1 ) )
2. A+ 1+Y —— [1(i“— (x/2)%) | ,whereN is sufficiently large that
plé_lpo nZl pZnUn!Z JI:L
the error in truncating the sum@(¢). [HereA s the product over primes po.]

N/
3. B« exp(— Z Q”r(s(z/z) {P(Zna) - z p2”0}> , where N’ is sufficiently
n=1 : P<po
large that the error in truncating the sun@g¢), andQn(x/2) is evaluated using
the recurrencé(8). [He®is the product over primes po.]
4. returnA x B.
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Remarkson the algorithm for g (x)

1. At step(B,P(2no) can be evaluated using equatiénl(23); time can be saved by
precomputing the required valuéérs).

2. Itis assumed that the computation is performed in flogpioigt arithmetic with
sufficiently high precision and exponent rangk [6, Ch. 3}.éfticiency the pre-
cision should be varied dynamically as required, for examo compensate for
cancellation when summing the hypergeometric series pfZter when com-
puting the term{P(2n0) — T p<p, P2} at stefi B.

3. At sted3 an alternative is to evalua@g(x/2) using a table of coefficients, ;
these can be computed in advance using the recurrence abgtiop[3. This
saves time (especially if many evaluationsyef(x) at different points are re-
quired, as is the case when evaluatid(@)), at the expense of space and the
requirement to estimate’ in advance.

4. The algorithm runs in polynomial time, in the sense that Mumber of bit-
operations required to comput; (x) with absolute erro©(¢) is bounded by
a polynomial (depending oo andx) in log(1/¢).

9 Evaluation of d(o) and d_(0)

In this section we show how the densitiér) andd_ (o) of 3 can be expressed
in terms of the characteristic functiap,.

Proposition 10. For o > 1, the support of the measugg; of §3is contained in the
compact interval—L(o), L(g)], where

L(o) = z arcsin(p~9).
P

Proof. Recall thatuy is the distribution of the random variallés considered iriZ.
From (4), 0Sis equal to the sum of terms arctar{(sint)/(p° — cos)) whose
values are contained in the interJalarcsinp~ 9, arcsinp—¢]. Therefore the range
of OSis contained in the intervdd-L (o), L(0)]. O

Remark 91t may be shown that the supportas is exactly the intervdL(o),L(0)].

Remark 10As in van de Lune[[23], we defingy to be the (unique) real root in
(1,4) of the equationL(c) = /2, ando; to be the real root in1,+~) of
L(o) = 3m/2. These constants are relevanill.
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Proposition 11. For o > 3,

dx

d(a):l—%/ooowo(x)sin(%x) = (25)

Proof. Recall from§3 that 1— d(o) = pg([—1/2,11/2]). Sinceyy is the charac-
teristic function associated to the distributigp, a standard resflin probability
theory gives

1_d(0): ET)!iLnoo —X IX

1 /X exp(ix7/2) —.exp(—ixrr/Z) Wo (X) dx.

Sinceys(x) is an even function, we obtaibh (25). O

To evaluatel(o) numerically from[(25), we have to perform a numerical ingegr
tion. The following theorem shows that the integral may h@aeed by a rapidly-
converging sum i > 1.

Theorem 5. Leto > 1and? > max(rt/2,L(0)). Then we have

do-1-F-25 T (M) e

Proof. Consider the functiop(x) equal topg(X) in the interval—¢, /]. Now extend
p(x) to the real lineR, making it periodic with period 2 Thus

. ' .
p(x) = ngz fnexp<$(> , where f,= 2_12/45()() exp(—?) dx

Now p(x) = pg(x) for |X| < ¢ andpg(x) = O for |x| > ¢. Therefore

1/t TIinX 1 v TIinX 1 m
fn= ﬂ/ffpa(x) exP<—T> dx= ﬂ'/RPo(X) eXP<—T> dx= ﬂwG(T) :

Sinceys(X) is an even function,
B(x) = 1 w (rm) exp(rn’nx) 1 N 1 i v (rm) cos™X 27)
= — o\ — B —— = — — o| — - .
20 ngz 1 14 20 &5 1 14
Now d(0) = 1 - po([~11/2,1/2]) = 1— [™2,po(t)dt. Sincer/2 < ¢, we may
replaceps(t) by p(t) in the integral. Hence, multiplying the equalify{27) by the
characteristic function df- /2, 1/2] and integrating, we geff(26). O

3 Attributed to Paul Lévy.
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Remark 11The sum in[(2B) can be seen as a numerical quadrature to apyatex
the integral in[(2b), taking a Riemann sum with stepsize r1/¢. However, we
emphasise thaf (P6) isxactunder the conditions stated in TheorEin 5. This is a
consequence of the measyg having finite supportwhea > 1. If o € (%, 1] then

Ug no longer has finite support and {26) only gives an approxanahowever,
this approximation converges rapidly to the exact result as o, becauseiy is
well-approximated by measures with finite support.

Remark 12If we takem:=4¢/mTin the Theorerils, we get the slightly simpler form
2 221 4n 2m
do)=1-——=3\ = — |sin| — 28
(0) - nnzlnwo<m)sm< m> (28)

for m > max2,M(0)), whereM(o) = 4L(0)/m. A good choice ifL(0) < mis
m= 4; then only the odd terms in the suim{28) contribute.

Computation of d_ (o)

Recall thatd_(0o) is the probability that]1{(o +it) < 0. Letax = ax(o) be the
probability thatjargl (o +it)| > (2k+ 1)711/2, that is

A= 1— o[~ (k+ )T, (k+ ) 7).
Then

[ [

d(0) = k;<a2k — 1) = k;(—nkak. (29)

We have seen that, far > 1 andm > max(2,4L(0)/n), eqn.[(Z8) givesy = d(0o).
Similarly, under the same conditions we have

. 4k+2 221 4n\ . [/ (4k+2)m

Using [29) and[{30) in conjuction with an algorithm for thengoutation ofy,, we

can computel_ (o) and also, of coursel, (o) =1—d_(0). If o € (3,1] then we
can take the limit of(30) am — «, or use an analogue of Proposition 11, to evaluate
the constantay.



20 Juan Arias de Reyna, Richard P. Brent and Jan van de Lune

Table2 d(o) for variouso € (0.5,1.165

g d(o)

0.5+ 10 11 0.6533592249148917497
0.5+1075 | 0.4962734204446697434

0.6 7.920291926743275312610 2
0.7 2.522878279606896296910 2
0.8 5.140188860018724764410 3
0.9 3.140174361064211242710 4
1.0 3.788662360668871867%110 7
11 6.308874995250501403810 22
1.15 1.381532808090703424710 103
116 1.117207481577936812610 194
1.165 1.279820775231853460310 283

10 Numerical results

In [3] we described a computation of the first fifty intervats>( 0) on which

0 (1+it) takes negative values. The first such interval occurs fer6821129,
and has length- 0.05. From the lengths of the first fifty intervals we estimateat t

d (1) ~ 3.85x 10~’. We also mentioned a Monte Carlo computation which gave
d_ (1) ~ 3.80x 10~". The correct value is.3886... x 10~’. The difficulty of im-
proving the accuracy of these computations or of extendiagitto other values of

o was one motivation for the analytic approach of the presapép

The algorithm offg was implemented independently by two of us, using in one
case Mathematica and in the other Magma. The Mathematiceingmtation pre-
computes a table of coefficiertgy; the Magma implementation uses the recurrence
for the polynomial€Q,, directly. The results obtained by both implementationsrare
agreement, and also agree (up to the expected statistiog) eith results obtained
by the Monte Carlo method in the regior60< o < 1.1 where the latter method is
feasible.

Table 2 gives some computed valuegl¢d) for o € (0.5,1.165. From van de
Lune [23] we know thatl(o) = d_ (o) = 0 for 0 > gy ~ 1.19234. Table 2 shows
thatd(o) is very small foro close tody. For exampleg(o) < 10-1%for g > 1.15.
The small size ofi(o) makes the computation difficult far > 1.15. We need to
computey (4n/m) to more than 100 decimal places to compensate for cancellati
in the sum[(ZB), in order to get any significant figuresl (o).

Selberg[[25] (see alsb [16,118.130]) showed thatt ferunif(T, 2T),

logd(1/2+1it) ¢

= X+iY (31)
\/ 3loglogT

asT — oo, with X, Y ~ N(0,1). This implies thati(1/2) = 1, but gives no indication
of the speed of convergence @fo) aso | % Table 2 shows that convergence is
very slow — foro — 3 > 10~  we haved(o) < 3.
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Table 3 The differenced(o) —d_ (o)
g d(o)—d_(o)
05+10 1 0.1547533823
0.6 8.073328981« 10~
0.7 |2676004882 10 32
0.8 7.655052120< 10210

It appears from numerical computations thaf(1/2 +it) is “usually positive”
for those values dffor which computation is feasible. This is illustrated byesel
of the Figures in[[2]. Because the functigfioglogT grows so slowly, the region
that is feasible for computation may not show the typicaldvitur of{ (o + it ) for
larget on or close to the critical line = %

Table 3 gives the differencé(o) — d_(o). For o > 0.8, there is no appre-
ciable difference betweed(o) andd_(o). This is because the probability that
|arg{ (o +it)| > 3m/2 is very small in this region. Indeed(o) = d_(o) for all
0 > 01 ~ 1.0068, whereg is the positive real root df(o) = 3m1/2.

There is an appreciable difference betweko) andd_(o) very close to the
critical line. For exampled_(0.5+ 10711) ~ 0.4986058426, bud(0.5+ 10" 1%) ~
0.6533592249. Our numerical results suggest thag limd_ (o) = 1/2.

Itis plausible thatl_(3) = d.(3) = 3, but Selberg’s resul[{31) does not seem
to be strong enough to imply this.

11 Conclusion

We have shown a precise sense in whi¢fi(s) is “usually positive” in the half-
planec =0(s) > % given an explicit expression for the characteristic fiorcty,,
and given a feasible algorithm for the accurate computatiay,, and consequently
for the computation of the densitidéo) andd_ (o).

Our results could be generalised to cover Dirichlet L-fiorts because the char-
actery(p) in the Euler product

LX) =[]2-x(pp 9t
p

can be absorbed into the random variatyevhenever x (p)| = 1. Thus, it would
only be necessary to omit, from sums/products over primegrimes p for which
X(p) is zero, i.e. the finite number of primes that divide the madubdf the L-
function. This would, of course, change the numerical tesiNevertheless, we
expectIL(s, x) to be “usually positive” forJ(s) > %
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